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The density of states of a random array of attractive potentials is studied in the impurity-
band regime by double-time Green's functions. Statistical correlations are built in at the same
level as the quantum-mechanical correlations, and a detailed treatment of pair effects is
given. The method is shown to be equivalent to the self-propagator techniques of Des Cloi.zeal.

I. INTRODUCTION

Recently there has been considerable effort ex-
pended in trying to understand the electron density
of states due to a random array of attractive poten-
tials. In one dimension, particularly, we have ob-
tained a rather complete physical picture for the
entire range of impurity concentrations. ' In three
dimensions our understanding, needless to say, is
not so complete. '

A particularly satisfactory diagrammatic scheme
for the low-density regime was introduced a few
years ago by Des Cloizeaux. Using a novel dia-
grammatic expansion in which he introduces the
idea of a "self-propagator, "he obtained a cluster-
like expansion of the Green's function. Direct com-
parison between the density of states obtained by
this method in one dimension and a numerically
exact density of states revealed excellent agreement
for energies greater than four times the binding en-
ergy ot the impurity.

It is the aim of this paper to present an alternate.
approach to this problem which we believe is basic-
ally equivalent to the "self-propagator" technique
and which we hope will help elucidate it.

II. GREEN'8 FUNCTION

The Hamiltonian we study is

Ã=P &-a'-a- —VP a'-n;p(k —k')
k k k

k k, k'

where a", (a») creates (destroys) an electron with en-

ergy c- and momentum k and

p(q)=(&/V) Z;e ""' (2)

where R; is the position of impurity i and V is the
volume.

Introducing the double-time Green's function

8»» -={&o»;n:))

one finds that it satisfies
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We need to know the last term in (4) so we write
our equation for xt
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1 ~ exp[if, (R„—R,)]x —ML"
1g QP —6»

lg

(7a)
and

E((d) = (1/L) Z„ 1/(« —e„)= 1/2i«'' (6)

1 Z exp( —ikR; + ikR; )E(«)

x exp(i«'~'l R( R l) (7b)

%'e have specialized to one dimension so that we
can make contact with the work of Des Cloizeaux.
As can be seen, generalization to three dimensions
involves no major difficulties.

Rewriting (7b) we obtain

[1+vE(«)] 2 P(k, f„«)8) „. »( ' '"} vip (k f .«)g), ,
'1

Continuing in this fashion we can obtain a hierarchy of equations

[1+vE(«}]~ pn(k~fi~«)8 i, )
= —v Z p„g(kgfg,'«)9 ),),

p„(k,k'; «)
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with

(10}

p„(k, k'; «}= E"(«)—
„exp( ikR;, +ik-'R; }exp[i«"'(lR; —R( l+ ~ + lR, —R, l)]

One can obtain a formal perturbation theoretic solution to (10) for G», («):

()»( )=
q
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(12)

where

f(«) = —v/[1+ vE(«)]

is the impurity i matrix.

(13)

n+I,

(p„(k, k; «)) =,
((d —6'g)

(p, (k, k; «)) = c,
(n= 1, . . .),

(17)

III. AVERAGING

The problem now is to calculate the configuration-
averaged Green's function (8»(«)). This means we
need to know ( p„(k, k; «)) for all n.

Rearranging (11) one finds

E "(«)p„(k,k;«) = p(1, 2)p(2, 3) p(n, n+1), (14)

where

p(l, 2) = exp( —ikR, ) exp(i«'
l R, —R; l

) exp(ikR; )

(15)

and we have suppressed the (k, «) indexes as well as
the sums on (1,2, . . . , n+ 1). The simplest approxi-
mation one can make for (p„(k, k;(v)) is

( p„(k, k; «)) = E"(n)( p(l, 2))( p(2, 3)&

x (p(3 4)) ~ ~ ~ (p(n, n+ 1))

This is equivalent to assuming there is no interfer-
ence between scattering events on different sites
and leads to

and

(8»(«)) =—1
2w u —a', —e((w))

' (16)

pz(k, k;«) =
&g«2~ &2& &3

p(1, 2)p(2, 3)

This is an old result which has been discussed
adequately elsewhere. 4 It predicts an impurity band,
but of distinctly the wrong shape.

The next simplest approximation we can make for
(p„(k, k; «)) can be motivated as follows: The aver-
aging procedure in (16) would be exact if all the in-
dixes (1, . . .n) where restricted to be unequal rather
than only unequal in pairs, e. g. , 1+2, 243, etc.
Now the fact that we built into our derivation of
8». («) the pairwise inequality bought us, so to
speak, t-matrix scattering instead of bare potential
scattering. If we could build into p„ the ternary re-
strictions (1 42, 243, 341); (243, 3 44, 442);
etc. , we would have an adequate treatment of pair
effects. This can be effected without much effort.
Consider first,
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p(1, 2)p(2, 3) + Z p(l, 2)p(2, 1)
'1~ '2

(19)

where (i, Wi2 Wi3) means the inequality holds among
all pairs. Then,

( p2& = ( p(1, 2))(p(2, 3))+ ( p(1, 2)p(2, 1)& . (20)

For p~(k, k;td) we write

c2 C c4 c'

+ gi

TABLE I. Coefficients ( pn) in the expansion of the
average Green's function in powers of the one-impurity
t matrix, are decomposed in powers of the concentration.
The sums are then performed row by row. See the text
for the definition of g„.

p, (k, k;«) = Z p(1, 2)p(2, 3)p(3, 4)
(ii x i2X i 3 ); (i2 N i34 i4 )

+ Z p(1, 2)p(2, 1)p(1, 4)
(iiW i24 i4)

(p4) = g4

&p5) = g5

+ 2gig3+g2g2

+ 2gig4+ 2g283

+g(

+3g2g~

+3' + 3g$1

+gi

+ 4gig2 +gi

(iiC i20 i3)
p(1, 2)p(2, 3)p(3, 2)

+ Q p(1, 2)p(2, 1)p(1, 2) . (2l)

Then averaging

& p3&=(p(1, 2))(p(2, 3)&(p(3, 4))

+(p(l, 2)p(2, 1)&(p(1,4)&

+ & p(1, 2)& (p(2, 3)p(3, 2))

+ & p(1, 2)p(2, 1)p(1, 2)&. (22)

As can be seen from above, our scheme is to
build in terniary restrictions and with those built in
to factorize our averages. For p2 this procedure is
sufficient to yield the exactly averaged p2 while for
p3 we obtain an incorrectly averaged first term in

(21) because we have failed to build in the restric-
tion i, 4i4. Notice that if we had built this term in
we would have to add to p, the term p(1, 2)p(2, 3)p(3, 1),
which represents the first contribution to three
impurity scattering events.

The errors we make with the above factorization
scheme in higher-order p's correspond to our neg-
lect of three and more impurity clustering effects.

Defining g„as
g„(v, k) = (p(1, 2)p(2, 1)p(1, 2) ~ ~ )F"(«) (n factors)

Z. t"&p.& .
n=0

Referring again to Table I, this can be written in
the pair approximation as

CO 00 00 2

2 t"(p„&=c+c 7, t "g„+c 2 t "g„+ ~

n=0 r=1 r=1

CO n

+C ~t g + ~ ~ ~
n+1

r=1

I — 2 t "8,
)r=i

(24)

with
t = t(«)F(«) (25)

Using (12) a.nd (24)

& 8„(«)&= (2v) ' (« —e, )-'+ (« —e, ) 'ct(d-

of the simple combinative problem suggested by
Table I convinces one that the nth-row sum is just
the nth power of the first-row sum. What we wish
to calculate is, of course,

=R„(«,k)F"(.) (23) (26)

we show the result of calculating ( p„& for n= 1-5
in Table I. Each succeeding row in the table cor-
responds to a higher value of concentration c. Ex-
amination of the table row by row suggests that the
sum of the terms in the second row is just the
square of the terms in the first row. Examination

Now

Z t "R„=B(k, «) + A («)
r=1

where

(27)

1 exp(2i«'"Ix —x 'I)
(«) = m 2~t = f dxdx 1 —t 1 —taexp(2i«ii2lx x'

l

(23)
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B(k &g) —p ff f ~&+& —— d+d+~1 p exp[its" Ix -x'I —&k(x x-')]

1 —f 'exp(2i&u"'Ix —x I)
(29)

The integrals in (28) for A(&u) may be performed
explicitly, yielding

00 , i/2

B(k, a) = 2i P t &2"' &
+

(2n+1) ~u —k
(31)

Comparing (8»(v)) given in (28) using (30) and
(31) with a similar expression of Des Cloizeaux
shows that the two approaches yield identical results
in this approximation.

An explicit comparison is made in Des Cloizeaux's
paper with the density of states calculated numer-
ically and that calculated from (27) and he found

g(&d) = (i&d' )-'(in~& ~+ in&d' —2i+ 21nv' —i)

(30)

where we have used (8) and (13).
While a formal expansion for B(k, &u) can be ob-

tained by expanding the denominator of the integrand
in (29) and then performing the integration:

rather good quantitative agreement between the shapes
of impurity band calculated both ways.

A systematic expansion of the t matrix building
in higher and higher statistical correlations is in
principle possible. These terniary and higher clus-
ters enables one to calculate the tails of the im-
purity band below the two-impurity electron binding
energy at which the present density of state cuts
off. The main feature of this expansion is that the
statistical correlations are treated at the same
level as the quantum-mechanical correlations. This
means building in binary statistical correlations at
the same time treating exactly quantum-mechanical
electron-impurity pair interactions. In the work
on Des Cloizeaux this procedure is accomplished by
means of his articulation points, which separate
statistically events before and after a particular
cluster expansion by requiring that all impurities
the electron meets before an articulation point is
different from those it meets afterwards.
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It is shown that the Hall effect for hopping transport may be anomalous in sign, just as it
may be for coherent transport in narrow bands. Anthracene is treated as a specific example.

It has been recognized for some time that charge
carrier transport in semiconductors with narrow
bands (with widths of order kT or less) may give
rise to an anomalous (negative) Hall effect. ' ' In
such a solid, the carriers are deflected in a direc-
tion opposite to the I orentz force. For this to hap-
pen, the band must be not only narrow but also un-
symmetrical. In a narrow band, all levels are al-
most equally populated, so that states with negative
effective mass contribute on almost equal terms
with states with positive effective mass. In the Hall

effect, each effective-mass contribution is weighted
according to the velocity of the carrier in that state,
which depends on the band structure. If the band is
unsymmetrical, the various contributions receive
unequal weights and the negative effective-mass con-
tributions may dominate, leading to a negative Hall
effect.

It is also well known that for sufficiently narrow
bands hopping, i. e. , random incoherent transfer to
neighboring sites, may be a more appropriate de-
scription of transport than coherent motion in a band,


