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Various NMR properties of solid H~ and D& are studied, and the following results are ob-
tained. The leading terms in the high-temperature expansion of the second moment M&(T)
for H2 are Mq(T) =Mq{ )+ 3 d x(1 —x) {PI') (1-2pI'-~«pI'x), where M2{ ) is the Van Vleck
term, I' is the electric quadrupole-quadrupole coup]jng constaot, P =—1/kT, and x is the con-
centration of @=1)molecules. For H2, this expression fits the data qualitatively for T 5 K.
For D2, the observed second moment agrees with our calculations only for very small or very
large values of x. For intermediate values of x, the observed second moment is much smaller
than expected, which leads us to propose that the resonance of the (J=1) moleeules is too broad
to be observable. Under this assumption, we find a temperature-dependent contribution at 5'K
about 100 times smaller than that given above, in rough agreement with experiment. For H&,

a reasonable fit to the fourth moment M4 is obtained by the relation

M, (T)-M4( )=—,M, ( ) [M,(T)-M, ( )],»6

which is derived by decoupling certain averages required in the otherwise rigorous moment
calculation at high temperatures. The spin-lattice relaxation time T» is calculated by extend-
ing the Gaussian approximation for the spectral functions to finite temperatures. The high-
temperature result is T = 0. 780 (I /hco) x (1—+pI'-

&&+ pi'x) ~t for H2, and T& = 5. 12 (1"/hco)
xr~~t(l-~&4pI'-~I&+ pl'x)~~t for (8=1) molecules in D&. At low concentrations we modify the re-
sults of Sung and find T»=2. 53 x5 3I' » for H2, and T» =18.7x5~3I' » for (8=1) molecules in D2,
if T» is in seconds and I' in em . These formulas reproduce the concentration dependence of
T» in H2 and D2 very consistently over the entire concentration range x ~ 0.005. For a quanti-
tative fit to experiment one must take I'/I'0 between 0. 6 and 0.65 for both H2 and D2, values
which are slightly smaller than obtained from other experiments. Here I'0 is the rigid-lattice
value of I'. Both the resonance and the relaxation data tend to confirm that in the solid all
interactions must be renormalized to take account of lattice vibrations. We also obtain explic-
it analytic results for T» in the ordered phases of H2 and D2 due to libron scattering, making
use of the libron density of states calculated by Mertens gt al. At present the data are too
scanty for a meaningful comparison with theory. Finally, we calculate the Pake splitting of
(J'= 0) D2 molecules in the ordered phase to be 8.Sx kHz. This prediction has recently been.
confirmed by experiment.

I. INTRODUCTION

This paper is the second in a series of detailed
treatments of the properties of solHi hydrogen. In
the first of these we discussed the various interac-
tions between molecules. In particular, we showed
that the electric quadrupole-quadrupole (EQQ) inter-
actions were renormalized by static and dynamic
phonon modulation in the solid. The present paper
is devoted to a discussion of nuclear-magnetic-res-
onance (NMR) properties of solid hydrogen. Other
papers in this series deal with the analysis of the
high-temperature orientational specific heat of solid
hydrogen and the interpretation of Raman and in-
frared spectra of nearly pure para H~. The ulti-
mate objective of this program is to show that the
orientational properties of solid hydrogen can be
understood on the basis of interactions between
molecules which are derived from first principles.
Beyond this objective one might hope to arrive at
a complete first-principles understanding of the

properties of solid hydrogen.
This paper is organized as follows. In Sec. II

we review the interactions between molecules in
solid hydrogen. %e quote some results for the
renormalized interactions between molecules in
the solid. Here we also discuss the interactions
between nuclear spins and molecular rotations based
on the Hamiltonian given by Ramsey. ' In Secs. III
and IV we present a calculation of the second and
fourth moments of the NMR absorption spectrum
as a function of temperature. Intermolecular di-
polar interactions lead to temperature-independent
moments, as has been discussed by Van Vleck
some time ago, and these are in agreement with
experiment. The intramolecular interactions are
shown to give temperature-dependent contributions
to the moments, which can be evaluated using a
high-temperature expansion. The two leading terms
in this series are evaluated and for H3 reasonable
agreement with experiment is obtained considering
the fact that such high-temperature expansions con-
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verge slowly at the temperature in question. For
D~, agreement between theory and experiment is
only obtained at very high or very low (J'= 1) con-
centration. As an explanation we suggest that at
intermediate concentration perhaps only the ortho
(J=O) molecules effectively contribute to the mo-
ments. A calculation of the temperature depen-
dence of the second moment based on this assump-
tion is in qualitative agreement with experiment.

In Sec. V we study the dynamical behavior of a
pair of (8= 1) molecules subject to EQQ interactions.
We compute exactly the spectral weight functions of
311 the independent correlation functions. These
calculations are of constant use in later sections.

Sections VI-VIII deal with the spin-lattice relaxa-
tion time T,. In Sec. VI we extend the Gaussian Bp-
proximation' to the spectral functions which deter-
mine T, . The fact that the two leading terms in
the high-temperature expansion lead to values of
T, in reasonable agreement with experiment may
be slightly fortuitous. This point is being studied
at present by extending the number of terms in the
series. Here we show that the fourth moment at
infinite temperature is consistent with a. Gaussian
shape for the spectral functions. From our study
we conclude that the dependence of T, on the orien-
tation of the magnetic field is too small to be ob-
served at present.

In Sec. VII we study T, in the regime of low con-
centrations of (J= 1) molecules. We show that the
agreement with experiment ' achieved by Sung's
theory' is fortuitous, although his physical mechan-
ism is undoubtedly correct. We use Bn improved
approximation in the statistical model" which ap-
pears to be rigorous in the low-concentr3tion limit.
Accordingly, it is surprising that although the con-
centration dependence is correctly reproduced, the
absolute magnitudes of the theoretical values of T,
are 5(P0 larger than the experimental values.

In Sec. VIII we calculate the spin-lattice relaxa-
tion time for (J'=1) molecules in the orientationally
ordered phase. Our analytic results are based on
the density of states for libron excitations given
by Mertens et al. While the qualitative features
of the experimental results' "agree with the calcu-
lations, a detailed comparison of theory with ex-
periment cannot be made until more extensive ex-
perimental data are available.

In Sec. IX we calculate the NMR spectrum of
(8= 0) molecules in the orientationally ordered
phase. We point out that (J =0) D2 molecules should
display a Pake splitting similar to, but smaller
than that of (8= 1) molecules. "@'7 This splitting is
caused by partial ordering of (8= 0) molecules via
EQQ interactions which cause distortions in the
(7=0) state. This Pake splitting is calculated to be
8. 8x kHz, where x is the concentration of (8= 1)
molecules. The magnitude and concentration de-

pendence agree rather well with experiment. This
Pake splitting also explains the anomalous width
in the (J=0) resonance seen by Gaines ef al. '7 pre-
viously.

Finally, in Sec. X we summarize briefly the con-
clusions reached on the basis of the various calcu-
lations presented here. On the whole, we conclude
that our calculations provide a reasonable under-
standing of the NMR behavior of solid hydrogen.

For completeness we should note certain NMR
phenomena which we have not discussed. For ex-
ample, we do not consider nuclear spin-lattice re-
laxation in the diffusion-dominated regime. This
phenomenon has been studied experimentally by
Bloom' and others. ' The experimental results are
in good agreement with the calculations of Moriya
and Moriya and Motizuki. ' Also, we do not dis-
cuss the observation of pair interactions via the
characteristic line shape of isolated pairs of (J= 1)
mole cules in otherwise pure (J= 0) hydrogen.
From the temperature dependence of the Pake split-
ting, Harris et al. 'were able to determine the
effective EQQ coupling constant for nearest neigh-
bors. Lastly, we do not discuss the temperature
dependence of the Pake splitting either for H2'& '
or for D2 ~' in the ordered phase. We note that
the treatment of Raich and Etters using the ran-
dom-phase approximation does not accurately re-
produce the temperature dependence of these split-
tings. ' '

x Y"'"(Q )+ (2. I)

In Table I we give the values of the EQQ coupling
constant I"0, defined by

(2. 2)

where eQ is the quadrupole moment of the mole-
cule ' and AD is the equilibrium intermolecular
sepa, ration. '7 ' Also C(2, 2, 4; m, n) is a Clebsch-
Gordan coefficient, ' Y~(sr) is a spherical harmonic
using the phase convention of Rose, ' where co, and
0» specify the orientations of the axis of molecule
i and the vector r» = r, —r~, connecting the centers
of gravity of the two molecules, respectively. In
Eq. (2. 1) the quantization axis is arbitrary. If

II. INTERACTIONS INVOLVING MOLECULES AND NUCLEI
A. Orientational Interactions between Molecules

The purpose of this section is first to review the
interactions between molecules in solid hydrogen,
and secondly to obtain a few simple results which
will be useful in the course of this work. As
Nakamura first showed, the orientationally depen-
dent part of the intermolecular potential is dominated

by the EQQ interaction. The EQQ Hamiltonian can
be written as

Z oz =
9 vt'0 (10m) Z C(2, 2, 4; m, n) Yz (a&, ) Y~(&g,)
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TABLE I. Molecular and intermolecular constants
for hydrogen.

Symbol

a (kHz)
5 (kI-rz)

c (kHz)
d@ (kHz)

dg (kHz)
d {kHz)
& (cm ~)

Q (a. u. )
I'0 (cm ~)

&0 (Hz)

Qg (cm )

Kq.

{2.15)
(2. 15)
(2. 15)
(2. 16c)
(2. 16d)
(3.8)
(9.3)
(2.2)
(2.2)
(2. 18)
(2. 15)

H2

4. 258HO

0.671700
113.9
57. 67

0
57. 67
59.34
0.4883
0. 698

2278

D2

o. 6536HO
0, 3368HO
8. 773
2. 74

22, 50
25. 24
29. 91

0, 4783
0. 842

61, 12
2, 74 x10-27

Ref.

39
39
39
39
39
39
40
26

See 2

39, 27-31
39

Here Ho is the applied magnetic field.

r,"(&u) = n~r~~(z), (2. 4)

2
Q0 = —

5~ Cy —0~ Qo —lq (2. 6)

and the tensor operators are given in Table II. Al-
so, within J= 1 these operators obey

[r"(~), r" (&)]

=Z n(L L' L")c(L L' L" ~ ~')r"'"'(z)

me specialize to the case when the quantization axis
is taken parallel to r,2, me obtain

3CEoo = ~3 III'0 (70)'~' Z„c(2, 2, 4; m, —m) I 3 ((ul)

xI2 ((0)

It mill often be convenient to use the operator
equivalents, i. e. , the irx'educible tensox' operators
f I, (eT) wlt11111 tile nlanlfold cl= l~

Note that o. vanishes when I + 1.'+I" is even and

P vanishes when L+I, '+I" is odd. The coefficients
cI(L„LI,L,) RIld p(L„LI, L3) Rl 6 glveII 111 TRMe III.
Wltll tile norlllallsatlon of tile rl, {cT) taken 111 R11Rlogy

with the Yf(a&) as indicated by EII. (2.4) one has the
conveQlent relRtlon mlthln R manifold of coQstRQt ci

(u+ i)-' Tr[r",(Z) r,"(~)(- I)"]

(2. 8)= (4II) ' D [X—~ m(m + 2)],
haft -"0

where X=X(J+I).
In terms of these tensor operators the analogs

of Eels. (2. I) and (2. 8) are

X,«-

i'll,

(VO~)I "ZC(2, 2, 4; m, n) r, {Z,)

x r (82,) r, '" (0»)*, (2. 9a}

xs~q= ~II III', {70)I~'ZC(2, 2, 4; m, —m) r2 (ZI)

(2. 9b)

In I me discussed various types of interactions and
hom these interactions mere modified in the solid
by lattice vibrations and dielectric screening. Al-
though the calculation can be improved, the main
trends are already apparent. %e concluded that
the EQQ coupling constant I'0 should be replaced by
an effective renormalized constant I',f~. In that
calculation me included not only the static effect,
i. e. , avex'aging the orientational interaction ovex
the phonon motion, but also the dynamical effects
caused by collisions between the phonons and the
molecular rotations. Thus, fox' fcc-ordered hydro-
gen me found the values

lfrM{g) rhl'(g))
(2. 6a) I',«/I'0=0. 84 for H2,

I',II/I'0=0. 84 for Dm,

(2. iOR. )

(2. lob)
=Z P(L„L', L")C(L, L', L";I, 11'') r,";,"'(z),

(2. 6b)

r,"(z)r$ (z)

=Z y(L, L', I.")C(L, L', L";1', fIf') r,";,"'(z),

(2. 6c)
where obviously

y(L, L', I,")= .' n(L, I, ', L")+P(L-, I,', I.") (2.7).

whereas for nearest-neighbor pair interactions in
nearly pure (J'= 0) hydrogen we found the renorlnal-
ized coupling constant to be

I"'""/I" =0. 94 for H, ,

I'~~II /I"0=0. 92 for D2.

(2. I la)

(2. in)
The dynamical effects for concentrated (8= I}hydro-
gen in the disordered hcp phase mere not calculated

TABLE II. Irreducible tensor operators.

TABLK III. Values of n(L&, I ~, L,&) and p(L&, L2, L3).
For typographical convenience the table gives values of
m~~2m and 7r~ ~~P, e.g. , n (2, 2, 1) = ~(30jx) ~ ~2.

(5/'16~) '"{3J,'- 2)

~ g (4 T (15/32m) ~ ~2(J J~+J J )

V 1.'«(15/32~)'"J,'

(3/4~)'~'J, (1/4~)'~'

~ (3js~)'~'J, o

o. (2, 2, 1) =58M30

o. (l, 1, 1) =2'T6

P(2, 2, 0) =~&5

P(1, 2, 1)=s&2
P(1, 0, 1) =-,'

Q(2, 1~ 2) = —pe
P(1, 1, 2) =gg~30
P(2, 1, 1)=--',D2

P(2, o, 2)=-.'
P(o, 1, 1)=-,'

o, (l, 2, 2) = —32&2

p(2, 2, 2) =8470
P(1, 1, o) =-D3
P(0, 2, 2)=-,'
p(0, o, o)=-,'
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I'",ff /I'0 ——0. 87 for H2,

I„,/I'o = 0. 88 for D, .
(2. 12a)

(2. 12b)

Also note that distant neighbors should not be re-
normalized by lattice vibrations since the relative
vibrations of distant molecules affect these inter-
actions in a negligible way. We will neglect this
refinement and will renormalize all interactions
by the same factor. Actually, this turns out to be
quite a satisfactory procedure, because although
the further-neighbor interactions are reduced less
than the nearest-neighbor interactions by phonon
renormalization, the dielectric screening becomes
more effective for more distant neighbors. Since
these two dependences on separation tend to cancel,
they can safely be neglected, which justifies re-
normalizing all interactions in the same way.

From I it is apparent that for nearest neighbors
other pairwise and three-body interactions are
negligible in comparison to the EQQ interactions
and, accordingly, we can neglect them for the pur-
poses of this paper. For widely separated mole-
cules we must consider other interactions, as for
instance, the single-molecule crystal-field Hamil-
tonian

(2. 13)

where ) V, ) was determined by Hardy and Gaines'
and by Gaines et al. ' to be about 0. 006 cm '. Also
in I we showed that at sufficiently large separations
the indirect interaction caused by the virtual emis-
sion and absorption of a, phonon (the analog of the
Suhl-Nakamura ' interaction in magnetic materi-
als) becomes dominant. The form of this interac-
tion was given in I. Here we need only the result
for the root mean square interaction energy bE,

bE —C~ „x, (2. 14)

a.ssuming the separation at (J'= 1) concentration x
is approximately B0x ' '. Here C» is a constant
depending critically on the renormalized orienta-
tionally dependent intermolecular potential. Using
the most reliable estimates of the bare potentials
and using a renormalization procedure based on
the theory of quantum crystals, ' we obtained the
value C»=0. 022 cm '. Since the EQQ energy per
molecule is about 2I'x' ', we see that there are
two regimes. In regime A., for x&0. 003, the in-

explicitly. However, it was argued that these ef-
fects were scaled by the parameter E /(k8~), where
E is proportional to the orientational energy and

8~ is the Debye temperature. Accordingly, at high

temperatures (kT» I ) where the orientational energy
is small, the dynamical effects can be neglected, and

only static effects and dielectric screening need to
be considered. Denoting this limit by the super-
script HT, we thus have

tera, ction energy is primarily due to EQQ interac-
tions, whereas in regime B, for xc0.003, the in-
teraction energy is mainly due to the indirect inter-
actions via phonons. Here we shall mainly be con-
cerned with regime A, and, hence, the indirect
interactions will not play a role in our calculations.

B. Interactions Involving Nuclear Spins

Next, let us consider the interactions involving
the nuclear spins. We use the spin-rotation Hamil-
tonian 3(e„given by Ramsey' for noninteracting
D2 or H2 molecules in their electronic ground states:

k 'Judea= —aI, —bJ, —cI . J
+(~/I)'(r ')I:~ "' 1"'-3(i"'~)(i"' ~)

+eQ ' [3(i"' n)'
Q2p

N Bg20

+3(i "' 6)'- 2f(i+ I)] . (2. iS)

Here the first two terms represent the Zeeman en-
ergy of the nuclear spins and the Zeeman energy of
the magnetic moment associated with molecular
rotation, respectively, where I is the total nuclear
spin, I=i "+i "', and i "and i "are the nuclear
spins, each of magnitude i, the superscripts being
used to distinguish the two nuclei. The third term
represents the interaction of the nuclear spins with
the magnetic field caused by the molecular rotation
currents. The fourth term is the internuclear di-
polar interaction, where p is the magnetic moment
of the nuclei, n is the orientation of the molecular
axis, and ( r ) is the average of r ~ over the elec-
tronic ground state, where x is the internuclear
separation. The last term in Eq. (2. 15) represents
the interaction of the quadrupole moments of the
nuclei with the electric field gradients caused by
the charge distribution in the molecule, where
O'V, /Baoa is the electric field gradient along the
internuclear axis due to the molecular charge dis-
tribution and Q„ is the deuteron quadrupole moment.
One defines

da =-,' p'( r ') for H, ,

d„=-', p'(r ') for D, .

(2. 16a,)

(2. 16b)

Since i = —,
' for H2 and i = 1 for D2, one can write this

as

d„=(2p' 5/i)(r ) for Ha, D, .

Also, we define

Q2p
d@ = 5 eQ»' for Da,

Z0

d@ =0 for H2.

(2. 16c)

(2. i6d)

(2. 16e)

The constants' ~ appearing in Eqs. (2. 15) and
(2. 16) are listed in Table I.

Finally, we take account of the dipolar interaction
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between nuclear spins in different molecules through
the term XD„, where

X„,=g'P'Z It;', [I, 1,. -3(1, A„){I,.A„)] .
(2. 17)

For nearest neighbors we found in I a renormaliza-
tion due to phonon interactions which indicated that
we should replace the intermolecular dipolar-inter-
action constant for a rigid lattice Ko, defined as

Ko=g p /Rob, (2. Ia)

by a renormalized interaction constant K,« = $32KQ,

where

(2. 19)

for both H~ and D3. Further-neighbor interactions
should not be renormalized.

C. Summary

To summarize: The model of solid hydrogen that
we consider is the foDowing. The nuclear spins
are described by the Hamiltonians of Eqs. (2. 15)
and (2. I'7) and the molecular rotations are described
by the Hamiltonian of Eq. (2. 9), the coupling con-
stants being renormalized in each case as discussed
above.

contribution to the second moment which we lose by
discarding the fluctuation terms can be estimated 3

to be of order T,' M2 ', ~here 7, is the nuclear
spin-lattice relaxation time. Since normally one
has

M~~ T(&& 1, (3. I)

the fluctuation terms can be neglected. %e also
confine our attention to sufficiently low temperatures
(7 &9 K for H2 and 7&14'K for Da) that the effects
of thermally activated diffusion can be neglected.
These effects have been considered by Moriya~o

and Moriya. and Motizuki and their calculations
agree reasonably well with the experimental data
of Bloom. %e will further assume that the Inag-
netic energies ha, hb, and hc are negligible in
comparison to kT, as is normally the case, so that

(J;).=o. (3. 2)

Here the bracket ( )r indicates a thermodynamic
average at temperature T. Also we confine our-
selves to the high-field limit a» d, in which case
one calculates the moments of the NMR spectrum
near vo=- a from the truncated Hamiltonian

h 'X' =Z, (R~, + R~, ) + 3C~~, (3. 3

III. MOMENTS OF NMR ABSORPTION LINE IN 82
A. Formulation Xg, = —aJ g, (3.4a)

In this section we derive expressions for the sec-
ond and fourth moments, M~ and M4, of the NMR
absorption spectrum in solid H~. In various sub-
sections these expressions are evaluated using
high-teIQpel atul e expansions. The NMR line shapes
at low temperatures in the disordered phase involve
rather complicated calculations and will be treated
in a separate publication. Except for the absorp-
tion spectrum of isolated pairs of (8=1) molecules, '
little progress has been made towards interpreting
the line shapes in that regime. The line shape in
the ordered phase is essentially dependent on a
calculation of the order parameter. In order to
reproduce quantitatively the temperature dependence
of the order parameter implied by the temperature
dependence of the Pake splitting in the cubic phase
it would be necessary to make some modifications
to the existing libron-wave theories. '2'32' ' Such
calculations are beyond the scope of the present
work and will not be considered further.

Our discussion will be based on the Hamiltonians
of Eqs. (2. 15) and (2. IV). First we note that the
EQQ interaction energy is much larger than the
nuclear-spin energies. This comparison implies
that the rotational-correlation times are short in
comparison to the times corresponding to the vari-
ous nuclear-spin energies. Consequently, the ro-
tational variables appearing in Eq. (2. 15) can be
replaced by their thermodynamic averages. The

(3. 4b)

(3.4c)

Here the subscripts label the molecules and the
superscripts the nuclei, and we set

B,&= —2K«, (3 cos'8,.
&

—1), i, j nearest neighbors
(3. 5a.)

=0, g=2 (3.5b)

,Ko(RO/8, ,)'—(3cos'8;& —1), otherwise
(3. 5c)

—=~ ( 3 cos'8 —1 {3.5d)

[m, (T')-M, ( )]«m, ( ) . (3. 6)

4 )r
where 8,&

is the angle between the vectors R,&
and

Ho and 8; is the angle between the vectors i; and
Ho.

Still, there are two possible cases depending on
the relative sizes of X» and X~;. If the former
dominates, then the moments can be calculated
from the truncated Hamiltonian of Eq. (3. 3). In
the reverse case one must further truncate the
intermolecular interaction. As we shall see, K»
is responsible for the temperature-independent
contribution to M~, whereas the temperature-depen-
dent contributions to Ma can be attributed to XD;.
Accordingly, the condition that Eq. (3. 3) be the
correct truncated HaIniltonian is
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Even if this condition is not strictly fulfilled, use
of Eq. (3. 3) probably does not lead to a great
error. + This conclusion follows from the result
of Ishiguro et al. ~ that the second moment of one
peak of the fully split Pake doublet is +8 that of the
unsplit line. Hence, in the interest of simplicity
we will use Eq. (3.3).

For H2 this truncated Hamiltonian can be written
in terms of the total nuclear spins as follows:

It 'Z'= -tran Itr —ndZ A, [3IP, —I,(I;+1)]
i

+ 2+B;;(I,~ I~ —3IP, I,(),
ij

(3. 7)

d = cfg + dq (s. 6)

In Eq. (3. 7) the sums are restricted to I= 1, i. e. ,
odd J molecules. As is evident from Ref. 45, the
moments Mz and M4 are given by

I2M2=& (Z;Dt) (Z&I&)) z, ,

I,M, =& (Z;D';) (Z~D, ))

(S. 9a)

(s. 9b)

where

I =Z&I;I,)

3

(S. 10a,)

(3. 10b)

Here N is the total number of molecules, g is the
fraction of (J= 1) molecules, alld

where by convention one writes (for both H2 and D2)

quantities in Eq. (3. 13). We will indicate these
averages by double brackets, « ))„,with the sub-
scripts P and a, respectively. To take the powder
average we express the spherical harmonics with
respect to the crystal axis rather than to the mag-
netic field:

(3cos'0, —1) = (~2m)'" r'2 (f„)„
(~1 )1/2Q D(2) (~ ) irP(~+ )„

=(f~)Z, 1';(II)-*, y;(~, ,). .

(3. 15a)

(S. 15b)

(S. i5c)

Here the outermost unit-vector subscript indicates
the quantization axis, D' J()( ) is the rotation ma, —

trix 'and y is the triad of Euler angles which
take the u coordinate system into the v coordinate
system. ' Thus,

« Bt&))P = 2 K„, , i,j nearest neighbors (3. 16a)

=0, z=2 (3. 16b)

« X;)).-=«X)& = ». (s. iv)

In this way one obtains from Eq. (3.13) the result
Mtnter Mtntrn

2
—

2 + 2 (3. 18)

= nK2(R2/R;;), otherwise (3. 16c)

«At))p = 45m Zp I & Y2P(tt1, ))r i (3. 16d)

where the quantization axis in Eq. (3. 16d) is arbi-
trary. Assuming a random configuration of even-
and odd-J molecules, one ha, s the alloy average

D,'= [X', [X', I',]] . .

After a tedious calculation one obtains

(3. 11) where the contributions M~"" and M2"'" are due,
respectively, to inter- and intramolecular interac-
tions of the nuclear spins and are given as

It Q Dt = 2 [IeI)In ', (B ~Bt„+B—,~B~„—2BtnB~„)
i jfd

+I;IJP Inn(6B; J Ben+ 2B;2Brn+ 2 B;;BJ2)]
+Q ( (I t ) I; (- B;;+ dA—;B;,).

ij

+l1,(I;I,,+I„Q (2B;~+. 5dA, Bo)
+I 1 [3I (I~ + 1)B2o + (3I), —I~(I) + 1 ))

X (2B;I ydAt BtJ)])
+Q d A; I (1+2I;,)

where + means i, j, and k are all distinct.

(s. i2)

B. Van Vleck Moments

Substituting Eq. (3. 12) into Eq. (3. 9a) we find

Zq X, (d2A, + 3Z, B'„X,)2-
Q, X,

(s. is)

where

X; =I;(I;+1) . (3. 14)

Instead of restricting the sums in Eq. (3. 12) to
(I= 1) molecules, we can define A, = 0 for I; = 0. We
need to take the powder and alloy averages of the

M"""=1L~[(S,—i2)K', +12K' ]
M'""=9d'2«+

I &
&'(~ ))

(3. 19a,)

(3. 19b)

where the alloy average over (I=1) molecules is
understood in Eq. (3. 19b), and where S2 in Eq.
(3. 19a) is

S2 =Z~ (Rn/Rt~)2 . (s. 20)

The sum has been evaluated numerically for an hcp
lattice by Kihara and Koba, who give So = 14.445.

Since we discuss the evaluation of M2"" via a
high-temperature expansion in Sec. III C, we only
make a few general remarks here about the form of
Eq. (3. 19). Note that M2"" is temperature inde-
pendent, whereas M2"" is strongly temperature de-
pendent and vanishes at infinite temperature.
The approximation of a random alloy is probably
reasonable except at low temperature and low (J = 1)
concentration where clustering22'" of (J = 1) mole-
cules can be significant. Also, we note that Eq.
(3. 19b) is invariant with respect to the choice of
quantization axis, so we can make whatever choice
is convenient.

Similarly, we obta. in from Eq. (3. 9b) and (3. 12)
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Minter Mintra ~ross
4 4 + 4 + 4 (3.22)

where the terms on the right-hand side of this equa-
tion are, respectively, the contributions to M4 from
the intermolecular interactions, intramolecular
interactions, and cross terms involving both types
of interactions. We shall give results for the tem-
perature-independent Van Vleck term M~"" here.
The other terms will be treated in a later subsec-
tion. By repeated use of Eq. (3. 15) the powder
average of Eq. (3.22) can be evaluated. Also, to
evaluate the alloy average one needs to use

'((Xi)) =((X )) =4&

Thus we find for a rigid lattice

M" "=KII[7 xSt+32 x (7S2+Sz)],

where

S, =RI'I Q R,.q',

(3.23)

(3. 24)

(3.25a)

Sz=RozZ R;&R,„(scos 8, —2cos 8, +1), (3.25b}
jk4

Sz Ro Q RI JRin Rjn [sin'8, sin 8z —sin28, sin28z
/k'

+ (3 cos'8, —1) (3 cos'8, —1)], (3.25c)

where 8, is the angle between R,&
and R„, and 8,

is the angle between R,.&
and R». These lattice

sums were evaluated for an hcp lattice by Priest, '
who obtained

the following expression for M4:

Mt = (Q —',X,)"'[Q r3rXt. (Xt ——,') (7X,. —12) d'A,.
i

+—
tz Q X;(X, ——,') X)(9B,~ + 12dAi B,) + 32d A, Bzt~)

+6Z XIX)BI(+Z XIX~Xn
ij

t~ '*"4BVB~2B.I)]. (s. 21)

For A, = 0 this expression agrees with that of Van
Vleck. We write this result as

p = 2. 12+0. 156' ' =-p„g« . (3.28b)

Crudely, we can take account of phonon renormal-
izations by neglecting their effect on the NMR line
shape or, equivalently, by using the value pr««
from Eq. (3. 28b). Thus, we write

Minter (Minter)2
4 prigid 2

inter
where we use Eq. (3. 19a) for M,

C. High-Temperature Expansion for Af.~"'

(3. 29)

zp (12(ohio) [xEQQ zp)cE3QQ ])
(3. 3Oc)

To obtain Eq. (3.30c) we have used the fact that the
two leading terms in the expansion of e ~ ~~~ in the
numerator give no contribution. Also since (3CEQQ)„
=0, the temperature dependence of the denominator
has no effect to the order considered in Eq. (3.soc).
First we evaluate ( Fz(tdo)Zoo) „, where Xo; is the
EQQ Hamiltonian describing interactions between
molecules at r = 0 and r = 5 and for the moment the
quantization axis n is arbitrary. ' Using the opera-
tor equivalents and the transformation properties
of these operators we find

(3. 31a)
& Fz(too) 256oo) = 3 & + 2(~o)"&oo)

ii (Xnz)*( +2 (~o)356ozo)- . (3.31b)
~t

Using the eigenfunctions for a, pair of (7= 1) mole-
cules as given in Table IV we obtain

This subsection will be devoted to a calculation of
the leading terms in the high-temperature expansion
for Mz"" as given by Eq. (3. 19b).

The high-temperature expansion for M,""'is
generated by substituting for the thermodynamic
averages their high-temperature expansions,

( 1'2(ohio)) r -=( Fz(ado) e ' E«) „/( e 2~EQQ) (3. 30a)

=& y'2(ohio) &e( pKlEQQ) (s ) ) !
(3.3Ob)

Si = 12. 13,

S2= 171.1,

Sq = 42. 94.

(3. 26a)

(3. 26b)

(3. 26c)

(r,'(Z, );X,';)„=——",, n„(5/v)~'r', (3. 32)

where 6 „ is the Kronecker delta. Combining this

Me' "=(1.26x+17. 18m )xlo kHz (3.28a)

We may summarize the results of this subsection
by giving the results for the second and fourth mo-
ments and also the resulting value of the ratio p,
where p is defined as

p Minter/(Minter)2

We have found

M" ' = [0.17+0.83(K,ii /KII) ] x 90. 0 kHz (3. 27)

and for a rigid lattice

6-1/2(

44=2 ' '(
(

@6=2 ' '(
3-i /2(

1/2(
2-1/2(

I 1, —1&+2 I 0, 0&+ I
—1, 1&)

l1, 1&
I
—1, —1&

11, 0& —
I 0, 1&)

I
—1, o&- lo, —1&)

I 1, —1&—
I

—1, 1&)

l1, —1&- lo, 0&+ I
—1, 1&)

I 1, o&+ I o, 1&)
I

—1, o&+ Io, —1&)

TABLE IV. Rotational states of a pair of (J=1)
molecule s.

State

6
1
1
0
0
0
0

—4
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result with Eq. (3. 31b) we find

& Y'(~, )AC,'-) =~1, r'r,'(5)-„=tar,'(P', 4r'), (3. aS)

where P' and e' are the polar and azimuthal angles
of 5 with respect to the n coordinate system. Thus,
according to Eq. (3. 30c) we have to lowest order
in P

& rl(~.);),=-', P'F'. »l(5)-„. (s. 34)
6, Jg~l

This result leads to a lowest-order evaluation
of Eq. (3. 19b):

~a""= 9 «'O'F'« ~ (-1)' r'(5) r '(5')))
l, 6, 6'~ J"-1

(s. 35)

where it only remains to take the alloy average.
Since the sum is only over (d= 1) molecules, we
can take the alloy average by including the probabil-
ity factor fz(5, 5') describing the probability that
(J = 1) molecules are at nearest-neighbor lattice
sites 6 and 5':

ber of high-temperature graphs is nearly the same
for both structures. ' Thus, this argument, which

invokes local cubic symmetry, is nearly applicable
to the hcp structure. As a result we expect M2"'"
to be very small for x =1 over the entire tempera-
ture range above the order-disorder transition.
From the data in Ref. 5 one sees that this is indeed
the case.

M4(T) —M4(~)-M"'+M '+M' ' (s. 43)

with

M'"'- (dP'F')" (K )' " (s. 44)

D. Evaluation of M4 (T)

The evaluation of the leading terms in M4(T) at
high temperature is similar, but more involved
than that for M2(T) and consequently the details have
been relegated to Appendix C. There we estimate
the various types of terms one finds at high temper-
ature. Qur results may be written in the form

f,(5, 5') = x' + x(1 —x) t;;, .

Then Eq. (3. 35) becomes

(3. 38)
where dP21" is a measure of the intramolecular in-
teractions and K,«scales the intermolecular inter-
actions. We find

M'""=~ d'(P r)'x(1 —x) (3. 3'7)

since the term which does not involve the Kronecker
delta vanishes when use is made of the relation

Qr,'(5) =0, (3. 38)

( Ys(a&;))r =0, (a. 41)

and by Eq. (3. 19b) one sees that for x = 1 it follows
that

Min tl a 02 (s. 42)

It is well known that the hcp and fcc structure are
quite similar, and so we may expect that the num-

which is valid when the sum runs over nearest
neighbors in an hcp lattice.

The next term in the high-temperature expansion
for M2".'" is found by collecting the various terms
of order P' which occur when Eq. (3. 30c) is sub-
stituted into Eq. (3. 19b). The details of this cal-
culation are rather complicated and are given in
Appendix A. Collecting the various calculations we
find the second moment correct to order P' to be
Mi~t~~ ~15 d2(PF)4 x(1 —x) [1 —PF(2+ x)] (3 39)

Note that M2"'" vanishes for x= 1 within our approxi-
mation. We may understand this result in the fol-
lowing simple way. For x= 1 in a cubic structure
where each site possesses cubic symmetry (this
is not true for the Pa, structure) one has that

( n„') =(,') = ( n, ') = —,', (3.40)

where n is the orientation of the molecular axis at
position A. In other words, one has

M,"'=aea K„,'dp'F'x(1 —x),
M1 ' = 384x(1 —x) (~dK„,P F')

x[-,'sxS, + I(1 —2x)], (3.45b)

M44 = (dP2F ) x(1 —x) [17V+1913x(1—x)]. (3.45c)

(S. 45a)

It turns out that M4~ ' is the dominant contribution
in Eq. (3. 43), and for this term we derive an em-
pirical relation, which is probably not restricted
to the extreme high-temperature limit, viz. ,

M~@' =~~ [M2(T) —Mz(~)] M2(~) . (S. 45d)

E. Comparison with Experiment

In this subsection we compare the results of our
calculations with the experimental data of Amstutz
et al. From their data it is apparent that M2(~),
the value of M2 extrapolated to infinite temperature,
is approximately a linear function of x as indicated
by Eq. (3. 27). Experimentally, Amstutz et af.
find for x &0. 5 that K,« /K0= 0. 94 compared to the
theoretical estimate K~«/K0=0. 9V. This slight
discrepancy is possibly due to inaccuracies in the
static-phonon renormalization. In that calculation
only short-range calculations were taken into ac-
count, which probably leads to underestimates of the
reduction in both coupling constants K,«and I',ff."
At low concentrations x of (J= 1) molecules Amstutz
et a/. find K,«/Ko= 1.00. Such a concentration
dependence of K„,/Ko is rather easy to understand
since it is completely analogous to that predicted
for 1"„,/I'0, cf. Eqs. (2. 11)and (2. 12). At low con-
centrations x the extra attraction between (J= 1)
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molecules decreases their separation thus increas-
ing K,«. In the limit x 1, nonuniform strains
are precluded by symmetry.

Next we compare the experimental values of
M, (~) with the theoretical values given in Eq. (3.28)
(see Fig. 1). We see roughly the same features
here as for M, : K,« /Ko is essentially unity at low
concentrations and is about 0. 94 at high concentra-
tions. Again the anomalous behavior near x= 0. 5
is not understood at present. The scatter in the
experimental data is a little too large to obtain use-
ful results by analyzing the data according to Eq.
(3.29).

Let us now compare experimental and theoretical
values of M, (T) —M, (~). The problem encountered
in making such a comparison is that only at high
temperatures is the theoretical formula valid be-
cause only there does it suffice to keep only the
first two terms in the high-temperature series for
Mz(T). To get an estimate of when our two-term
formula might be reasonably accurate we may look
at the convergence of the high-temperature expan-
sion for the specific heat. There a two-term ex-
pansion gives l(f%%d accuracy only for kT/I'&15 for
moderate concentrations. However, from the data
of Amstutz et af. it is apparent that M, (T) —Mz(~)
rapidly becomes small in comparison to M, (~) for
kT/I'& 10, in which limit it is essentially unobserv-
able. Hence, there is really no regime where both
the present theory and experiment are accurate
enough to be meaningfully compared.

Nevertheless, we will attempt a crude compari-
son by analyzing data for T = 5 and T = 6 K, at
which temperatures the combined experimental and
theoretical uncertainty is the smallest. To do this
we plot in Fig. 2 the quantity

80

60—

~ 5 K

6 K

CU

N
X 40—

b,
b

L

20—

00
I

0.2
I

0.4
I

0.6
I

0.8 1.0

FIG. 2. Temperature dependence of M&. We plot ex-
perimental values of m(x) = %~(g —Mq(~)]/Ix(& —x)]
versus x at 5 and 6 K. The solid lines represent a
linear fit to the data with coefficients given in Eq. (3.47).

np=54 kHz, n&=78 kHz, T=5'K,

Qp = 28 kHz, n& = 31 kHz, T = 6 K,

whereas the experimental values are

np=88 kHz, n, =78 kHz, T=5'K,

np = 44 kHz, n& = 30 kHz, T = 6 'K.

(3.46a)

(3.46b)

(3.47a)

(3. 47b)

m(x) -=[M,(T) —M, ( )]/[x(1 —x)]

versus x for these two temperatures. We see that
m(x) behaves in qualitative agreement with Eq.
(3. 39) in that it is a linearly decreasing function of

The slope and intercept of a linear fit to the
experimental values of m(x) do not quantitatively
agree with Eq. (3. 39), i. e. , if we write m(x)
= no —n, x, then from Eq. (3.39) we should expect
(taking I',« = 0. VV I'o= 0. 55 cm ')

15
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O

OC

5

00
I

0.2
I
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I

0.6
I

0.8

29)

.94

~8

1.0

It is clear that we must take more terms in the
high-temperature expansion to obtain sensible re-
sults because Eq. (3.46) gives m & 0, which is im-
possible. However considering the uncertainties
in the theory and experiment this discrepancy is
not surprising.

When we attempt the same type of comparison
with M4, the situation is even worse, as one might
expect, since M4 is a more rapid function of the
parameters than M3. Experimentally one finds at
T=6 K,

m4=—[M4(T) —M4(~)]/[x(1 —x)]= 5x10' kHz,

essentially independent of x, whereas theory would
give

FIG. 1. ~4 () versus concentrat'on. We plot M4
extrapolated to infinite temperature versus x. The rigid-
lattice theory fits the low-concentration data, whereas
the high-concentration data iInply a renormalized dipolar
interaction.

m4=(2. 4+9. 4x —0. 7x )x10' kHz (3.48)

This result was obtained by numerically evaluating
the various results in Appendix C. To show that
the slow convergence of the high-temperature ex-
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pansion is playing a crucial role, let us compare
the experimental values of m4 to their theoretical
values using experimental values of M, in the
semiempirical relation, Eq. (3.45d). Since this
term is in fact the dominant contribution to m4 in
the temperature and concentration range being
considered, we partially eliminate convergence dif-
ficulties by use of this relation. In this way we
obtain the theoretical estimate

m4= [0.6+ 0. 7 x(1 —x)] x10~ kHz4+ ~is m(x)M2(~) .
(3. 49)

Better agreement between the theoretical and ex-
perimental values of nz4 are obtained using this
formulation, as can be seen from Fig. 3 where
the comparison is illustrated. It must be empha-
sized that experimental uncertainties are larger
in M4 than in M2, and also the high-temperature
expansion is less reliable for M4 than for M2 be-
cause M4 is comparable to M2. Hence, we cannot
really expect much better agreement than is obtained
in Fig. 3.

From these comparisons and discussions we
conclude that the effects of partial orientational
ordering in the orientationally disordered phase
are reasonably well understood. It seems likely that
a more quantitative agreement between theory and
experiment would be obtained if (a) more terms in
the high-temperature expansion of M2 and M4 were
evaluated, and (b) a better theory of the zero-point
phonon motion in solid H2 were used to calculate
&e~.

IV. MOMENTS OF NMR SPECTRUM OF D2

In this section we consider how the previous

results for H2 should be modified to treat the case
of D2. The reason for treating D2 separately is
that there are special complications caused by the
fact that (a) I is not a good quantum number, and
(b) more than one species contributes to the reso-
nance.

A. Second Moment

Let us start by developing a general formula for
Mz analogous to Eq. (3. 19). To do this it is con-
venient to write the truncated Hamiltonian for D2
in the form

Ii 'Z' =Z Z„.+Z„+ Z Ii-'Z,'«,
odd Jg

+ Z a-'z'„... ,
even J~

(4. 1)

where X~, and X» are the obvious analogs of the
corresponding quantities defined in Eqs. (3.4a) and
(3. 4c) and

Z.'„,. = ——.
' dx, (3I'„.—2),

~ (1) ~ (2) 0) . (2)
Zeven y i 3dii+i( igi gi i i

(4. 2a)

+3doA, [3(ii,") +3(i~+, ') —4], (4. 2b)

where A, was defined in Eq. (3. 5b). In Eq. (4. 1) the
last two sums over j are restricted to odd- and
even- J molecules, respectively. Note that I = 1 is
a good quantum number for odd- J molecules, but
I= 2 is not a good quantum number for even- J
molecules because the Hamlltonlan Xteven, f of Eq
(4. 2b) has matrix elements between states with I= 2
and I=0.

Still, it is easy to show that for D2 one can again
w rite M2 as

Mi nt er Min tra
2 2 2 (4. 3)

N

o

x
X

X X X
X ((X)) = 5 —3x,

so that now for D2 we obtain

(4 4)

in analogy to Eq. (3. 18) and that there are no cross
terms. It is also obvious that M2" "is obtained by
a trivial extension of the previous results for H2.
In Eq. (3. 19a) one simply replaces the value of
((X)) for H„2x, by its value for D~,

M2' "= —,(5 —3x) [(So —12)Zo+ 12K,ii] . (4. 5)

00
I

0.2
I

0.4
I

0.6
I

0.8 I.O

FIG. 3. Temperature dependence of M4. We plot rn4
= fM4(2') —M4(oo)]/Ix{1 —x)] versus x for T= 6 'K. The
crosses are the experimental points, the solid curve is
Eq. (3.48), and the dots are obtained using experimental
values of M&(T) in Eq. (3.49). For x )0. 7 the data are
essentially meaningless because then M&{T) —M4{oo) is
much smaller than M4(oo) ~

which gives

+ Q ([I;,z,', „]([z,'„,„I,]),
even J;

(4. 6)

—', (5 —3x)M'""= x(( (( [I'„Z,',] [Z,' @„I, ])))),.

The calculation of M2"" is slightly more subtle.
We have from the general formalism, cf. Eq.
(3.9), that

I M,"'"= Z ( [I;,z,'«, ] [z,'« „I;])
odd Jg
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+(1-x)«I& II» 30'.. .i] X...~ Iil&3&&p.

The first term is of the same form as for H~, so
that we have

From Eqs. (3.19b) and (4. 11)we see that M2""
scales with d, providing we neglect the difference
between the values of I' for H~ and D„"and if we set
&1'z(sr&)&„„=0. Then we write

«f& [I;,&,, ] [~.' „I;]&]».=2d'«~'. ..»,.
(4. 6)

M", (r) —M", ( ) 5 —3x d" '
Mn(T) —Mn( ) 2x d~ (4. 15)

The second term can be evaluated directly by
writing out matrix elements in the even-parity sub-
space. An easier alternative method is to calcu-
late IOM~"'" for the special case x= 3 when all the
nuclear-spin states have the same weight. Then
the calculation of IOM2"" is identical to that for
two spine coupled by the Hamiltonian of Eq. (4. 2b).
In this way we obtain for x = 3,

I~imtra (a d2 +~1d2 )gm

Combining this result with Eq. (4. 7) and (4. 6) we
have that

(4. 9)

« E& [I'p 36!, , «] [3C!,,„,Itl& ]»p.
= —,

'
&( 4', ,„„»~, (10do2 —4dod„+ 6d„)

so that the general result for M,'""becomes

(4. 10)

M, -=""",' Z ~& r,(,)&.„~'.
X

(4. 12)

18d~
(4. 11)

X

in agreement with our previously published result. ~e

The deformation of the (J=O) state is very
small, so that A; (8, even) «A, (J'& odd). Hence,
we can neglect the even-J term:

M;(T) -M', ( ) M", (r) -M", ( )

M;() M", ()
(4. 16)

and for x=O. 5 and T=5 K we find r=20. Thus,
one expects an extremely rapid temperature de-
pendence for M~ in D3. This is indeed found to be
the case for high (8 = 1) concentration. ~

On the other hand, for lower concentrations it
is found that the temperature dependence is no-
where near as large as predicted by Eq. (4. 16).
From this result we conclude that possibly the
(I = 1) nuclei are effectively not contributing to the
NMR signal. A tentative explanation for why this
might occur at, say, g =0. 5 is as follows: First,
the intensity of the absorption from the (I= 1) nu-
clei is only 5 as large as that from the (I= 2) nuclei.
In addition, the latter have a much narrower line
shape, as is shown schematically in Fig. 4. Thus
it may be that the (I= 1) resonance is simply too
broad to be observed. At very high concentrations
it appears that the (I =1) molecules have a narrower
line shape (recall that M~""vanishes for x= 1)
and are making noticeable contributions to the sec-
ond moment. We may attempt an analysis of the

The required thermodynamic average is identical
to that encountered in Sec, III, whence the result

M"'"=~ [2x/(5 —3x)]d (Pf')'x(1 —x)

& [1 —PI'(2++4 x)] . (4. 13)

M", ( ) 2x(K'.„/Z'.„)'
M', ( ) 5-3x (4. 14)

B. Discussion

Normally a discussion would belong at the end
of the calculation. However, in this case we must
pause to consider what calculations are worth pur-
suing at the present time. In this connection it is
worth noting that these results for D2 show a quali-
tative difference between Ha and Da. In Ha we have
at x=0. 5

[M", (5'K) —M", ( )]/M", ( )=0. 2«1,
where the superscript H indicates H3, and below D
indicates Da. To obtain an empirical estimate for
Da we proceed as follows. " From Eqs. (3. 19a)
and (4. 5) we have

x =0.5

FIG. 4. Schematic diagram showing the contributions
of (I= 1) and (I=2) nuclei to the NMR line shape. For
x = 0. 9 the relative intensity of the (I= 1) molecules is
large, and their linewidth is not too large to prevent
their observation. For @=0.5 the (I= 1) absorption has
a small intensity, and its linewidth is extremely large
and hence ls quite possibly undetectable.
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experimental data within this interpretation. The
temperature dependence of M2 is then presumably
due to the temperature dependence of the absorp-
tion of the (J=O, I=2) molecules. In Appendix D
we therefore evaluate the second moment assuming
only even-J molecules take part in the resonance.
In this model the temperature dependence in M2
arises from the intramolecular interactions which
depend in turn on the thermal alignment of the
(4= 0) molecules. This alignment is, of course,
very small, and so the temperature dependence of
M2 is very much smaller than that given in Eq.
(4. 16). To illustrate the results of Appendix D
we quote the numerical evaluation M~""=0. 012
kHz for x = 0. 5 and for T = 6 K. Since this esti-
mate is of the correct order of magnitude, we
tentatively conclude that our proposed explanation
has some merit.

Note added in Proof. The explanation offered
here for the small observed values of M& has re-
cently been confirmed by NMR pulse measurements
of Weinhaus, Maravigilia, and Meyer. They have
observed the free induction decay (FID) over a wide
range of concentrations and temperature. At inter-
mediate values of concentration and temperature
(i.e. , x= 0. 5 and T= 4'K) they find that the FID can
be resolved into two components, one attributed to
(J=O) molecules, the other to (X=1) molecules.
The continuous wave (cw) signal corresponding to
the latter component is indeed very broad, andhence
difficult to observe.

V. CORRELATION FUNCTIONS FOR PAIRS OF (J=1)
MOLECU LES

Although the energy-level scheme for a pair of
(J = 1) molecules interacting via EQQ interactions
is well known, there has been no study of the cor-
responding dynamical properties. We shall study
these properties since they will be useful in analy-
sis of low-concentration phenomena.

We shall be interested in the following correlation
[

(Green' s) functions':

(( A(t); B(t'))) =-Z p(n) (( nI A Im) (m IB In)
nnt

x exp[i(E„—E ) (t t')/h-]

+(nlBlm) (mlAIn)

x exp[i(E E„—) (t —t')/h])f, (5. 1)

which are given in terms of the spectral weight
function p„e(~):

((A(t); B(t'))) = J p„s(&u)e '"" ' ' hd
Here

(5. 2)

p~e(&g) =P p(n)( nl A I m) ( m IB in)
nm

x(1+e~"")5(h~+E„—E ), (5. 3)

where p(n) is the Boltzmann factor for the state
In). In terms of this spectra, l function one can com-

pute the usual correlation functions

(A(t)B(0)) = f p„e(&u)(1+e 4"
) 'e '"' hdzo

(5. 4)
Properties such as the cross section for the inelas-
tic scattering of neutrons or the spin-lattice relaxa-
tion times are directly related to the spectral weight
function for appropriate choices of the operators
A and B.

It is most convenient to use for A and B the ir-
reducible tensor operators of Table II. First let
us take the quantization axis to lie along the separa-
tion vector between the two molecules. For later
applications we will study the spectral functions
pz" (v) defined by Eq. (5. 3) with the choice A
= V'z, (J,) and B = (—1)" v'z" (J,). By symmetry
pz,

"
(co) vanishes unless M=M'. From the definition

of Ezl. (5. 3) we also note that

(5. 5)

Using the eigenvalues and eigenvectors of Table IV
we determined the independent spectral functions
as

pI (v) = Q
' (1+e ~"")(3/8v) [—,

'
p 4 5(h& —101') + —P45(ha&+ 10I') + +65(h~ —6I') + 4z p65(h+ + 61 )

+p 45(h&o —5I') +p, 5(h&g + 51 )+—,
' p.45(h&g —4I') + —,

'
5(8&@+ 4I') + 5(he —I') +P, 5(A~ +1 ) +i~i 5(h~)],

(5. 6a)
p4 (~) =Q (1+e ") (3/4m) [—, 5(@v —61')+—'p 5(hm+6r)+ —'p 5(Ifa& — 4I')+ —'5(hsp+4r)

+(—,
'

p 4+ 2 p, + '~' ) 5 (h(g )],
p, (e) =Q '(1+e ~"")(15/32m) [—', p, 5(h&u —5I')+ —', p45(h&u+5r)+p 45(h& —4I')+5(h&+4r)

+ ~~ 5 (h(u —1 ) + ~3 p, 5 (h(o + r) + (1 +p 4) 5 (h(o)],

(5. 6b)

(5. 6c)

p, ((o) = Q '(1+e 4"
) (5/16m) [25(%u —6r) + 2p85(%a + 6I') + +p, 5(S'(u —4I') + 9 5(h(g+ 4r )

+ (—,'p„4+ —,'+ 2p, +p6) 5(h(o)] . (5. 6e)

p,"(~)=Q-'(1+e-'"") (15/32m) [~P,5(h~ —101)+~P,5(%o+10r)+ —,'5(h& —6I')+-', p, 5(h&+6r)
+p, 5(h~ —5r)+p, 5(a~+ 5r)+ —",p.,5(h~ —4r) +~z5(h~+4r)+5(n~ —r)+p, 5(a~+ r)+5(h~)],

(5. 6d)
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Here TABLE V. Spectra1 coefficients.

P„=exp(- nI'/gT),

Q = 2P 4 + 4 + 2@z +P6 .

(5. Va)

(5. Vb)

(5. 6)

In fact, we checked our work by evaluating

Obviously, we can calculate all the moments of
these spectral functions:

~,M' f+ zzN'(
) (g )n

E„/r
36C (E)=
36C,(E„)=

36C', (E„)=

36C&(E„)=

36C', (E„)=

180C~(E„)=

36C((E„)=

10
0
1
2

0

2

0
1
3

6
0
9
2

1
2
2

13
1

2
3
0
3
0

10
2

3

2

9

2

3
26

2

1
10

3
0
3
0

26
2

0
6
3

10
11
26
28
16

l

+ C~(0) 5(h(u) . (5. 10)

The coefficients C~(E„) are given in Table V.
We can also compute the spectral function

pz, z, .(~)-„corresponding to the choice in Eq. (5.2)
of A=&'z(J;) and B =(-1)" v'~. (J', ), where now the
axis of quantization n is at an arbitra, ry orientation
specified by the Euler angles )t

= (n', P', y') with
respect to the intermolecular pair axis r» used
above. Using the transformation properties of
the irreducible tensor operators we have

&if (~);=~,Bw,'(X)B~','()j.)*pz,g (~)„„, (5 11-)

where D„'~'()t) is the rotation matrix. Finally, we
can compute the powder average of the spectral
functions using Eq. (5. 11) as

« p~~', ((o)-„&&~=-(I/4v) f p ~((~u)-„dA-„(5.12a)

= ~zz, ~ ~ss'~u Pz, (~) (2L+1)
(5. 12b)

Later we shall use the result for infinite temperature

« fzPi: (~);&&p/~i';o
= ( Q (C~(E„)[5(h(o E„+) 5(@+'cu —E„)]].

E~) 0

+ Cz (0) 5(h(u) ) auu az.z (5 12)

where the coefficients Cz, (E„) can be related to the
Cz, (E„) of Eq. (5. 10) as

C (E„)—= (2L+ 1) Q„C"(E„) (5. 14)

and are listed in Table V. These coefficients are
the weight factors for the various frequencies in
the correlation functions.

VI. GAUSSIAN APPROXIMATION FOR Tl

A. Formulation

The relaxation of the nuclear spins of the (J'=1)

~',",
' = ~., & ( ",(J,), &,"(J,) ].& (- I)", (5. 0 )

M, ",'=~„„,&([V",(J,), X], [X, V';"(J,)]),&(-1)".
(5. Qb)

Here we mention that pz" (a&) is an even function of
This property is a consequence of the time-

reversal invariance of the pair Hamiltonian. For
later applications we use the form of the normalized
spectral function at infinite temperature:

p,""(~)/Mf.", = Z Cf (E„)[6(I~+E„)+5(~~ E„)]-
s„&o

molecules is due to the fluctuations in the local
fields experienced by the nuclear spins. These
fluctuations can be related to the fluctuations in the
molecular coordinates. An expression for the spin-
lattice relaxation time T, valid under rather broad
conditions has been given by Wangsness and Bloch.
We write their result as

T '=~ '[ '&'( )+-'d'8'( )+~d'8'(2 )]
(6. 1)

where 8~(v) is the "spectral function" in Abragam's
terminology, ~'

gM( )
—l (1 -Bhw)-z NN( (6. 2)

and p~~. (&u)-„ is the spectral weight function in Eq.
(5. 10) when n is taken along the direction of the
magnetic field. Normally the observed relaxation
rate T,' is the average of the relaxation rate over
different local configurations when the sample is
an alloy.

In this section we study these spectral functions
by calculating their moments. These calculations
are extensions of those first performed by Moriya
and Motizuki. Even these calculations cannot be
done exactly, so we shall have recourse to a high-
temperature expansion of which we calculate only
the leading terms. Such a calculation only has
meaning if the shape (frequency dependence) of the
spectral functions is approximately given. We shall
assume a Gaussian shape. If a molecule interacted
with many neighbors, we could invoke the central
limit theoreme to support this assumption. Since
there are 12 nearest neighbors, we can say that
to the extent that six, say, is a large number, this
reasoning justifies our method when the concentra-
tion x of (J= 1) molecules is 0. 50. The Gaussian
assumption is probably not as reasonable for EQQ
interactions as for dipolar interactions because the
former are essentially of short range, whereas the
latter are of long range. Thus, the success of the
Gaussian model for NMR line shapes ' is not very
relevant here. The fact that different configurations
are averaged over may effectively increase the
number of random variables, thus making plausible
the use of the central limit theorem. In view of
this uncertainty and in order to quantitatively assess
the validity of the Gaussian assumption, we have
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I;",=((((([[~,"(Z,), Z], X],
[& [56 T "(~o)]l].& )&&.(-I)",

where

I, =& (T:(~.), ~."(~.)].&,(-1)'.

(6. 3b)

(6. 4)

For simplicity we shall take account only of near-
est-neighbor interactions. For the program outlined
above, we only need to calculate I0 correct to or-
der 1/T:

I = (L+3)/4m+ O(1/T ) .

For the average (t&)r, we have

«&r =«(1 —l+&-+

(6. 5)

(6. 6)

because (X&„=0. Thus, Io a z, can be written as

I.& =«(& ([~:(~.), 36],

[X, v;"(Z,)]].(1 —PZ)& „]»,(-1)"
-=I [g&z (0& + P Z Q (» ]

to first order in 1/T.

(6. 'ra)

(6. Vb)

B. Anisotropy of the Second Moments for a Single
Crystal at T=~

First, we evaluate az,
& for a single crystal. We

have

I,&"'=(( Z(([v",(~,), X-],
8"

[36" v' "(~o)]].&-(-1)')&.

6 ~ p

(6. 8a)

(6. 8b)

Here A&fg = (n", p", y"), where &3" and n" are the
polar and azimuthal angles of 5 in a coordinate sys-
tem where the z axis is along the direction of the
magnetic field. Also we define m~"„as the moments
of the normalized spectral weight functions, pz (o&)/

M~so, so that m~s =M)„" /Io(L). In Eq. (6. 8) we
have omitted contributions involving three molecules

calculated the second and fourth moments, o~ and

»z, , of the spectral functions pzz, (o&)-„ for a powder
at infinite temperatures. We find results consis-
tent with a Gaussian line shape. We have also
calculated the dependence of gz, on the orientation
of the magnetic field for a single crystal. From
this calculation we conclude that the anisotropy of
T, is too small to be observable. Finally, we have
calculated the second term in the high-temperature
expansion for (( g~&)& in order to discuss the temper-
ature dependence of T, . In conclusion, we compare
our results with the experimental values of T,.

From the definition of p„z&(o&), Eq. (5. 3), we see
that the second and fourth moments are given by

Iog" =« (& ([T"(e, 361, X ~ ™(e]],& ]&&.(- I)",
(6. 3a)

because these terms vanish. Equation (6. 8b) en-
ables us to express the moments with quantization
axis along the magnetic field in terms of those with
quantization axis along 5. These can be found using
Eq. (5. 6) at infinite temperature or, alternatively,
using Table V as

=m ' =6I'm22 m22

m22 = m22' = 21I11 -1, -1 2

yy 22
—16''00

11 -1,-1 p2m12 m12 3

(6. 9a)

(6. 9b)

(6. 9c)

(6. 9d)
00 ggp2m12 3 (6. 9e)

Inserting these evaluations into Eq. (6. 8b) we ob-
tain

g2~'o' =xI'Z [-~VP4(y) —4~a P,(y)+14], (6. 10a)

a24&4o& = xl'2@ [~VP4(y)+ —'P2( y) + 14], (6. 10b)

g,'&'& = xr'Z;[-~P, (y}+~aP,(y)+14],
o'" '= xF Z" [~P (y)+~]
g', "'= xr'Q4 [-~P, ( y) + ~3'],

(6. 10c)

(6. 10d)

(6. 10e)

where y=cosj3" and P„(y) is the Legendre poly-
nomial. In deriving these formulas we have con-
sidered only nearest-neighbor interactions. This
approximation introduces very little error into
our results, because the nearest neighbors com-
pletely dominate the lattice sums. Note that for
the axis of quantization along the crystal c axis one

has

Z;Y",(5}=0, n~o (6. lie.}

Z;Y,"(5)=0.

Thus, in evaluating the sum over 6 in Eq. (6. 10) by
using the addition theorem for spherical harmonics,
we cannot omit terms involving Yz, (6) with M440.

Hence, we write

(6. 11b)

g,"4 & = 168xI' [1 —,8, P4(cos8„,)],
o"+' = 168xI'2[1+—'P (cos8„,)],
g2 = 168xl' [1 —

z~ P4(cos8„,)],
+1(0) 0 (0) 280 P2

(6. 13a)

(6. 13b)

(6. 13c}

(6. 13d)

These results are consistent with the values quoted
by Moriya and Motizuki, whose Hamiltonian also
included small interactions other than those of the
EQQ type. From our results it is clear that the

Zg P3( y) = Zg Ps(cos8H, ) P~(cos8„) = 0, (6. 12a )

Z,"P4( y) = Z4 P4(cos8H, )P4(cos84, ) =i P,(cos8„,),
(6. 12b)

where 8„and 80, are the angles between the crys-
tal c axis and 5 and the magnetic field, respectively.
Accordingly,
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dependence on magnetic field orientation is com-
pletely negligible, so that all further calculations
will be made for a powder. From Eq. (6. 13) we
have the results for a powder,

((a"')),=o =840xI'/(2L+1) . (6. 14)

C. Fourth Moments for a Powder at T=~

Let us now calculate the fourth moment. The
powder and alloy average of vf, denoted (( wf))~
is independent of M and can be found at infinite
temperature as

(( v,")),.= (2L+1) 'Z„((~","')).=-~, (6. 15)

in terms of an alloy average. To evaluate this ex-
pression we must construct

T, =--,'2 Z ([[z;,, z„-],
M', u

&I(~,o)] [' I, (~0) [zo()' z08] ]) ~ (6. 23b)

x (48(7 —2L) —100[(2L+1)/(7 —2L) ]Sij,
(6. 24a)

Tg = ( &f(&z, ) ) 1960x I'

x 48(20 ~ 1) —100 8, I, (6.240)
(7-2L)

In Appendix B we have evaluated these terms and
also Tz and T, of Eq. (6. 20). We find that

( 7 N((f'N)t) 980+I14

o,"-=[z, [z, 7',"(z,)]], (6. 16)

~i«&') =Izw Izoa 7'f(~0)ll

6,'(5, 5') = [~,;.;., [z,;, &,'(z, )]] .

(6. 18a)

(6. 18b)

From symmetry considerations it can be seen that
contributions to g~ from cross terms between dif-
ferent types of terms in Eq. (6. 1V) vanish, so that

which consists of a sum of three types of terms:

o,"=Z o,'(5, 5)+ Z o,"(5, 5')+ Z P,'(5, 5'),
6 6W6' e4'Oo

(6. 17)
where

T' = —( &"(7'")t) x I' 7000(4L —1),

T, =12600(r "(7'") ) x I"

where

S1 98 &

1089
? 13250 ~

so that

v, =l' (22040x+189600x ),
mz = I' (5304x+ 113760x ),

which gives

(6. 24c)

(6. 24d)

(6. 25a)

(6. 25b)

(6. 26a)

(6. 26b)

5

(2L+1) (L+3) (8m) 'm =Z T

where

(6. 19) pi/3oq = l. 34+ 0. 063x

m2/3o~ = 0. 81 + 0. 094x ' .

(6. 2Va)

(6. 2Vb)

T, = xQ( Of (6, 5) Of(5, 5) )„, (6.20a)
N6

T =x' Q (0"(5, 5) O"(6', 5')t)„, (6. 20b)
N, 5, 6', 64K'

Z ( O,"(5, 6') O,"(5, 6')') „, (6. 20c)
sr, 6,5';M'

T, = x'Z( O,"(5,5') O,"(5', 6)')„, (6. 20d)

(6. 20e)T, =x'Z(P,'(6, 5')P,"(5, &')'). .
The first term in Eq. (6. 20) would be the most
tedious to evaluate, except that it related to the
fourth moment of the spectral function for pairs.
Using the results of Table V we find

Also it is helpful to use

T3+ T4 T3+ T4 p

where

T,'=2x' p (O",(5, 5') O",(5, 5')')„,
606, N

(6. 22)

(6. 23a)

T, =(2L+1)(L+3)(8n) 'x22040I'4, L =1 (6. 2la)

=(2L+1) (L+3) (8v) ' x5304 I', L =2. (6. 2lb)

pince the ratio m/3o2 is unity for Gaussian shape,
these results confirm that the Gaussian approxima-
tion is quite satisfactory for the calculation of T„
at least at very high temperatures. From Eq.
(6. 27) we see that whereas p", ((d) is more peaked
than a. Gaussian, pf(v) is flatter than a Gaussian.
Since these two departures from Gaussian shape
tend to cancel one another, we expect reasonable re-
sults until the terms in Eq. (6. 27) proportional to
x ' become important, say at x&0. 1. However,
these results do not include the effects of other
than nearest-neighbor interactions. Indeed, these
moments are quite insensitive to further-neighbor
interactions. One can estimate that if a molecule
has only one (J= 1) neighbor at a separation (2)'~ Ro,
it will relax approximately(2)51'- 5 times faster than
if it had one nearest-neighboring (J = 1) molecule.
Thus, the fact that the interaction falls off rapidly,-R ', weights isolated configurations very heavily
in T,'. The moment calculation averages the energy
width. What we need to do is to average the recip-
rocal of the energy width. This explains why the
statistical model used by Sung' and modified by us
in Sec. VII is appropriate at low concentrations.



3510 A. BROOKS HARRIS

D. High-Temperature Expansion for Second Moments

Finally, let us calculate ((ozI '»~, the powder and
alloy average of 0~~'~, which can be written as

which we write in the form

molecules. As Moriya and Motizuki point out, 8

one must relate T, ,« in D~ to the observed spin-
lattice relaxation time T, of the total nuclear-
spin system. In the high-temperature regime we
assume that the nuclei of the even-J molecules
relax rapidly towards those of the odd-J molecules.
In that case Moriya and Motizuki show that

(& oi"'»p. = P(&—os ')&,.[&+Ifx], (6. 29)
Tl= T,,„,(5 —sx/2x) . (6. se)

where

a = I -,'[4v/35(L, + 3)]Z,(-1)'( [V';(d,), ~e„-]

x[~„-,v;&(d,}]Z,;&„, (6.30a)

Il = I'0'[1611/35(I + 3)] &„(-1)'
& [v'i (do) ~ &05]

&&[&06 v'z'(do)]36»» )- (6. 30b)

A =~I'.
14 (6.31)

The coefficient B is evaluated in Appendix B. Our
results for (( olI,"»p correct to order 1/T then give

« IIg" + Ilz '»p. =&( Oz"'»p. (1 —
14 pi' —'Iv'92 xpF)

(6. s2)
with (( az '))p, given in Eq. (6. 14).

E. Numerical Evaluation of Tl and Discussion

%e now calculate the relaxation time T,. Ne-
glecting the small anisotropy of the moments and
assuming a Gaussian shape, our calculations yield
the spectral weight functions as

pzs(~) = (I.+ 3) (4v)-'(2v(&ozIOI+ozI»&& )-1~2

&&exp[- —,'(%u)'/((o +IoII"'»p, ] (6. 33.)

Since leo&& a~+', we set co = 0. Then, collecting the
results of the previous subsections we can evaluate
Eq. (6. 1) as

T, = (F/Ilc, ) x'i'12c, (210/BII')'i'

&& (I -~pr - '"' xpi')'" (4c'Ms+ 45dÃ5 )
'

(6. 34)
where eo denotes the speed of light. Numerically
we obtain

T, =0. Veo(1/I c,) x'"(1-A rP -,",'„' xl'P)'"
for Hp (6. 35a)

dg= 5 12(I /&co} x (1 14?p 1791 xFP)
for Dz. (6. Seb)

Here T, ,« is the relaxation time of the odd-J

%e have taken advantage of the invariance of
(( ozI"»» with respect to the choice of quantization

~taxis to sum these expressions over 5 and Q . Thus
in Eq. (6. 30b) both 6 and 5' are nearest neighbors
and in both Eq. (6. 30a) and (6. 30b) one should count
only one configuration. Again, A can be obtained
by calculating the second moment of the spectral
function for pairs correct to order 1/T, so that

For H2 our calculations can be comparedthem to
extensive experimental data of Amstutz et al.s

They have analyzed their data and compared it to
our formula, so we will not repeat their analysis
here. Two comments about their results may be
made. First of all, their experimental results
agree quite closely with the temperature and con-
centration dependence predicted in Eq. (6. 35a}.
For a quantitative agreement for the absolute mag-
nitude of Tj they need to use the value I'yf f
cm ' which corresponds to I',«/I'0=0. 66. This
value of 1",«agrees fairly well with those obtained64
from other methods. ' ' ' ' In fact, it is pos-
sible that here the effects on I',«of thermal pho-
nons might be important. In any event, small
departures from the Gaussian model would not be
surprising. In particular, from our results in Eq.
(6. 2V) it cRI1 lie sllowll tllat our analysis will 1ead
to underestimating slightly (i. e. , by -10//o) the
value of I ~ff.

Note added in Proof. Hama and Nakamura have
analyzed this point in detail in a preprint me have
received.

In D2 there have also been measurements of T,
in the high-temperature regime, ~' and the two
measurements are quite consistent with one another.
For (8= 1) concentrations above x=0. 30 the experi-
mental results for T, at infinite temperature can
be represented by

T, ,„(T- }=2.7x'" sec. (6. 3'r)

This result again leads to a determination of I'.
Comparison with Eq. (6. 35b) yields F,« = 0. 53 cm '
=0. 63I'0. In this case the value of I',ff is somewhat
lower than that found by other methods; however,
the discrepancy is not so large that any firm con-
clusions can be reached. It is also possible to make
qualitative statements about the experimentally
determined temperature dependence of T,. An
analysis is difficult because above 10 K, ' where
the theory might be expected to apply, the tempera-
ture dependence of T, is too small to be very sig-
nificant. Below 10 'K7 it is not certain that the
two-term high-temperature expansion in Eq. (6. 35)
is reliable. Thus we cannot expect quantitative
agreement with experiment, at present. In fact,
tile 'tlleol'eticRl VRllles of TI(00) —Tl(T) Rl'e wit11111

a factor of 2 of the corresponding experimental
values, which is a reasonable result considering
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the difficulties involved in such a comparison.
Finally, we make some pedagogical comments

about the method of calculation. We have chosen
to perform our calculations using the moments of
the spectral weight function corresponding to the
anticommutator in Eq. (5. 1). We have done this
because this function, and not the spectral function
Pz, (u&), is expected to be an even function of ar. In
fact, for the pair system we see from Eq. (5. 6)
that the spectral weight function is an even function
of co. More generally, for the full many-body sys-
tem, the "diagonal" spectral weight functions, i. e. ,
those of the type prz, (&o), will be even functions of
co assuming, as is quite reasonable, that the mag-
netic energies ha and hb can be neglected. The
evenness in co is then a consequence of time-rever-
sal symmetry. Thus, it seemed more natural to
invoke a Gaussian assumption for these patently
even functions of co than for the spectral functions,
which we know are even functions of op only at in-
finite temperatures. As far as the nuclear-spin
system is concerned, we are working in the infinite-
temperature limit. Thus, in our calculations of
Secs. IV and V it did not matter which spectral
function we used to compute moments.

There is still another way in which our calcula-
tions differ in method from those of Moriya and
Motizuki. They compute moments of spectral
weight functions corresponding to the choice of
operators in Eq. (6. 3), A = J,J„B=At. This
brings up the question of determining, if possible,
the optimum way to approximate p„s(co) by one or
more Gaussian functions. Our approximations
correspond to writing

I J Jg'JgJ+ &P(J~J + J J' 'JgJ +J Jg)(~) =-,' . ;,(~)+ g g + g

+ 4PJ.;,g (&) I (6. 38)
and then approximating each of the spectral weight
functions on the right-hand side of this equation by
a Gaussian, whereas Moriya and Motizuki approxi-
mate the spectral weight function on the left-hand
side by a single Gaussian. Our scheme seems more
reasonable, since operators of different symmetry
are independent in some sense. Furthermore,
we believe it is likely that applying the criterion
developed by Roth'3 would lead to results similar to
those we have obtained. Fortunately, the numerical
difference between the two approximation schemes
is completely negligible, so the point is an academic
one in the present context.

VII. NMR RELAXATION TIMES AT LOW (J=1)
CONCENTRATION

We have seen in Sec. VI that the Gaussian approx-
imation for ps~+"(&o) becomes poor in the limit of
low (J= 1) concentration. The reason for this is
that the Gaussian approximation gives roughly the
average over configurations of the energy width,

As we have mentioned, we abandon the Gaussian
approximation for pzz"(e). Here we shall determine
pfz(v) by calculating its Fourier transform f~s(t),
defined as

f",(t) = f p", ((u) e '"' nd(o

where

jZ.M(H t) esxt 7 M(g~) e-fxt

(7. 1a)

(7. lb)

(7. 2)

Now the Hamiltonian is the sum of two-body terms,

x=Qx, ,
i&/

(7. 3)

where the sum is carried only over (J= 1) mole-
cules. As Sung points out, it is reasonable to as-
sume that the molecule at r interacts only with a
small number of other molecules and that as a first
approximation the oscillatory contributions from
each term are completely independent. Also we
shall evaluate all thermodynamic averages at in-
finite temperature. As will be clear later, the
dominant contributions to

foal,

(t) come from (8= 1)
molecules which are at a separation -Roy '

Thus the high-temperature regime is essentially
I"(Ro/Rox ' )'«kT, i. e. , for kT» I'x'~', a condi-
tion which is well satisfied in the data we will
analyze.

whereas the observed relaxation rate is expected
to be the average over configurations of the relaxa-
tion rate, which is inversely proportional to the
energy width. Furthermore, since (J'= 1) mole-
cules with no nearest-neighboring (J = 1) molecules
relax much faster than those with even one nearest
neighbor, it is essential to treat such configurations
correctly. Thus one should take the average over
configurations of the inverse of the energy width.
As Sung' has shown, this can be accomplished by
the use of the statistical model. " Accordingly, in
Sec. VIIA we give a treatment of this model which
becomes exact in the limit when only pairwise in-
teractions are important, i. e. , at low concentra-
tion. However, in contrast to Sung's later work,
we would not attach much significance to an ultra-
low (x&10 ) concentration calculation, because
then the smaller and more uncertain terms in the
Hamiltonian become important. In Sec. VII B we
analyze Sung's treatment of the statistical model.
From our analysis we conclude that the apparent
agreement between Sung's theory and the experi-
mental data is the fortuitous result of several
computational errors. When these errors are cor-
rected, we find that his theory predicts relaxation
times which are about twice as long as those actual-
ly observed.

A. Statistical Model at Low {J=1) Concentration
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Within these approximations we can write

fz, (t) =fz, (o)(&II ~i.(R, t)/Fz(R, 0)))„, (7 4)
R

where Pz, (R, t) is the exact f~(t) for an isolated pair
of (J=1) molecules at a separation R. We shall
take the average over random configurations of
(J'= 1) molecules, completely neglecting possible
correlations in the probability distribution function
for clusters of (J= 1) molecules. This approxima-
tion is probably reasonable except for H~ for x&0. 1
and T & 3 'K when the (J'= 1) molecules have a ten-
dency to cluster. ' '" For a random alloy Eq. (7.4)
becomes

f"(t)=f"(0) II [I —x+ xE"(R, t)/P" (R, 0)]
R (v. 5)

together with Eq. (5. 10) at infinite temperature we

obtain
+~ 8 5

pz(R, t) =1 — pz, (u R IR e '"
hd(d (7. 14a, }

0 E 0

= 1 —Z„Ci(E„)cos [(R5/R) 5 (E„t/tf)]. (7. 14b)

In writing these equations we have used the fact that
the energy levels of a pair of (J'=1) molecules
scale with R . Substituting Eq. (V. 13) and (7. 14}
into (V. 12) we find that

Qz (t) = ~~ R' JR'dR f did gg Z I
D ~' (f~ih )

I

'

xC'(E„)I1—sos ~ (E„I/Il) I
(7. 15s)

or

f"(t)=f"(0)II [1 —x('p"(8, t)], (v. 6)

=(41/v 2R() ) R dRZ„Ci(E„)

x (1 —cos[(R /R)5(E„t/h)]j . (7. 15b)

where

v)"(R, t) =1 —F (R, t)/E (R, p),

f (0) = (L+3)/41/ .
(V. 7)

(v. 8)

This result can be written as

q'(t) = 'm~2 I t-I "' ( E'„"),@"'
x f,

"u "'(l-cosu)du, (7. 16)

e".(t) =Zft~", (R, t) (v. 10)

In going from Eq. (7. 9a) to Eq. (7.9b) we have
dropped terms in the exponent of order x or higher.
In this way we do not describe properly correla-
tions or interference effects, but such effects are
at least of order x . Hence our treatment seems
to be rigorous in the low-concentration limit.

Since the relaxation rate T, is dominated by
(J= 1) molecules for which R» R5, we convert the
sum to an integral using

Qft -fp dR = v 2 R55 fdR,

where the density of molecules p is v 2R()5 for an

hcp lattice. Thus, we have

Q (t) = v 2R f dRq& (R, t} .

(V. 11}

(7. 12)

Recall that the quantization axis in Eq. (6. 1) is
along the magnetic field, so that we shall make this
choice of coordinates for the present discussion.
But according to Eq. (5. 11}we can express Fz, (R, t)
in terms of functions defined with respect to the
pair axis which we indicate by a tilde. Thus

where QgH is the orientation of R with respect to
the magnetic field. Using the definition Eq. (5. 1)

The powder average will be taken later. We write
Eq. (7. 6) as

f~u(t) =f™z(0)exp( Zit in[1 —x9)z(R, t)]} (7. 9a)

~fzu(0) exp[- xqf (t)], (v. 9b)

where

where (E'„)z is the average of (E„)':

& E„'&,=-Z„c,(E„}IE.I'.

Numerically we find

51/v 2 f u'/'(1 —cosu)du

=5 1/7t 21mf e'"u ' 'du
0

=~55' I"(-,') sin51/,

(7. 1V)

(V. 18a)

(V. 18b)

where I'(z) is the gamma function. Taking account
of Eq. (7. 1) and (7. Qb) we find the spectral func-
tions,

tzp "((u)=f (0) f dt

x exp(i((1t —7 75xl t I
"5&E5").}I"')

(V. 19)

In the low-frequency regime, I+«x5/5(E5/5)5/5,
we find

pz/M (~ ) ~1f'/z (P ) (7 7 5x)-5 /5 17(5 ) ( E5/ 5)-5 /5 (7 20a)

=0.0992[(L+3)/41/] ( E„/ ) / x 5/; (V. 20b)

whereas in the high-frequency regime, @»&z'
x( E5/5) 5/5, we have

hpzz, ((f)) = 2fz, (0) Re1 dt e'"' e 'z"'" (V. 21a)

=2fz, (0)Reif due ""e"z" '"' (V. 21b)
0

= 2fuz(0) y~xco '/'I"(f} sin&~, (7. 21c)

where yz =7. 75(E„' 5)z If ' ' .
Experimentally one is usually in the low-frequency
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From Table V we evaluate (E~/5)~ as

(Ep'), =1.48r,

(Es/5), =1.V1I',

which gives

T1=3.29I'x i for H2,

T, =24. 3r&'~' for D„

(7. 23a)

(7.23b)

(V. 24a)

(V. 24b)

when 1 is expressed in cm and T, is in sec.
Note that since the important interactions are those
between distant neighbors the phonon renormaliza-
tions are completely negligible. However, as
pointed out by Hardy and Gaines one must take
account of dielectric screening. To do this we

simply scale the interactions by the dielectric con-
stant,

T, = 3. 29r z'/~/eo = 2. 53 r z'/' for H~, (7. 25a)

T, = 24. 3 I' x'/'/e = 18.7 I"~'/' for D, (7. 25b)

where we have taken the dielectric constant to be
&o=1 3 74

We can compare the above predictions with the
experimental data of Hardy and Gaines for H2 and
of Wang and White ' and Weinhaus et al. for D2.
In both cases the data are fit reasonably well by
the x' ' law first found by Sung. ' For D2 the
temperature dependence of T, at low concentration
causes some uncertainty in the interpretation.
While it is expected that T, should vary rapidly in
the diffusion-dominated regime (T & 10 'K), it is
not easy to understand a temperature dependence
below that regime. On account of this unexplained
dependence it is not easy to perform the extrapola-
tion of the T, data to "infinite" temperature as is
desired for comparison with theory. Therefore,
our analysis for D2 must be regarded with caution.
By fitting the data to an x law we find the results

T, x ' '=1 sec for H„

T, X' =9 SeC fOr D2.

(V. 26a)

(V. 26b)

Comparing these results with Eq. (V. 25) leads to
a determination of I",«.

I',«=0. 40 cm '=0. 57I'o for H2,

I', , =0.47 cm '=0. 5'7I' for D .

(7. 27a)

(v. 2vb)

It is interesting that these values of I',«are com-
parable with those determined by fitting the experi-
mental data at higher concentration to the Gaussian
model, although they are somewhat smaller than

regime, in which case one finds T„using Eq.
(V. 20) in (6. 1), to be

1 2c 15d 5]3
Tq = 0. 198&h

3( E3/5) 5/3 +
2( Z3/5) 5/&

n n

(V. 22)

the values obtained by other methods.

B. Critique of Sung's Theory

In view of the fact that our version of the statisti-
cal theory does not give the magnitude of T, correct-
ly, we are led to reexamine Sung's theory' to see
why he obtains such good agreement with experi-
ment. His success is surprising because it would
seem that our approximations ought to be more
reliable than his. In fact, we find this to be the
case. We find that there are some numeri-
cal and algebraic errors in his work. When these
are corrected, his theoretical results are in worse
agreement with the data than those found above.

Although Sung's approximations are quite similar
to ours, there are some physical differences which
should be noted. He uses Eq. (7.4), but instead of
the exact fz (R, f) for pairs he uses an approximate
function with a single frequency. This character-
istic frequency is determined by the condition that

d Ez(R, f) s( )dP J, (v. 28)
f'=0

-1= 2C 15d 5(3T, = 0. 198mb
3 ( Ea) y/ +

2( E2)
n 1 n 2

which gives for H2

r,~-"'= 5. 54r/~, ,

(v. 29)

(v. 30)

which is to be compa. red to Eq. (7. 25a). Thus,
we see that using Sung's theory to fit the experi-
mental data leads to even smaller values of I",«
than does the theory presented above.

The reasons for the discrepancy between the re-
sult Eq. (7. 29) and that cited in Ref. 10 are the
following. First, the Hamiltonian for EQQ interac-
tions, Eq. (4) of Ref. 6, is incorrect because this
form implies the use of Rose's phase ' convention
for spherical harmonics, whereas the Condon and
Shortly phase convention 6 is actually employed.
Also, the factor of v 2 in Eq. (7. 12) has not been
included in Ref. 10. There appears to be some dif-
ference also in the evaluation of integrals, e. g. ,

so that the second frequency moment is correctly
given by the approximate function. The difference
between using this approximate function with a
single frequency and the exact pair function with
several (see Table V) frequencies can be deduced

by considering the fourth frequency moment of the
two distributions. Clearly the fourth moment of
the exact function is significantly larger than that
of the approximate function, since the latter involves
a single frequency. As a result, in analogy with the
phenomenon of exchange narrowing of NMR line
shapes, ' one expects a larger spectral density
and hence a faster relaxation rate, from the exact
function. In fact, the result of Sung's theory can
be put in the form of Eq. (V. 22):



3514 A. BROOKS HARRIS

see our Eqs. (V. 18) and (V. 21). In particular, the
last result has some physics connected with it. At
ultralow concentration, i. e. , in the high-frequency
regime, S&o» x ~ (Z„'~ )~~, the spectral density
must be proportional to the probability of finding
another (8=1) molecule within some finite separa-
tion determined by g. Clearly this probability
is proportional to x as we find and not x' as given

by Sung. This evaluation will also affect the re-
sults of Ref. V3, but since the numerical constants
were not given, no estimates of these effects can be
given.

VIII. NUCLEAR SPIN-LATTICE RELAXATION IN THE
ORDERED STATE

In this section we shall calculate the nuclear spin-
lattice relaxation time T, for (7= 1) molecules in
the orientationally ordered phase of solid hydrogen.
A preliminary report of this work was presented
earlier. 77 Meanwhile, a more detailed calculation
leading to essentially the same result has been
given by Homma. However, the results we obtain
here may be useful owing to their simple and ex-
plicit form.

First, we remark that Eq. (e. 1) can be modified
for the case of a powder. v Using the transforma-
tion properties of the irreducible tensor operators,
one sees that the powder average of g~(v) is

8 (ru)= C"N 'Z 6(&~+Zf —Z„")n„; .
pTp7.

' (a. 3)

Here we ignore the fact that the quadrupole wave
spectrum consists of several branches. This ap-
proximation is essential for a simple theory and

probably does not affect the result noticeably. To
determine the constants C~ we evaluate f „du&8z, (ru).
On the one hand, from Eq. (8. 3) we have

J„d(oAf ((o) = 2Ci (@Ã) '?~„-n; (8. 4a)

=2N C~(d )r, (s. 4b)

ly, the only processes which we need to consider
are those in which the elementary exeitations scat-
ter off one another. These processes are primarily
included in the spectral densities 8,(e), 8z(&o), and

82'(~).
In analogy with the case of magnetic insulators,

and as shown by Homma's more detailed calcula-
tions, v' we know that these spectral densities must
be of the form

g,"(~)=C",X-'?" 6(@~+Z; Z„;-)n„-,(I+n;), (8. 2)
Re

where N is the total number of moleeules and CJ. is
a normalization constant to be determined. Since
kT is much less than the quadrupole wave-energy
gap, we may write

(2I, + I)-'Z 8f (&) .

Thus, for a powder we have
,~2 1 9d2 2

D''=~w' -—' 2 D" (D) 2 D")D))
3 ~ 1 5

(s. 1)

since there are two libron modes per molecule,
whereas from the definition of the spectral function
we obtain"

f„a;( ) (I/2 ) d =«."(&fi)f."(&ft)&,(-1)"
(s. 6)

In writing Eq. (S. 1) we assume that the NMR reso-
nance frequency +o is much less than the frequencies
of the rotational system, so that effectively coo =0,
and initially we shall consider the case of a homo-

geneous solid of (J'=1) molecules. In evaluating
these spectral densities one must take account of
the nature of the elementary excitations. As Homma

et al. ' and others ' ' have shown, these excita-
tions are quite similar to those in a magnetic in-
sulator with a large anisotropy gap. The elemen-
tary excitations consist of removing molecules from
the J,= 0 state into the J,= + 1 states, where the
axis of quantization is along the local symmetry
axis which coincides with one of the [111]directions.
Since Eq. (8. 1) is invariant with respect to the
choice of quantization axis, we naturally take it to
coincide with the local symmetry axis. Then it is
clear that the spectral densities 8 (v) and gz'()d),
which describe primarily the creation or destruction
of a single excitation, cannot contribute to the re-
laxation process. The analogous situation obtains
for magnetic insulators, since in both cases
the energy gap in the excitation spectrum is much
larger than the nuclear Zeeman energy. According-

c,'= ~e,
C+2 ~1

2 16

(s. eb)

(S.ec)

To obtain explicit numerical results we rewrite
Eq. (8. 3) in terms of the density of states, defined

by

p(z) -=-.'z'Z„-6(z —z„-) . (8. 7)

Thus we have

g"(0) = C"J 6(Z —Z') p(Z) p(Z') n(Z) dZdZ' (8. Sa)

=Cf f p'(z)n(z)dz, (s. Sb)

where

n(Z) = [exp(PZ) —1]-' . (a. 8)

We use the density of states as determined by
Ueyama and Matsubara 2 or by Mertens et al, 12

Evaluating the right-hand side of Eq. (S. 8) to lowest
order in the number of excitations and comparing
the result to Eq. (8.4b) leads to a determination of

C~. In this way we find

(e. ea)
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From the graph in Ref. 12 we estimate that'

Z & 121' (8.10a)

p(Z) = 0. 03(Z —12I")/I', 12I' & Z & 18I" (8. lob)

p(Z) = 0.01(28I' —Z)/I"', 18I' & Z & 28I' (8. 10c)

p(z) =o, z & 2sr. (s. lod)

One can take account of the renormalization of the
excj.tation spectrums, u, 85 as a functj. on of temper-
ature by using a temperature-dependent EQQ cou-
pling constant I' in our results. Using this density
of states we have evaluated the right-hand side of
Eq. (8. 8b) in the limit (12I'/kT)» 1 as

g (0)= (k T) '
Cz, (1oy) 4 [18exp(- 12y)

-(224y +128y+16) exp(- lsy)
—2 exp(- 28y)], (8. 11)

where y= (I'/kT) For a. n alloy of (J'=0) and (J= 1)
molecules the simplest approximation is to assume
that all fields scale with the concentration x of
(J =1) molecules. Then Eq. (8. 11) is still valid
providing we take y = xI'/kT, which gives a law of
corresponding states. Substitution of Eq. (8. 11)
into Eq. (8. 1) yields the following numerical re-
sults:

T, /T = 5. 5X 10' sec K ',

T, /T=1. o&&10' secK ',

T, /T=14 secK ',

T, /T = 2. 2 sec K ',

for Hz, and

y=1. 00

y=0. 75

y=0. 50

y=0. 40

(8. 12a}

(8. 12b)

(8. 12c)

(8. 12d)

T, /T=3. 2xlo' secK ', y=1. 00

T, /T=0. 6 xlo sec K ', y =0. V5

Tg/T =80 sec K ',

T, /T=13 secK

y=0. 50

y=0. 40

(8. 13a.)

(8. 13b)

(8. 13c)

(8. 13d)

for D~. However, for D~ this relaxation time is that
of the (J'=1) molecules towards the lattice. A sys-
tematic comparison of these calculations with exper-
imental data is not yet possible, owing to the
scarcity of data, but we can check the order of
magnitude against the measurements of Smith et
al "' They find. T,(0 93, 2) =195 se.c and
T,(0. 87, 1.5) = 130 sec, where the arguments of
T& are the concentration x and temperature T.
From Eq. (8. 11) taking I „,= 0. 6V cm ' = 0. 801 o,
we obtain the theoretical values T,(0. 93, 2) = 28
sec and T,(0. 8V, 1.5) = 230 sec. It is clear that
more data are needed to make a meaningful compari-
son, because the theoretical value of T, depends
critically on the parameters. Taken at face value
the comparison above would suggest that perhaps
the libron spectrum does not scale linearly with

concentration, and it is obvious that one cannot
reproduce the concentration dependence of the or-
der-disorder transition temperature T~ with this
approximation.

Clearer evidence on this point may be obtained
from the mea, surements by Ramm et al. of
(Bp/BT)„ in ordered 0,. They find that for x &0. 8
the gap scales as

b/k = (38. 9x —19.0) 'K . (8. 14)

Accordingly, for given values of x and T we re-
place y in Eq. (8. 13) by y„, = b/19kT, where 6 is
the empirically determined libron energy gap of
Eq. (8. 14). Using these values of y,«we find
from Eq. (8. 14) the theoretical values T,(0. 93, 2)
=90 sec and T, (0 8V, 1.. 5)=600 sec. Thus, even
use of Eq. (8. 14) does not reproduce the very sharp
concentration dependence implied by the experi-
mental values of T,.

In fact, one can derive a direct relationship be-
tween T, and the specific heat C~ which is propor-
tional to (Bp/BT)„. For this purpose consider Eq.
(8. 2) when ~ = &so= 0. Note that the factor ~(l + g-„)

is just the specific heat of an oscillator of energy
Z„; apart from the missing factor (Z-„/kT)2. Since
this factor varies much more slowly with energy
than the exponentials in the occupation numbers,
we consider it equal to (b/kT), where b is the
average libron energy gap. This argument thus
leads to the relation

(s. 15)

Using Eq. (8. 14) for the scaling factor of the libron
energy gap we obtain

8. 9x —19.0 BT
(8. 16)

From the work of Ref. 65, it is clear that the en-
ergy gap 6 is not temperature independent at con-
centrations low enough that b, (x) is much less than
its value for x=1. Then 6 will vary weakly with
temperature, so the ratio T,'/[T'(BP/BT)v] will vary
much less with temperature than either T, ' or
T'(sp/8 T},

IX. PAKE SPLITTING OF (J=0) MOLECULES IN D2

In I we discussed the Pake splitting for (J= 1)
molecules in both H2 and D2. A slight refinement
of these calculations is presented in Appendix E.
Here we consider the influence of (J=O} molecules
on the nuclear-magnetic-resonance behavior of
solid D~ in its orientationally ordered phase. We
shall show that the NMR spectrum of the (J= 0)
molecules is similar to, but less pronounced than,
the (J= 1) molecules. To see this we consider the
interactions which align the molecules. According
to the effective field picture, ' 6 each molecule
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sees a potential due to the other ordered molecules,

V„,= —'6' xI' (3 cos'8, —1), (9. 1)

where 6)s is the angle between the molecular axis
and the local symmetry axis. In writing Eq. (9. 1)
we have noted that V,«scales in proportion to the
concentration x of (J = 1) molecules. " We can cal-
culate the orientational ordering of even-J mole-
cules (J= 0 is no longer a perfect quantum number)
by

C„—=(3cos 8, —1)„„=-s even 95~
(O. 2)

Using second-order perturbation theory we find

Eo= —(2/15B) (8 xF}

so that

C...,= 38xr/OB -=C

(O. 3)

(o. 4)

a+ —,'C(15do+ 5'),
a s —,'C(15do —15d„) .

(O. 6a. )

(9. 6b)

Thus, the (J=O) molecules have an average Pake
splitting of

b, v= —Cd4 Q

= (95xFdo /6B) = 8. 8x kHz,

(o. va)

(o. vb)

which is about one-tenth as large as that for the

to lowest order in I'/B To. find the nuclear-spin
states of the (J= 0) molecules we use K,„„;of Eq.
(4. 2b), because for the value of C„given in Eq.
(9.4) the intermolecular dipolar interactions are
much smaller than the intramolecular interactions
of 3C,'„„,. In fact, since d@»d„, we shall treat
d„perturbatively. Then the (J= 0) nuclear-spin
states are those given in Table VI. Thus, the NMR
spectrum will consist of absorptions at the frequen-
cies a + v' and a+ v", where

v' = —,'C(3cos'8„, —1) (15d@ + 5d„), I' = 5 (9. 5a)

v" = —', C(3cos'8„, —1) (15do —15d„), I"= 5 (9. 5b)

with the corresponding relative intensities I' and
I" as indicated. When averaged over a powder each
of these components gives rise to a Reif-Purcell'6
line shape with peaks at

(J= 1) molecules. For this estimate of &v we used
the renormalized value of F,~, = 0. 67 cm ' and
also took account of the interactions of distant mole-
cules ' by replacing 1"e«by 1.1I',«. A Pake
splitting has recently been observed via NMR" with

very nearly the frequency we predict with an inten-
sity and concentration dependence in agreement with
our calculation. As mentioned, the anomalous width
in the NMR line shape of the (J= 0) resonance ob-
served by Gaines et a/. ' is probably also due to the
Pake splitting discussed here. Hence, we feel that
our prediction has been substantiated.

X. CONCLUSION

In this paper we have analyzed several phenomena
associated with the NMR properties of solid hydro-
gen. Generally, our calculations are in reasonable
agreement with the experimental data considering
the difficulties involved in such a comparison, viz. ,
high-temperature expansions are only valid at
temperatures, say, above 10 'K, whereas the data
are meaningful only at lower temperatures.

More specifically, we summarize the results of
our calculations and the comparison with experiment
as follows:

(a) The contribution to the moments of the NMR

spectrum of H~ from intermolecular dipolar inter-
actions is well understood. In particular, the con-
centration dependence of the phonon renormalization
of the dipolar interactions agrees with our predic-
tions.

(b) The temperature dependence of the second
and fourth moments in H2 agrees qualitatively with
theory, especially in its concentration dependence.

(c) From the dependence of the second moment
in Dz on temperature we conclude that the (I = 1)
nuclear spins do not always contribute to the NMR.
The weak temperature dependence is of the right
order of magnitude to be due to deformation of the
(J = 0) state.

(d) The temperature and concentration dependence
of T, in both H2 and D~ agree quite well with theory
over a wide range of concentrations and tempera-
tures above 4 K. The values of I"«needed to fit
the data at large g where the Gaussian approxima-
tion is useful agree with those obtained from the

TABLE VI. Nuclear-spin states of (J=O) D2 molecules.

State

I+2)=— I +1, +1)
I + 1) =—2-' '( I + 1, 0) + 10, +1))

lo, 0)-=lo, 0)
l0, 1)=—2 ~ 2(ll, —1)+I —1, 1)j

Energy

+&a+ 4C(3 cos O~s —1)(5dq —5d~)
+ a+SC(3 cos 0» —1)(—5d@+5d )

2
N--'C(3 cos 0» 1)d~

4 C(3 cos Hs 1)(5dq+5dg)

'States on the right are given in terms of the mr values of the two nuclear spins.
Parameters a, d@, and d& are given in Table I, C is given by Eq. (9.4), and OHs is the angle between the magnetic

field and the local symmetry axis.
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low-concentration regime where our modification
of Sung's theory is valid. These values of I',«
are slightly smaller, however, than those derived
from other experimental determinations of I',fg.

(e) We have supporting evidence for the validity
of the Gaussian approximation at infinite tempera-
ture in that the fourth frequency moment of the
spectral function is about three times the square
of the second moment. We also found that the de-
pendence of T, on magnetic field orientation is
negligibly small.

(f) We presented explicit analytical formulas for
T, in the orientationally ordered phase based on
the model of libron scattering and using the density
of states calculated by Mertens et al. Only crude
comparisons could be made with experimental data
at the present time.

(g) We calculated, for ordered D, —and NMR

measurements have since detected —a Pake split-
ting of about 9 kHz for the (J=0) molecules. This
splitting is due to intramolecular interactions
which are not completely washed out when the per-
turbative alignment of (J=O) molecules in the
effective field due to EQQ interactions is taken into
account.

We seem to have a reasonable understanding of
the topics treated here. Other topics which are
less well understood and which are under investi-
gation at present are (a) cross relaxation in D, in

(i) the diffusion-dominated regime and (ii) in the
ordered phase, and (b) the NMR spectrum at low

concentration in the millidegree temperature range.
Both these phenomena depend more sensitively on

the details of the processes involved and are less
susceptible to moment methods which we have used
so extensively in this paper.

m,"'=-', d'v(pr)'« a+ a+ c)), ,

where

~r'= Z (-1)'F,'(5)& q,-'(J,)x';&„,
k, 6o 6

ar'=3 Z (-I)'r,'(5)
&o6o6' o~

x & V'o'(Jo) Xo, X-,O) „(1—b,O o),

(A3)

(A4a)

(A4b)

x & r, (J,)Xo, Xo.o., Xoo., )„. (A4c)

Since the average of three spherical harmonics is
independent of how they are ordered [see Eq. (A11b)
belowj, it is unnecessary to symmetrize the pro-
ducts of operators appearing in these equations.
Here 5, 5', and 5" are nearest-neighbors vectors.

First let us evaluate A. Here it is obviously
convenient to choose the quantization axis to lie
along O'. From Table IV we find

P in Eq. (3.37). Let us therefore consider only

those terms in Mz"" proportional to P', which we

denote by Mz"'. From Eq. (Al) we have

~"'=-~d'vp'&&Z (-I)'& r '(~ )X')

x& I"o((go)X )„)), (A2a)

=- fd'&P'r'«Z & F (~o)X'& y,'g))&. ,

(A2b)

where 5 is a nearest-neighbor vector, and we have
used Eq. (3.33). In Eq. (A2b) the quantization axis
is arbitrary. Expressing X in terms of the individ-
ual pairwise interactions and using the operator
equivalents, we may write
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APPENDIX A: HIGH-TEMPERATURE EXPANSION FOR M2

Tr(3J', —2) Xoo = —150I'

which yields

& Vo'(Jo)XoF. )„=—
l 0 3 r (5/16m)

so that

A = —~o(5/16m)'i Z yo (8)o. .
5, 6'

Thus, using Eqs. (3.36) and (3.38) we find

« a». = -125'(I —x)/v .

(A5a)

(A5'b)

(Ae)

(A7)

In this Appendix we evaluate the second term in
the high-temperature expansion of the second mo-
ment of the NMR spectrum M~"" and thereby veri-
fy Eq. (3.39). Substituting Eq. (3.30c) into Eq.
(3. 19b) we obtain, correct to order P',

x (x —,'px')& „&y'((g ) (x ——', pz ))„)),.
(Al)

We have already evaluated this expression to order

«a». =f, +b, , (Aa)

where

Substitution of this evaluation into Eq. (A3) yields
the term proportional to PI' in the square bracket
of Eq. (3. 39).

We now complete the verification of Eq. (3.39) by
showing that the evaluation of 8 and C in Eq. (A3)
gives the other term in the square bracket of Eq.
(3.39). It is easy to see that the alloy average of

8 may be written as
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f'1' =3~(1-x) Z (-1)'&,'(6)(1-~&;,)
lo 6, 6'

x& 7',-'(Jo)Ro,.36, ,
&ol'= sx'(1 —x) Z (-1)' 1;r(6)

loso5s

x«o'(Jo)36oo 3' o)-. (A9b)

xC(2, 2, 2;0, s) C(2, 2, 4;/, 0)

xC(2, 2, 4;s, —s)'yr(6) yr(6)+ . (A12)

To evaluate this expression we use the relations

Z„C(2, 2, 2; 0, m) C(2, 2, 4; m, —m) = —~4o
v' l4

(A13)

In b, we take the quantization axis along 5' to sim-
plify Xo o o . Then using Eq. (2. 9) we have

5 = Sx'(1 —x) (~rr)' (70)'r' ( m)' r '
x Z (-1)'1,"(3)«.'(J.)~;(J.) v,"(J;)~;(J;)
8ofo6, E~

xylo'(J;~, ) V', '(J;) 7', (J';;,))„C(2,2, 4; m, n)

xC(2, 2, 4;s, —s)C(2, 2, 4; t, —t)

x (1 g ~ ) ym+n(6)g

Since operators on different sites are independent,
we can evaluate the average in Eq. (Alo) using
the averages for a single site,

&r", v,-")„=(-1)a „(5/8rr), (Alla)

& v,"y',"v'", )„=(-1)"~.„,„,(5/64v) (70/v)"'
x C(2, 2, 2;m, n), (Allb)

which can be obtained using Eq. (2. 6). Thus, we
have

f, ="„"x'(1-x) Z (1-~;;,)
lo 8, 5o5»

h, =-(7375/16m)x'(1-x) . (Al 7)

Finally, we evaluate the powder average of C as
defined in Eq. (A4c). We take the powder average
by inclusion in the lattice sum of the fa,ctor

x'+ ~;~. x'(1 —x)+ ~-;, x'(1 —x) . (A18)

Note that by Eq. (3. 38) the term proportional to xo

vanishes. Keeping only those terms whose average
is nonvanishing we have

« C)).=6x'(1 — ) (5/4 )'"(~ )'(70)'"(,')'"
x Z & v o(Jo) v'o (Jo) 7'3™(J,")v'o"(Jo) v oo(Jo, )

6, 6', m, n

x~,"(J;)V',"(J;,)).C(2, 2, 4; m, -m)

xC(2, 2, 4;m, —n)o Y, (6')*Y4 "(Goo, )*,
(A19)

where Qy. specifies the orientation of 5 —5' with
respect to 5. Since we have taken the quantization
axis to lie along 6, only the (l =0) term in Eq.
(A4c) is nonzero. Again we may evaluate the aver-
age using Eq. (All). Also we note that all the 24
equilateral triangles (0, 6, 6') give the same con-
tribution to Eq. (A19) so that

« C)), = (39 200W5/27) x (1 —x)

xZC(2, 2, 2;m, —m)C(2, 2, 4;m, —m)(-1)"
mr

xc{2,2, 4; m, r —m) ly4(6')lo (A20a)

-=(35J5/»2. )Z„S.C(2, 2, 2; m, -m)

x C(2, 2, 4;m, —m),

where we have set

F4 (Ao-o. )* = Pq(6')

Z„c(I., I.', J;m, ~-m)Y,"(n)r,, (n)

=[(2I, +1) (2I,'+1)/(4rr) (2J+1)]'r
x C(I., I,', J;0, 0) 1'"(0),

and also Eq. (3. 38), whence

f, = 250x'(1 x)/v . —

(A14)

(A15)

3-= 70 "o"xZ, l14(6') I'(-1)"c(2, 2, 4; m, ~ m)'.

(A21)
Numerically we find

(A22)

which gives

« C)).= —125(199/128x) 2(1 —x) . (A2S)
The evaluation of 52 is similar. The quantization
axis is taken to lie along 5 —5 . We again use
Eq. (Als), but not (A14) because the arguments of
the spherical harmonics are different in the pres-
ent case. Thus, we find

r, = —g 414 2(1 —x) Z'C(2, 2, 4; f, O)yr(6)yr(6')*,
l, f, 6'

(A16)

where here and below the prime indicates that the
sum is taken over values such that 5 —5' is a near-
est-neighbor vector. Numerically we obtain

Combining the results of Eqs. (A15), (A17), and
(A23), we reproduce Eq (3. 39) of.the text.

APPENDIX 8 MOMENTS OF SPECTRAL WEIGHT FUNCTION

I. Moments of Spectral Weight Function at High Temperature

In this section we evaluate the constant 8 defined
in Eq. (6. sob). As we shall see, this constant is
related to one of the terms appearing in the high-
temperature expansion of the specific heat.

Inserting the explicit expression for the Hamil-
tonian into Eq. (6. sob), and taking the quantization



PROPERTIES OF SOLID HYDROGEN. II 3519

axis along 5, we may write Bas 3095
1536 (B6b)

8 = [Pr (L + 3)] (~v) o (70)(Q)' io

x Z C(2, 2, 4;m, —m)C(2, 2, 4;m, —n)Y4~
p, mn

x(Q)P)*&V (J )5' ) 7' (5 ))

x& [Y'(J,), v,"(J,)][v,"(J,), v'(J, )]& (-1)',

By comparing Eqs. (B5) and (B6), we see that

B = ~35 BI',
which gives

1857B = 179' I'

in agreement with Eq. (6. 32).

(BV)

(Bs)

where Qp. specifies the orientation of 5 —5' with
respect to 5. Here and below we need consider
only the special values L =1 and L =2. Then,
according to Eqs. (2. 6a) and (2. 6) we have

&[v,"(J,), 7;(J,)] [v, (J,), ~,"(J,)]).
= [o.'(L) 2) 3 —L) C(L, 2, 3 —L; p) m)]

x (-1)""(6—L)/S~,

so that

(B2)

x Y4 (Oo;, )*& Kp(J;)5co)t, Ko(Jo, ))„. (B5)

As mentioned above, this expression is quite sim-
ilar to the average

&XooZN XoK ) =BI'o-
which Nakamura evaluated as that part of the
specific heat at high temperature which is propor-
tional to (PI'x)'. We have

xZ (- 1) C(2, 2, 4; m, —m) C(2, 2, 4; m, —n)

8 = [(6 —L)/(L+ 3)]~ (~v)' (VO) (+v)'i'

xZ(-1) C(2, 2, 4; m, —m) C(2, 2, 4; m, —n)
mn

x &
7 o (Jg) Zoo, Ko(J", ))„P[C(I, 2, 3 —L; P, m)

x a(L, 2, 3- L)]' Y4 "(iVglt. )*. (B3)

Noting that

Q„C'(L, 2, 3 I; p,-m) =—', (V —2L), (B4)

and also using the values from Table III, [o,(2, 2, 1)]
= (750/64m ) and [o.(I, 1, 2)]o = (9/2v), we write

a=(9/26m) (~sr) (70) (—v)'i'

xZ (- 1)"C(2, 2, 4; m, —m) C(2, 2, 4; m, —n)

x C(2, 2, 4; p, v) Y4'"(5)* Y~4'"(6')*

x (o2, L, 3 —L) C(2, L, 3 —L; m, M)

xI o.(2, 3 —L, L) C(2, 3 —L, L; p, m+ M)

V
M+)))+)) (J ) +))(J„)V.))(J )

+ b,g o. [o)(2, 2, 1) C(2, 2, 1; v, n)

x 7 sg(Jo) 7 o (Jo) ri (J~)] (B9)

~i(6, 6+6') = (Ipl')o(70m) Q C(2, 2, 4; m, n)
m, n, p, , v

x C(2, 2, 4; p. , v) a(2, 2, 1)

x o. (2, L, 3 —L) C(2, 2, 1; v, n)

x C(2, L, 3 —L; m, M) Y4'"(6)*

x Ym+))(6))))) zM+)I (J ) iz l) ('J ) )I'n+v(J )

(B10)

We first consider T2 and note that the operators
of site 6 do not appear in Of(6', 6') and that those
of site 6' do not appear in Oi(6, 5). Hence, the
terms in T", 'v will vanish when the average at in-

2. Fourth Moment of Spectral Weight Function

In this section we sketch the evaluation of the con-
tributions to the fourth moment of the spectral
weight function at infinite temperature. Since the
calculations are rather long and nearly repetitive,
this exposition will be illustrative rather than
comprehensive. For these calculations of the con-
stants T~, T3, T4, and T, introduced in Sec. VI
we need the following expressions for Ol. (5, 5') and

Pi(6, 6+6'), which may be obtained using Eqs.
(2. 6) and (2. 9):

0"(5, 5') = (Ivl') (70v) Z C(2, 2, 4; m, n)
m, n, u„v

x Yo (flooi)*& 7'o"(Jo)Ky) 9z(JI)))„(B6a) finite temperature is taken. Thus, we have
I

Tq=(I l')v(70o') x Z Z + C(2, 2, 4;m, n) C(2, 2, 4; p, v) C(2, 2, 4;m', n') C(2, 2, 4;0', v')
M, m, n, p, , v m', n', p ', v' 6&5'

x Y4'"(6)+ Y4
+" (6') Y", '"(6)* Y)4

'~ (6') C(2, L, 3 —L; m, M) C(2, I,, 3 —I; m', M) [n(2, 3 —I, L)]o

xC(2, 3 —L) I,; p) M+ m) C(2, 3 —L, L; p', M+ m')

X& 7'I '"(Jo) Vo(Jo) q o(JI) [Vf, (Jo) Vo (Jg)) V o (Jo )])) (Bl1)
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We take the quantization axis along 5, so that p, + v= m+n= 0 and m+ p, = m + p, . Thus, we obtain

Tz=(Ivl') (707z) (9/4v) [o&(2, I,, 3 —L) o(2, 3 —L, L)] x Z Z C(2, 2, 4;m, —m) C(2, 2, 4; m+o; n')
M, m, n, e 6H~

xY4' ' (6') Y4
" (6') C(2, L, 3 —L; m, M) C(2, I, 3 —L; m+o, M) C(2, 3 —L& L; —m& m+M)

x C(2, 3 —L, L; —m —o, M+m+o)(&z, (Jo) 7 z(Jo) )„(-1) (5/8w), (B12)

(a13)
I

where

where we have set m' = m+ o.
Throughout this section we shall find it conven-

ient to use the approximation

2 (I —& I ) I
Y4(6') I'

= ~/4v —
I Y4(O) I'= (»- 9~ 0)/4v,

f

where z =12 is the number of nearest neighbors.
After some manipulations we find

T =(1' 7't &„QI' (98000) {@(2L+1) (7 —2L)

—[3(2L+ l)Sz, /(7 —2L)]], (B14)

(B15)Z C(2, 2, 4; m, —m)' C(2, 2, 4; n, —n)' C(2, L, 3 —L; —n, M)' C(2, L
I 3 —L; m, M)'

n, m, M

and Sz assumes the values given in Eq. (6. 25).
Next we construct T~ using Eq. (B9) for Oz, (6,6'):

T,
'= 2x(1 vi')' (70v)'[ o(2, L, 3—L)o.(2, 3 —L, L)]' p Z Z C(2, 2, 4;m, n) C(2, 2, 4; p, v)

m, n, t, v, M m', n', ~', & 645'

&& C(2, 2, 4; m', n'! C(2, 2, 4; iz ', v') C(2, L, 3 —L; m, M) C(2, L, 3 —L; m', M) C(2, 3 —L; V, , M+ m)

&& C(2, 3 —L, L lz' M+ m') Y4'"(6)*Y~4'"(6')* Y","~(6)

xY' ' (6')« ~'&-«l(i'l)'&-«l(& )'&. & .„
After a calculation similar to that for T2 we find
that

Ts=(&z&z& x I (19600) (~q~~(2L+1) (7 —2L) —[(7 —2L)Sqz l(2L+ I)]] ~

(B16)

(B17)

To evaluate T4 we start from the expression

[[XM&,X06], v'z(JO)]= —(pvi ) (70@) Q C(2, 2, 4; m, n) C(2, 2, 4; p, , v) Y4'"(6')* Y4'"(6)*n(2, 2, 1) n(L, 1, L)
m, n, p, v

&& C(2, 2, 1; m, V, ) C(L, 1& L; M, m+ p) &I'z(J6. )7z(J5) 9'~' '"(Jo), (a18)
which can be obtained from Eqs. (2.6) and (2. 9). Inserting this expression into Eq. (6. 23b) we find that

T4 = ——,x (Izzl') (70m)2 (5/8v)2( V'z, 7't~) „P P C(2, 2, 4; m, n) C(2, 2, 4; V, , v) C(2, 2, 4; m+ o, n)
M, m, n, p, v, e 685'

XC(2, 2, 4; p, —o, v) Y4 (6')* Y4'" (6') Y""(6)+Y '" '(6)[n(2, 2, 1) zz(L, 1, L)] C(2, 2, 1; m, p)

x C(2, 2, 1;m+ o, p, —o) C(L, 1, L; M, m+ iz)~. (B19)

After simplification this may be written as

T = —(& &~& x 1 (2L+1) (2L —l)~8(36 —25T),
(a2o)

where

T = Z, C(2, 2, 4; m. —m) C(2, 2, 4; V, , —p) ~

m, v,

x C(2, 2, 4;m, p) .
Numerical evaluation yields T =,7, , so that

(B21)

T = —7000(& 1' )„x I' (2L+1) (2L —1). (B22)

Finally, using the expression for Pz, (6, 6 + 6 )
given in Eq. (Blo) we write T, in the form

T5=(~ vt") (70&) Z Z Q C(2, 2, 4; m, n ) C(2, 2, 4; g, v) C(2, 2, 4; m, n) C(2, 2, 4; V, ', v')
Mfmpn ~ gfv m ~ n fg ~ v 5~5

x C(2, 2, 1; v, n) C(2, 2, 1; v, n ) C(2, L, 3 —L; m, M) C(2, L, 3 —L; m, M) [o(2, 2, 1) o(2, L, 3 —L) ]

&&Y "(6)*Y, ""'(6)Y,"'"(&')*Y '"'(6')&&, ,r,',&.r, ~ (I/») & „,. .. n. , (5/») . (B23)
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« {3cos'8~ —I) '&&& =I,
so that in all,

(ce)

M ' =~K, d(PI') x(1 —x) . (C6)

The term in Eq. (3.21) in A~1 is denoted by Mp'.
We have from Eq. (3.21) the analog of Eq. (CS):

MP'=32(+5dP'r') (( Z (Scos'8g-1)
6, f, It; J=l

x (3 cos'8 p —1) (3 cos'8, —I)'Z'„, (fto /r)')&, .
(cv}

To take the alloy average we now include the prob-
ability factox

f3('5p '5
p
I ) x +x (1 x) (65 8 + Ape p+ 4p p)

+x(1 —x) (1 —2x) ~; -„~;,. (Ce)

%hen simplified, this expression becomes

r, = 3920x'r'( &,~,'&„(36—25r),
so that

T, = 12600x'r'( f',v', )

The results of this section are suxnmarized in Eq.
(e. 24).

APPENDIX C: EVALUATION OF Jt/J4(T)

In this appendix we evaluate the leading terms
in the high-temperatuxe expansion for M4. %e have
alx eady calculated the temperatux'e-independent
terms in Eq. (3.22) due to intermolecular interac-
tions. I et us now evaluate those terms which in-
volve A, and which are thus temperature dependent.

First we consider the term linear in A& and de-
note its contribution to M4 as M',". We have"

M,'" = (-,'((X))) 'Pd((ZlA()BO, (XO ——,'Xo)XP»„.
(cl)

From Eqs. {S.5) and (S.34) we see that to lowest or-
dex' in pI

AD= fll p r~ Z (3 cos 85 —1) . (C2)
J6 1

Thus, Eq. (Cl) becomes

M,'"=','dp'r'(& -Z (3«s'8, -1)&OPl»,.
5, I,J=1

(C3)

Again the alloy average is taken by including the

factor f,(5, r). Using Eq. (3.36) and also Eq. (3.5a)

for Bo, we find

Z' d{pr)'x(1-x)«ZI(Scos'8g-1}')) .
(c4)

Here and throughout this section we shall for con-
venience renormalize all interactions identically
by replacing Ko by K«. Since the effect of nearest
neighbors is dominant, this approximation is a
good one. It is readily verified that

Using Eq. (3.36) we can eliminate most of the

ter ms:

M,'" = 32x(1 -x) (pe„,dp'r')'

„(( P(Scos'8; —1)'(Scos'8 —1)' (R, /r)'
6'

+ (I -2x)Z (3 cos'8; -1)')),. (C9)

The second term inside the powder average is
simple, cf. Eq. (C5). The first term is rather
complicated. %henthe sum over r is restricted to
nearest neighbors, the exact result is obtained after
some manipulations as

« [Z'; {3cos'8, —1)2]2))~= 92.e. (C10)

Howevex, a sufficient approximation for our pur-
poses is to replace each term by its average:

(& (3 cos'86 —1)' (3 cos'8-„—I)' »~

=(( (3cos'8; —I)'&)~ (((3cos 8,". —1) &&~= (~+)',

{cll)
which then gives 92. 16 instead of 92.6 in Eq. (C10).
%e shall make use of these types of approximations
without comment wherever it is convenient. Thus,
Eq. (C9) is

M4
' ——364x(1 —x) (p~d K,ll p r )

x[lllxS, +La(I - a )]. (c12)

This term can be written in another form within the
approximation of Eq. (Cll):

MP'= 32d'« —,'AOXO}&„(( Z 8021,»~ . (C13)
P, Jx ~1

But these quantities are exactly expressible in
terms of M~(T) and Mz(~}:

MP'=F1[M, (r}-M,{ )]M,( ) .

%e shall find this formula very useful, because it
will enable us to avoid some of the uncertainties as
associated with truncating the high-temperature
expansion.

Filially we collsldel' the term ill A ~ 111 Eq. (3.22)
which we denote M4 '. Using Eq. (C2) we write
this term as
M414l =+~(ldp'r')4 &( Z (3cos28, —1) (Scos'8& —1)

fgkl & J-"1

x (3 cos'8~ —1) (3 cos~8, —1}&&~, , (C15)

the sums being restricted to (8= 1}molecules. The
powder average is taken by including the probability
factor
f4(i, j, 0, I) = x + x3(1 —x) (b;~+ &;g+ r;, + &g~+ n.q, + &l,l )

+x (1 —x) (1 —2x)

~ (r' gr'ga+r'lgr~l+&*anai+~ga~al}

+x (1 —x) (b, l~bq, + 6l n.~1+ b, llb~q)

+x(1- x)[1—ex(1-x)]~„~,„n„,. (Cle)
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APPENDIX D: CALCULATION OF%2 IN D2 ASSUMING
ONLY EVEN-J MOLECULES RESONATE

In this Appendix we evaluate the second moment
assuming that only the nuclear spins of the even-J
molecules take part in the resonance. To imple-
ment this assumption we revise the definition of
D).'

which gives, for instance,

I0=~0 (1 —x) . (D2)

To calculate Mt"" we consider the (I=1) nuclear
spins as being of a different species because their
Pake splittings are large compared to the dipolar
widths, at least at temperatures below 15 K, say.
We can thus use the formula for "unlike" spins
given by Abragam. Here the unlike spins have
the sa,me gyromagnetic ratios so we obtain

~,""'=[3(1—x)+—,', x][12','„+(S,—12)ic',] (DSa)

= k(45- SVx) [12''.„+(S, 12)Z',]. (D—Sb)

This result is actually not so very different from
that obtained when all nuclear spins resonate, Eq.
(4. 5).

A more significant difference with the previous
case will occur for M2"'". Here we wish to evalu-
ate

M0 =
0 7T(5do 2dodg + Sd)))Z) l ( F0((o)))yye0 l

(D4)

This result can be obtained from Eq. (4. 11) by
noting that the odd-J term is deleted, and one must
replace 5 —3x by 5 —5z to take account of the dif-
ference in Jo. To evaluate this expression it is
necessary to calculate the deformation of the (J'=0)
ground state in order to get a, nonzero result for
the summation.

We shall perform this calculation assuming that
such a deformation is simply due to the off-diagonal
(in Z) terms in the EQQ interaction, which, for
such work, must clearly be taken in the form given
in Eq. (2. 1) or (2. 3). Using second-order pertur-
bation theory, we find

Again owing to Eq. {3.38) only a few terms survive:

mP) = ~(PdP'I"')'x(1 —x) (( Sx(1 —x)

x [Pg (3 cos'e; —1)0]'+[1 —8x(1 —x)]
x Zg (3 cos'eg —1)'»~. (clv)

We obta, in a numerical evaluation of this result us-
ing Eq. (C5) and (Clo):

1lf~~ '=(dP I' ) x(1 —x) [1VV+1913x(l —x)]. (C18)

This completes our analysis of M4 at high temper-
atures.

5d2= 5'~ —2d„d„+3d~~ .

Vfe now substitute Eq. (3.34) and use the unitarity
of the 0 matrices to write

25d I"~)ntl'0 Vo
p « p D(0) { )4

548 66 6 6 l l 'J'"1

xC(2, 2, 4;I, —l) C(2, 2, 4;l', —l') (-1)"'
xy0(5))g y.' {5));)). (D

We now must include the probability factor

f4(5, 5+ 5), 5', 5'+ 5))

that the molecules at 5, 5', 5+5„and 5+ 5', have
J =1 when the origin is occupied by an even-8
molecule. For a random alloy

f (a, b, c, d)

= x + x (1 —x) (b ~ + b M + b~~+ b,0~)

x (&00+ ))00) x0(l 2x) S00)),00

+x'(I-x)'(S„~ +a,„a„)
uc 00 a0 50 be 00 ae 00)

—x'(1 —x) (1 —2x) S„S„S„, (Dlo)

&
y'0" (0)0)-„&

=-—Z([(oolr,"(~0)„l2m)&2mlx-loo)
60m

+(oolX. l2 )(2ml I;"{,)-„loo) ]), (D5)

where the quantum numbers are J and m~ for the
even-J molecule at the origin, and the thermody-
namic average is over the orientations of all other
molecules. The sum over 5 is restricted to (8= 1)
molecules for reasons which mill become clear in
a moment. Hence,

& y0 '(0)0)„-& = —(I/3D) & D)")(X;0)'

x&(&00II'l(~0);I2m&&2mlgc0gl«&]&. , (D8)

or, using Eq. (2. 3), we write

( v,"(0),)-„& = —(I/sa)Z D,','), ()f-„-)*I-~vol',
6, l

x C(2, 2, 4; I, —l) (- 1)' ( I,"(0)g)g )r.
(Dv)

Because they are less oriented, even-4 molecules
make less of a, contribution to the summation, and
hence are omitted. Use of this result in Eq. (D4)

yields
M""'=v(d/8)' Z Vo (+I' )' D'0' (){--)~

5 6, l l, l '

x D)~0)), (X0g, ) C(2, 2, 4; l, —l) C(2, 2, 4; l', —l')

x (-1)'"'
& I'0(~g)g & r & ya {~g )0 &r
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when a, c, b —a, and d —c are nearest-neighbor
vectors. According to Eq. (3.36) free sums over
5, and 5,' vanish, so that the only nonzero terms are
those arising from the following terms in f4:

f,- x'{1—x) aa.g p g. —x'(1 —2x) b,; ~ a(), ()

C~= 32,
C2=0,

Cs= 144,

C4= 32,

C5 = Cs= —16,

C, =32.

(O13a)

(Olsb)

(OISc)

(olM)

(O13e)

(olsf)

To see the meaning of our results we give a numer-
ical value of Ma" "for T=6 K with

I", =0. VO em" =D. 83I'

M'" =0.012(kHz) for x=0. 6

At least this result is of the correct order of mag-
nitude, as contrasted to the very much larger
values obtained when the (I= 1) molecules are not
excluded from the resonance. Hence, our explana-
tion does seem to give a reasonable account of the
experimental data.

APPENDIX E: CONTRIBUTION OF NEIGHBORING MOLE-
CULKS TO THE ELECTRIC FIELD GRADIENT

In this appendix we evaluate the shift in the Pake
splitting of (Z=l) O2 molecules due to the electric
fieM gradient (EFG) present in the ordered cubic
structure. In place of Eq. (2. 15) we now write the
nuclear-spin Hamiltonian for a molecule as

= —aI —bJ' —cI J
+ (p/f )2 ( y-8) [(I (1& . I &2& 3{I (1& . n )(1(~ & ~ n) ]

82/'
+.q„ , ;[3(i('& n)" 3(V'& n)' —2f(f.1)]

D

+x (1 —x) bg () brq (&r +x (1 —x) 66 er,()r bm~

-x'(1-x)~6;,,g, ~,-.,-. -x'(l-x)~5, ;;, ~a. .g,

—x'(1 —x) (1 —2x) s", ;.a6, 6. b; g, . (Oll)

We write ~,'""as a sum of terms each one corre-
sponding in order to each of the terms in Eq. (Oll):

M',""= VO [C,x(1 —x) —C,x(1 - 2x)
25dp~l"Sx

108B

+ {C~+C4) (1 —x) —(C5+ Cs) x(l —x)

—C,(l —x) (1 —2x)] . (o12)

We evaluated the constants C; numerically and
found the following results:

+eq„; [3(i"& n, )'+3(i"' n,)'-2i(a+I)].
(Zl)

Here V,(r) is the electrostatic potential due to the
quadrupole moments of other molecules, no denotes
the equilibrium orientation (along one of the [111]
directions) of the molecule in question, and the z
axis coincides with n . It may be shown' that in

l

the quantum-mechanical ground state we have
approximately

3(i"' n)' —2= ~ [3(i"' n )' —2] (z2)

In that ease we may write the last two terms in Eq.
(El) as

eQ@ 5
p' + 3'

&&[3(i"' n )'+ 3(i'" n )' 4] (zs)

Together with Eq. (2. 16d) this result shows that we
may include the effect of the EFG of other mole-
eules by using an effective value of d,

Here we have used the fact that V V,(r) = 0, and also
that the KFG has symmetry about the equilibrium
axis. We write Eq. (E6) as

V= — ' —
~ p{r)F'(r)- r dr,»'V, 4~ "'
t

28@ 5 2 flo (E&)

where the outer subscript indicates the quantization
axis. Using the transformation properties of spheri-
cal harmonics, we may write

)'= ~,' I",(ir).„,fr(r)l+, (r) rrr)r, -„(za)

where n specifies the orientation of the molecule.
We thus obtain the result

V=- ' qe[3(n n)'-1].1 8'V,
(z9)

Using the operator equivalents, we write the quan-

2 8Ve 8V
detf e@N

5 8 2 8 2
80 8

Let us now evaluate the EFG, t&'V, /Sx', for the
ordered phase. We do this by calculating the libron
energy via a semiclassical method whereby the re-
sult is expressed in terms of the EFG. By equating
the libron energy to its known' ' ' ' value, we
evaluate the EFG in terms of I'. We start by writing
the electrostic energy V a.s

V= f V,(r) p(r) dr, (E6)

where the integration is over the charge distribu-
tion p(r) of the molecule. Expanding V,(&) about
the center of gravity of the molecule, we obtain

(z6
88
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turn mechanical Hamiltonian X as

X= ——,' Qe(3J,' —2) .1 8 V,
10 ez (E10)

Thus, from this calculation we obtain the libron en-
ergy 191"as

82/'
191'=3C(Z, =+1) -R(Z, =O) =- ~0 Qe — 2', (Ell)

we find"

d, qq =0. 99d. (E14)

It is easy to see that this 1% correction is in fact
proportional to the concentration x of the (J=1)
molecules. Hence, we revise slightly Eq. (7. 3b)
of I to read

Dp= 75. 72 $(1+0.066x —0. 02x ) for D2. (E15)

so that

& V, 190 I'
8z 3 Qe

Using Eq. (E3) we find d„, to be

(E12)

(E13)

We have also included in this result the factor $
which incorporates the additional zero-point motion

[$ = 0. 98, see Eq. (5. 37) in I] due to libron-phonon
interactions.

For H3 there are obviously no EFG corrections,
so that including the effect of $, we obtain from Eq.
(7. 3a) of I

Taking Q„= 2. 74x10" crn' and Q=1. ,3Sx10 "cm', Av = 173.0$(1+0.032x —0. 02x ') for H2. (E16)
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