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duction band.
The authors feel that the study of low-tempera-

ture luminescence and conductivity is demonstrated
to be a useful tool for studying irradiation-induced
defects in KBr. Further work at high dosages is
clear ly required.
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A general method is presented for calculating the static polarization and distortion near a
defect. It assumes that the lattice responds to the average, but consistently chosen, charge
distribution of the electrons associated with the defect, . and uses the shell model to describe
the lattice dynamic and dielectric properties of the host. The lattice is discrete, without
continuum approximations; there are no artificial restrictions on the range of the distortion,
and asymmetric distortions, as from the Jahn-Teller {JT)effect, are included. The varia-
tion of the electronic wave function as the lattice distorts may be included consistently even
in cases where there is mixing of nearby levels. The method is illustrated by a calculation
for the 2p excited state of the F center in KBr. It proves necessary to include the ion-size
terms in the interaction of the defect electron with the lattice. The results are sensitive to
the detailed model chosen for the lattice dynamics. However, certain features, such as the
outward motion of the nearest neighbors, the JT distortion, usually tetragonal, and the sub-
stantial energy lowering, typically 0.5 eV, are common to these models.

I. INTRODUCTION

One of the central problems in color-center the-
ory is the question of the polarization and distortion
of the host lattice, and the dependence of these on
the electronic state. Accurate calculations of tran-
sition energies and, more particularly, the Stokes
shift and bandwidths are very sensitive to the model

used. We shall show that these questions can be
dealt with systematically in the Hartree limit, in
which the lattice responds to the average, but con-
sistently calculated, charge distribution of the de-
fect electron, and using a model such as the shell
model to describe the lattice dynamics of the host.
The method can be used for many centers, including
the F center and the V~ center, and can be extended
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to predict the interaction between defects. We will
illustrate the method with calculations for the ex-
cited state of the E center in alkali halides.

Previously, two classes of approach have been
particularly important. On the one hand there are
continuum models which work in terms of the ma-
croscopic dielectric constants. Although such mod-
els can be suggestive, they are not adequate. Their
usual justification comes from eff ective- mass the-
ory, and this is well outside its usual range of va-
lidity for centers such as the F center. Further, in
most alkali halides the macroscopic dielectric con-
stants are mainly determined by the anions, where-
as the F-center electron mainly intera. cts with its
nearest-neighbor cations. Also, lattice distortion
can only be treated by taking over results from
discrete models, such as the Mott-Littleton radius.
In addition, it is not clear how one should treat
asymmetric distortions, such as those from Jahn-
Teller (JT) instabilities. At the other extreme
from continuum models there are the "point-polar-
izable-ion" models, where polarization is included
by using the ionic polarizabilities. This permits a
better solution of the relaxation problem, but again
there are difficulties. In particular, this model of
the lattice does not give an adequate picture of the
lattice dynamics or the dielectric properties. This
is shown by the failure of the Szigeti relations, '
which relate the elastic and dielectric properties.
Further, the usual procedure allows only a small
number of atoms to move, and this may be unduly
restrictive.

In the present paper the method described re-
moves a number of the difficulties. It is an atomic
model and does not make a continuum approximation
for either the polarization or the strain. Cases in-
volving the JT effect can be treated; this is neces-
sary in our discussion of the 2p excited state of the
F center. Further, the lattice relaxation and polar-
ization can be calculated using the well-known "shell
model. " This model has been extremely successful
in lattice dynamics, and ensures that the Szigeti re-
lations are satisfied; the shell model is undoubtedly
a, great improvement on the point-polarizable-ion
models. In addition, the present approach does
not restrict the distortion to a small number of at-
oms near the defect, and it can be extended to cases
where the center has a net charge.

The actual calculation can be divided rather
roughly into two parts. The first is the calculation
of the wave function of the defect electron for the
undistorted unpolarized host lattice. Such calcula-
tions are usually based on variational methods, and

may be technically difficult. However, they are
essential in any color-center calculation and, as
they have been discussed in detail elsewhere,
they will not be treated in detail here. At the pres-

ent time, the best calculations are based on Har-
tree-Fock methods or on developments of the point-
ion models to include ion-size effects and other cor-
rections. The second part, the calculation of the
distortion and polarization explicitly, is done by an
extension of the method of lattice statics. ' In its
simplest form it is recognized that the lattice defect
introduces extra terms in the total energy. These
depend on the displacements and dipole moments,
and the appropriate derivatives of this energy are
forces and fields. The method solves the equations
of equilibrium under these forces, using a Fourier
transform to separate the coupled equations into
independent equations, one for each normal lattice
mode. This transform corresponds exactly to that
used in conventional lattice dynamics and, as a re-
sult, the dynamical matrix of the host lattice is a
key quantity. As the lattice distorts, the variation-
al parameters describing the defect-electron wave
function should change. This change can be calcu-
lated without repeated iteration of the variational
calculation. This is most readily done by use of
a "variation-perturbation" method which can be
built in to the solution of the equilibrium equations.

The method is capable of treating the general
problem of the static distortion and polarization
near a defect. Since this is a static model, the en-
ergies are to be interpreted as thermodynamic in-
ternal energies. Also, considerable caution must
be used in calculating observable properties when
the wave functions and energies are very sensitive
to the displacements. In particular, the Condon
approximation in its usual form may not be valid.
In this article, we illustrate the method by discuss-
ing the JT effect in the 2P state of the F center.
The essential theory will be developed to discuss
general cases in terms of the shell model, and ex-
plicit calculations will be given for this case and
for the simpler rigid-ion model. More detailed
discussions of both this system and others will ap-
pear later.

II. METHOD OF LATTICE STATICS

The displacements of the atoms in the crystal
lattice will be written x. In the point-ion model
there are three Cartesian displacements per ion;
in the shell model there are six: three for the core
and three for the shell. The electronic dipole mo-
ment of a given ion can be written in terms of the
shell charge and the relative displacements of the
core and shell.

The energy of the distorted perfect lattice E~
with respect to the undistorted energy EJ, is
quadratic in the displacements:

1El Eq0 —2x A. x

where A. gives the complete harmonic response of
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the lattice. %'hen the defect is introduced there is
an extra term

of the lattice;

W {~, x) = r(~)+ V(~, x) - V,(x), {2.2)
—[W,(y„o)-F,(X,) x+-, x a xj =O. (2. 4)

W(~, x)= W,(~„0)-F,(~,) x

+ (higher-order tel ms) . (2. 3)

Usually Eo and the higher-order terms are of
short range; their components which refer to ions
far from the defect are generally small. This is
not true when the defect has a net charge, since the
Coulomb forces are long ranged. However, this
case is still tractable, as we mention later. It is
often possible to expand the higher-order terms in
the form

higher-order terms = x E x+ (X —Xo)A x

where ) is a variational parameter in the defect-
electron wave function. T is the defect-electron
kinetic energy, which depends only implicitly on
the lattice configuration, and V is the defect-elec-
tron-lattice interaction. V~ accounts for the
change in lattice energy when, for example, an
anion is removed in forming an E center. Any lo-
cal changes in force constant are included in V~,
and may depend implicitly on the defect-electron
wave function. We emphasize, however, that such
changes should be introduced using a proper micro-
scopic model, rather than from a phenomenology
w'ith arbitrary parameters.

The extra term W(A. , x) can be expanded in the
form

This represents a set of coupled equations, since
the various components of x are connected by A.
Formally, the solutions of (2. 4) can be written as

0x= A. 'E

(2. 7)

and give the linear response of the host to the pres-
ence of the defect. In practice, however, inver-
sion of A. is usually intractable. Instead, we sepa-
rate the equations by the Fourier transform used
in lattice dynamics. This also simplifies the treat-
ment of any long-range Coulomb interactions in A.

or in Eo; it is these terms which make the direct
inversion of A particularly difficult. The separated
equations for each wave vector k have the form

—G(k)+D(k). q(k) =0. (2. 5)

Q is the Fourier transform of the displacements:

q(k) = P, x(I)e-*'"'~,

x(I) = {I/A) P- q(k)e'"'r, (2. 6)

in which I labels the ion at r, and G(k) is the trans-
form of the forces E,:

G(k) = Z, F,(I)e'""~,

F,(I) = (I/A ) Z; G(k)e"'~ .
D (k) is the dynamical matrix of lattice dynamics,
and it is through D that the connection with models
such as the shell model is made,

+2A (X —Ao) +. (2. 3')
D(k) L +'lk'(P~ z~ ) g (2. 3)

This form assumes that the variational parameter
A. does not change much from its value Xo when
there is no distortion. The expansion (2. 3') allows
us to use a perturbation-variation method later on,
with a considerable simplification. However, such
an expansion in (X —Ao) is not necessary. If the
higher-order terms are strongly dependent on
(X —Xo), then the problem becomes more complex,
but is still soluble. Similarly, we can incorporate
anharmonic corrections, but only if these involve
just a small number of coordinates x. Cases where
(2. 3a) is not valid include "off-center" defects in

alkali halides, some models of the E-center excited
state which involve large changes in the defect-elec-
tron wave function, and, possibly, the V~ center.
For simplicity, we shall retain the expansion in

(A —Xo) in this section.

A. Linear Theory

The linear terms W —E x are treated separate-
ly from the higher-order terms. Thus, we start
by considering the equations for static equilibrium

In the shell model for alkali halides D is a 12 && 12
matrix. The eigenfrequencies of the perfect lattice
can be found from

det
~

(D(k)- m~'(k))
~

=O. (2. 9)

in which m is the (diagonal) mass matrix. The un-

coupled equations can be solved by matrix multipli-
cation

q(k)=+D '(k) G(k) (2. IO)

followed by Fourier-transforming Q to give x, using
(2. 6). The final result gives the linear response of

the lattice to the forces Eo and can be written as

x= o'Eo. (2. II)

Since (2. ll) is linear one can simply superimpose
the displacements from various separate contribu-
tions to Eo. We emphasize that Fo may have any

point symmetry at the defect, and need not have full

rotational symmetry, for example.
The actual matrix multiplication giving (2. IO),
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X= Xo —A x/A (2. i2')

When this equation is substituted into (2. 3) and
(2, 3a) we find tllat.

W= Wo- F x+ x F 'x- 2(x A) /A .
Thus, the forces are linear in x:

and transformation giving (2. 11), may be performed
in two ways. If the distortions near the defect are
wanted, as in calculations of transition energies,
they are carried out numerically at, say, 1000
points in the Brillouin zone. This corresponds to
treating a superlattice of defects with one defect
per 1000 sites. Greater accuracy can, of course,
be achieved by treating a larger number of k. If
the long-range distortion is needed, as in estimates
of the change in volume pex defect, then only the
wave vectors with (k( small are important, and the
manipulation ean be carr1ed out analytically by ex-
pansion in Ik l. In this regime, results of continu-
um elasticity and dielectric theory are regained,
although, of course, the cubic anisotropy of the lat-
tice is retained. The treatment of long-range
Coulomb interactions is made much easier by work-
ing in reciprocal space, as the Coulomb contribu-
tions to D and C can be calculated once and for all,
and used in calculations for a variety of different
defects.

The method we have described is essentially a
Green's-function method at zero frequency. It dif-
fers from such approaches in emphasis, rather
than principle. Most Green's-function methods
ignore changes in the mean displacements of the
lattice modes, at least in the harmonic approxima-
tion; our discussion concentrates on just these
changes in mean displacement. Further, we have
used a proper microscopic model throughout, and
do not introduce phenomenological parameters like
force- constant changes.

8. Higher-Order Terms

The higher-order terms are evaluated by a cal-
culation in real space, using the displacementS x(l)
rather than the Q(k). We shall exploit the fact that
few displacements x are large. The variational
condition which determines the defect-electron wave
function is, for given x,

SW(l, x)/ W = O.

Here, we are using an adiabatic approximation. It
is through (2. 12) that we recognize that the defect-
electron wave function changes as the lattice dis-
torts. We also assume that we need consider only
one variational parameter; generalization to several
parameters is straightforward but tedious, If we
may use the expression (2. 3') for the higher-order
terms the variational condition becomes

—8%'
=I'0+ p x. (2. iS)

The higher-order terms have led us to replace
Fo(&0) by F(&o, x); with the simple expansion (2. 3')
the corrections to Fo(X,) are simply linear in x.
The final values of the displacements can be found

by solving

F = E(XO, x) —= Fo+ p x
simultaneously with (2. 11)

@=Q ~ go

If we use (2. 13), the final distortions are

x =(1 o. ~ P-)
'

~ n E (2. 14)

and the new value of the variational parameter is

~=X -A (i ~P-)-' u F,/A'. (2. 15)

Similarly, the change in electronic and elastic en-
ergy can be obtained from Eqs. (2. 3), (2. 3'),
(2. 14), and (2. 15).

In practice these second-order terms can be
rendered fairly simple for two reasons. First,
only a very few of the x mill change by large
amounts. In the I' center the nearest-neighbor ra-
dial displacements are usually the only ones which
will alter appreciably. Then the P matrix may be
of low rank. Second, in both (2. 11) and (2. 13) the
x which are the Cartesian displacements of the
ions may be written in terms of symmetry-adapted
coordinates. In the I'" center, for example, these
symmetry-adapted coordinates mould usually be
the normal modes of the complex consisting of the
nearest neighbors of the vacancy. Later, we dis-
cuss the case in which only the totally symmetric
displacements of the nearest neighbors need to be
taken beyond the linear theory.

We have assumed that the displacements are nev-
er very large. If they are appreciable, the dis-
placements should be treated by considering the
crystal as a region I, near the defect, and as re-
gion II in which the higher-order terms are negli-
gible. In region I, direct solution of the equilibri-
um equations (2. 4) gives the x, and those in region
II can then be obtained by the methods discussed
earlier, However, any calculation to order x will
suffer loss of accuracy because the anharmonic
response of the perfect lattice is not so well known
as the harmonic properties given 5y the dynamical
matrix D. We emphasize that use of model poten-
tials, such as the Born-Mayer form, does not solve
the problem of anharmonieity in region I, but mere-
ly introduces extra, sometimes plausible, approxi-
mations. Later, we will also find that the harmonic
properties of the lattice, described by D, are often
not known in sufficient detail to permit accurate
prediction of defect properties.
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III. LATTICE DYNAMICS

Cii+ Aii Cia+ Ri2
M

Cyp+ gy2 C~y+ gyp
(3. 1)

where we assume nearest-neighbor repulsive for-
ces only. Each term in (3. 1) represents a sx3
matrix which we may write in terms of Keller-
mann'ss coefficients, '8 with units e'/2a',

I IC„(n, P)=-
0

I j
C~~(n, P) =+

0

(3. 2)

R»(n, n) =+ (A+ 2B),

The dynamical matrix D discussed in Sec. II de-
termines the dynamics of the perfect host lattice.
We discuss two models for D: Kellermann's "rig-
id-ion" model and the "shell model. "

The rigid-ion model ignores the polarization of
the lattice ions, and treats them as point ions in-
teracting by long-range Coulomb and short-range
repulsive forces, The parameters in the dynamical
matrix can be expressed in terms of the ionic
charge Z and elastic constant (usually the com-
pressibility 3/[c»+2c, s]) and the equilibrium lat-
tice parameter a. The matrix is 6x6 for alkali
halides, and has the form

R,8(n, n) = —jA cos(2vak ) + B[cos(2vaks )

+ cos(2vak, )jj .
Other elements are zero.

The shell model takes into account the polariza-
tion of the ions. The outer electrons of each ion
are treated as a shell which can move relative to
the core, giving a dipole moment. The shell mass
is assumed negligible. Arbitrary short-range for-
ces connect the shells to their cores and the shells
to neighboring shell. We usually shall assume
nearest-neighbor forces only. The repulsive in-
teraction is assumed to occur entirely between the
shells of the ions; we ignore the shell —other-core
and core-core interactions.

The parameters in the dynamical matrix can be
expressed in terms of those needed for the rigid-
ion model (Z, c», and a) together with the shell
charges (Y, i e ), Y i ei ) and the shell-core force
constants (k, , k ). These extra parameters Y, ,

F,k, , k, can be fitted from the residual ray fre-
quency vT p, the dielectric constants E'p and c„, and
the ionic polarizabilities n, , n . The equations
used in such a fit are given in the Appendix. Alter-
natively, the parameters can be obtained from lat-
tice dispersion data. The results do not always
agree well, and there are no simple criteria for
deciding between the various fits. This uncertainty
is made worse by the fact that the fits to lattice dy-
namic data are not unique.

IfwewriteZ, =X, +F, =ZandZ =X +F = —Z
for the various ionic, core, and shell charges, the
dynamical matrix has the form

(C„X,+k, )

Ds ~~
~

II 2I

2

~

~

I(c„x,x )

C~, X, F+ —k

CqqX, Y„

(c„x,x)
(Ciix +k )

(c„x F, )

(c„xY —k)

(Ciix, F, —k, )

(c„x Y. )

(C,~Y, +k, +R„)
(C,s Y. Y + R,8)

(C18X, Y )

(C„X.Y.—k(
(C,, (', (' R,,( )(C„Y +k +R„)

(3.3)

(Dcc Dsc)

(Dcs Bss )
(3. 4)

The k matrices are k, = k, T, where 1 is a 3x 3
unit matrix.

To improve accuracy it is helpful to change from
the four vector displacements per unit cell (two core
displacements and two shell displacements) to a
combination of these. We replace the shell dis-
placements x„by relative shell-core displace-
ments d, = x„-x„. These relative displacements
are proportional to the dipole moment of the ion.
if the dynamical matrix (3.3) is written schemati-
cally as

then the equilibrium equation is

(D- D-l (~.b
(Dcs Dss) k@s) (Gs j

(3. 5)

Writing q, = Q, —Q, the revised form is

((D„D„)D„) (q,) (G, '(t

((Dsc +D.s) D.s j ~qs j Psj
(3. 6)

In more detail, if Z, = —Z = 1, (3.3) is trans-
formed into
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(c„x,v. -a, ) c„x.vC,jX,
C,2X

Q.

Qg

—CqgX,

—C)~X„

(- c„v.+ ft„)
( —C„I" + 822)

{C11V+ + +11)

(C121" +821)

and this is the most convenient equilibrium equa-
tion to solve.

For future use we will need to know the response
of the lattice to various external forces. It is con-
venient to calculate the response to unit symme-
trized forces, rather than the inverse of the dy-
namical. matrix at many points in the Brillouinzone.
Thus, for a defect like the E center, we find the
displacements of near neighbors to the defect when
various unit forces are applied. The results are
components of the n matrix of Sec. II. We have
calculated the response to the following symmetric
forces: (i) totally symmetric (A„) forces on the
nearest neighbors, (ii) tetragonal symmetry (E, )
forces on the nearest neighbors, (iii) trigonal sym-
metry (T2 ) forces on the nearest neighbors, and

(iv) totally symmetric {A„)forces on the second
neighbors. In each case the responses to forces
on the cores and on the shells were calculated sepa-
rately. The displacements were found at a number
of sites near the defect.

These response functions do not depend on the
defect; they are simply properties of the lattice
dynamics of the host. Thus, the same response
functions can be used in treating a variety of de-
fects. The various response functions have also
been calculated for several models of the lattice
dynamics. These are the rigid-ion model, the
shell model derived from neutron data, and the
shell model derived from dielectric, infrared, and
elastic data.

In our numerical calculations we have used the
Kellermann mesh of 999 points in the Brillouin
zone. It is trivial, in principle, to use a finer
mesh, although this is at the expense of greater
computer time. There is no simple way of deciding
the number of points needed for given accuracy,
but we believe that the results to be described are
not very sensitive to the mesh.

IV. EVALUATION OF DEFECT TERMS

In this section we calculate the various contribu-
tions to the change in energy due to the defect,
V(A. , x). To be specific, we discuss the E center in
alkali halides. Our calculations will be described
in two stages. First, we discuss the contributions
to Eo, which enter in the linear theory, Second,
we discuss the various higher-order terms. In
both stages we mill treat both the point-ion model
for the defect-electron-host-lattice interaction
and in a model which allows for the detailed elec-

A. Calculation of the First-Order Terms

The first-order term is linear in the displace-
ments and contains E2= —8 V(X2, x)/-Bx. There are
three contributions to Eo from any given shell of
ions. First, there is a point-ion contribution be-
cause an anion has been replaced by a spread out
electronic charge distribution. In this term the
defect electron is assumed to interact with a lattice
of point ions. Second, there is a "repulsive" con-
tribution, because the removal of the anion elimi-
nated some of the short-range interactions between
the ions. Finally, there are "ion-size" terms,
which appear because the detailed structure of the
ions of the host lattice must be considered in treat-
ing their interaction with the defect electron; these
texms are corrections to the point-ion interaction.

In the 2P excited state of an E center, there are
forces which lead to a JT effect, with either tetrag-
onal (E) or trigonal (T2) distortions in addition to
the totally symmetric (A, ) distortions. Initially,
we will only consider the forces on the nearest
neighbors to the E center. The extension to more
distant neighbors is straightforward. The neigh-
bors are labeled as follows:

1-=(s, O, O), 4-=(- s, O, O),

2=-{o,o, o). 5 -=(0, - a, 0),

s = (o, o, a), 6 = (o, o, —s) .

It is convenient to introduce symmetrized forces,
pax'tly because of the simplifications which result,
and partly because symmetry of the center is kept
explicit. The forces Ez, E~, and E~ act on all the
neighbors of the E center, and the forces on each
of the neighbors are given below:

neighbor 1, (E„+Fz, Er, Fr);
(Fr, E~ —

2 Fs Er )'

(c»x I .) (C»x v -122)
(3. '7)

{C12V+ V + ~12) {CllV 2+ ~2+~22)
I

tronic structure of the ions. ' Fox ease of compar-
ison we shall include the ion structure terms in
calculating the wave function in all versions. We
then drop the terms in the ionic structure in cal-
cllla'tlllg 'the foxc88 111 some cases. Tllus, we sllall
always start from the same undistorted, unpolar-
ized crystal results. We emphasize that we use a
detailed microscopic model for the defect and do
not, as in some Green's-function approaches,
merely represent the defect by a combination of
mass and force constant changes from a perfect
lattice.
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(Er, Br FA —
2 FE)'

4 (FA +FR Fr, Er);
—(Fr, EA —

~ EE Fr)'

6, —(Er, Er, FA —2FE).

(4. 2)

The corresponding displacements are QA, Q~,
and q, .

We have arbitrarily singled out the [100] tetrago-
nal distortion and the [111]trigonal distortion. The
total Hamiltonian, of course, has full cubic sym-
metry. By choosing a direction of distortion we
are, in essence, placing the system on one specific
energy surface of those which are degenerate for
zero distortion.

The magnitudes of FA, F~, and F~ can be found

by evaluating the change in energy for some appro-
priate displacement of neighbors. We must, of
course, ignore the terms which would arise if the
electron were a point change at the vacancy center,
since these are already built into the dynamical
matrix D, and into A . When a center has a net
charge, the long-range Coulomb forces can be cal-
culated by a modification of the Ewald method. "

We now calculate the point-ion terms explicitly.
Writing the 2PZ wave function of the defect electron

IPZ) = (3/4v)~'(2/r)R(r),

then these terms are, in the rigid-ion model,

F „' =(Z, e /a ) f drr R (r),

FHE =-', (Z, e /a2)[-3 f drr (r/a) R (r)

+2 f drr2(a/r)R (r)],

Fr'= —,3(Z, e /a )[f' drr (r/a) R (r)

+ f drr (a/r)R (r)],

(4. 3)

(4. 4)

F„'„=—, (Z e /a ) f drr R (r),
(&2) a

where we normalize R(r) by

drr R (r)=1.
0

Z, is the charge of an ion in the shell of ions con-
cerned, and has opposite signs for anions and cat-
ions.

The force F» is a totally symmetric force on the
second neighbors. The breathing mode (A, ) force
is outward when positive, and the tetragonal (E)
force is outward on two neighbors and inward on
four when positive. It is clear that FE is the sum
of two terms of opposite sign, and the sign and

magnitude of the distortion may prove sensitive to
R(r). the radial wave function. The trigonal (T2)

force, when positive, tends to move the nearest-

neighbor iona towards the [111]axis.
The point-ion forces act on both the cores and

shells of the lattice ions. The separate core and
shell forces in this case are found by replacing
Z ( e ( by the core charge X I e ( or the shell charge
F j e], as appropriate.

The repulsive forces, which result from the
changes in the short-range interionic terms, usual-
ly contribute to the totally symmetric A, distortion
alone. This is not true for off-center substitutional
ions, where two short-range forces are appreciable:
the polarization forces and the repulsive forces.
The polarization terms lead to an asymmetric con-
figuration. We make the usual assumption that
these forces act between the shells of neighboring
ions, and do not involve the cores directly. It is
not necessary to assume any specific radial de-
pendence for this interaction, since the equilibrium
condition for the perfect crystal can be used in-
stead. This gives directly a net inward force

ERE P (Z2 2/ 2) (4 6)

REp 82 2

(FA S ) + 3 Axe)g
AS

(4. 6)

When second-neighbor repulsive forces occur,
similar, but more complicated, relations hold.

We can also write down contributions from van
der Waals forces in the same way; again, this gives
essentially a shell- shell interaction. However, it
is not obvious that we should include this (at least
with its 1/r dependence) while ignoring other fac-
tors; indeed, experimentally the lattice dynamics
of the alkali halides seems to indicate that short-
range forces other than between nearest neighbors
are barely significant. We have not included the
van der Waals terms in the present calculations.

The ion-size terms are more complicated. They
give a term in the potential experienced by the de-
fect electron of the form

V22 = Z; [A; +B; (V- U; )]6(r —r& ) —=P& C& 5(r —r;) .

(4. 7)

A; and B; depend only on the species of ion i, V

is the potential energy of the defect electron, and

(4. 6)

where Z is the ionic charge and n the Madelung
constant. For the NaC1 structure (—,'n) is 0. 29127.
The important point to note here is that both F A s
and its derivative with respect to the totally sym-
metric mode of displacement of the shells can be
written in terms of Kellermann's A and B coeffi-
cients:

FA, s = —(Z e'/4a )B„„,,
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is the point-ion potential energy of the electron at
site j. For convenience later, we define

P =~» B» I4'(r»)l' (4. 0)

is & " pi & 2 8 UnnFA, s =
1 .— p F A, ~+ —B, R'(a)

P I- 3 8As

dR'(r)
3 dg

Fs, g = PFs q+ —B, R (a)
8S

1 dR'(r)3' dr

where P(r) is the defect-electron wave function.
It is less simple to derive the forces in this case,
mainly because of the factor (V- U;). Our results
will depend on our division of the interaction (4. 7)
between the ion cores and the ion shells, We shall
assume that the ion-size potential V» is produced
entirely by the shells. The argument here is that
the shells correspond to the outermost electrons in
each ion, and it is just these electrons which domi-
nate in A; and 8;. Having made this assumption,
the forces on the shells and cores follow straight-
forwardly. The forces on the cores are not zero,
since there is an implicit dependence on the core
coordinates in the factor (V- U, ). The forces on
the shells are

TABLE I. Derivatives of U.

Derivatives with respect to motion of the nearest
neighbors. In these expressions X—=X„Y=—Y, .

Derivatives of U at the nearest-neighbor site:

UAs X+(4+v 2) + Y+ (2+2@"2) +Z+,

U@s =X4.{4+v2) + Y4.(2+1/v 2) +Z+$

UAC=X, (4+v 2),
U =X,(-,' —1/W2),

Derivatives of U at the next-neighbor site. Here

Qz ———X, when the near-neighbor cores move, and Y, when
the near-neighbor sheD moves:

2{1—v 2) 2 2(1+v 2 )
A Qz (5 2' 2) 3/2 53/2 (5+2'» 2 ) 3/2

(1-v 2) 1 (1+v 2)' 2{5-2y2) ~5 2(5+29 2) /

Derivatives with respect to the motion of the next
neighbors. In these expressions X—= X and Y—= Y .

Derivative of U at the nearest-neighbor site.
Here Qz=X when the next-neighbor core moves, and Y
when its shell moves:

4t2 —2 4%2 4t2+2 $
AA Qz (5 2vt 2 )3/2 53/2 (5 + 2' 2) 3/2

Derivatives of U at a next-neighbor site:
1 9 2 1

AAC= - g2 4 +3 v2

19 2 1 1 9 2 1ms= -2v2 4+73 72 v2 4 v3 v2 ' ~

is & piI"r, s =
1 p

~I"rs (4. 10)

FAA, s =
1 p

pFAA, s +
3

B R (&2a)
1 Pi 1 ~ 8 U„

~ @AAS

1 dR'(r)
3 dJ' (K2) a

and the forces on the cores are

is
+AC PF + —B,R (a)

ACJ

yisrc —
1 p

P I'rcPI
(4. 11)

P

FAAc 1 P FAAc +
3

B R (~2»»)
Is 1 pi ~

Q
~ Unn

AAC ~

In these equations C, is [A, +B, (V- U,„)] and C is
[A +B (V —U„,)], where U„, and U„„are the val-
ues of U; at the nearest- and next-nearest-neighbor
sites. The suffixes S and C denote shell and core,
respectively. The point-ion forces on the right-
hand side of these equations come from derivatives
of V. For the T mode the only term is the point-

ion term, since the nearest-neighbor contribution
to (4. 7) cannot mix different P states. The contri-
bution of the second neighbors is not restricted in
this way. The various derivatives of the U; can be
written as

BU e
U

8Q a

Apart from shell and core charges, the factors U,
are purely geometric. In Table I we list the U
for both nearest-neighbor and next-neighbor sites.
In the same way we may construct second deriva-
tives for treating higher-order terms. These terms
get progressively more complex and more tedious
to derive, and we shall not quote the higher-order
terms. In the rigid-ion limit of lattice dynamics
we have X- 0, F-Z, so that for the nearest-neigh-
bor forces

U„=Z(—,
' +2&2 ), Us =Z(2 +1/v 2) . (4. 12')

V. F CENTER IN I» Br

We now discuss the application of these methods
to the excited 2P state of the I' center in KBr. Be-
fore giving details, we emphasize some of the as-
sumptions which we shall make. Our aim in this
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section is to illustrate the methods we have devel-
oped, rather than to provide an all-embracing the-
ory of the center. Thus, we assume that the F-
center wave function can be represented by a wave
function with one variational parameter, X. Fur-
ther, we assume that the distortions and the changes
in X on distortion are sufficiently small that the
higher-order terms are well given by (2. 3'). Also,
we ignore the effect of other close electronic states,
such as the 2s state, even though these may be im-
portant in the real system. ' ' It is possible to re-
move all these approximations using the method we
have described, but only at the expense of some
complexity which, for present purposes, we wish
to avoid.

A. Choice of Nave Function

The variational trial function we adopt is the
Gourary-Adrian type-II function, with

0.4

0.3—

0.2

for x &a,R(r) =gj, ($r/a) e "

R(r) =gj,($)(r/a) e ""~' for r ~ a,
(5. 1) O. I

in which ( is the variational parameter, corre-
sponding to X; g is given by

q =3 —$ /(1 —)cot)), (5. 2)

and j(1)= (sing —)( costi)/y . For KBr the param-
eters for the undistorted lattice are

A,o:$0 = 3. 22 'g 0 = 3. 27 (5. 3)

using a point-ion model with ion-size corrections.

B. Calculation of the Linear Terms

The radial wave function R(r) depends only on
(r/a) and on $. Consequently, we can derive the
point-ion forces E ' in units of Ze /a as functions
of $. These are shown in Fig. 1. The forces on
the shells should, of course, replace Z by Y, and
those on the cores replace Z by X. The largest of
the point-ion forces is F~', and F~' is larger than
F~'. We shall find that, for most F centers, the
tetragonal (E) distortions and the trigonal (Tz) dis-
tortions are comparable in magnitude. For KBr,
the forces on the ion cores are

E„~ = 0. 3615X, e'/a, F~' = —0. 1999X, e a

(5. 4)

Er'o = 0. 17V2X, e /a, F„„c= 0. 0410X e /a

The forces on the shells are found by replacing the
core charges X, and X by shell charges Y, and
Y . As we go through the sequence of alkali halides
from the iodides to the fluorides the trigonal point-
ion forces become progressively stronger compared
with the tetragonal ones.

The repulsive contribution to E„ is given by (4. 5)
and acts only on the shells:

I

3.I

I

3.2
I

3.3
I

3.4

FIG. 1. Point-ion forces in units of Se /a as a func-
tion of the variational parameter $, giving a measure of
the extent of the excited-state E-center wave function.
The values of ( obtained in Ref. 4 for the different al-
kali halides are indicated.

F"„z = —0. 2913Z e /a . (5. 5)

The ion-size forces can be found directly from
Eqs. (4. 10)-(4.12). In these expressions, the
8 U/S Q, depend on the shell and core charges, and
cannot be given independently of the lattice dynami-
cal model. " The other factors which depend on the
wave function [P, R2(a), and R2(W2a)] may be found
from knowledge of $ and g. The B; and C; are
given explicitly in Tables I, VI, and VIII of Ref. 4.
The C; make use of the reduced parameters G. 53
A, ; we will not discuss the origin of the reduction
factor here, and simply treat it as an empirical
correction.

The ion-size forces on the nearest-neighbor
shells are outward; the outward motion of the ions
reduces a repulsive contribution to the energy. All
three linear terms —the point-ion, repulsive, and
ion-size contributions —are similar in order of
magnitude. As various signs of term are possible,
it is clear that all the terms must be considered,
and that any model which does not include ion-size
corrections or their equivalent is likely to be poor.

The results of the linear calculations are given in
Table II. These show ~E, the change in total en-
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TABLE II: Results for KBr. These use the nuclear
(core) coordinates, and are expressed as a percentage
of the nearest-neighbor distance. Q~ is positive for
outward motion; Qz is positive when two neighbors move
out and four in, and Qz is positive when the neighbors
move towards the (111) direction. In all cases, the
second-neighbor cores move in by 1 to 3%. &E is the
total (lattice and electronic) energy reduction.

Lattice dynamics Linear Second order in Q~

Rigid ion

Fitted model

@,(%)

Qg (%)

~E (eV) 0.40

Qg (%) 7.1
q (%) -4. 2

~E (ev) 0.81

3 ~ 3
1.8

0.006, 0.021
0. 29

6. 2
—4. 2

—0.016, —0.058
0.78

300' lattice-
dynamic
data'

Rigid ion

Qg (%)

Qg ('%)

~E (eV)

Qg (%)

Qg (%)
aE (eV)

4. 7
2. 3

0.69

6. 2
6. 7
0.73

0. 92
2. 3

0.0017, 0.0060
0.59

3.3
6.7
0.52

Fitted model"

300' lattice-
dynamic

data

q, (%) 7. 1

Qp (%) 8. 2

(eV)

Q~ (%) 4.7

g, (%) 7.3
4E (eV) 0.61

6. 2
8. 2
1.26

0. 92
7. 3
0.49

Lattice Dynamics Tetragonal linear Trigonal linear

Rigid ion' q~ (%) 1.54
Q (%) —7.85

0. 151

Qg (%)

Qz (%)

1.54
1.12
0.044

Fitted model' Q~ (%) 3.43

g~ (%) —12.14
0. 501

QA (%)

DE

3.43
l. 36
0. 32

300' lattice
dynamic

data

g„(%) 0. 83

q, (%) —7.46
DE 0. 195

Qg (%)

e, (%)
DE

0. 83
1.22
0.071

Tetragonal case with ion-size effects.
"Trigonal case with ion-size effects.
'Tetragonal and trigonal cases: no ion-size terms.

ergy (electronic plus elastic) from relaxation, and
the various distortions. A number of points emerge
clearly. First, the relaxation energy 4E depends
strongly on the lattice-dynamic model chosen. Sec-
ond, the symmetry, and sometimes even the sign
of the asymmetric distortions, depends on the lat-
tice dynamics because the shell and core charges
enter in the forces. It is clear that the problem of
lattice distortion and polarization near defects is
sensitive to lattice-dynamic models, and that ade-
quate models are not always available, even for
well- studied crystals'like the alkali halides. x=&ccFc+ncsF s (5. 7)

C. Higher-Order Terms

In the. earlier section it became obvious that
some, at least, of the higher-order corrections
must be included. For the excited state of the F
center, the linear theory with ion-size corrections
predicts rather large distortions of A& symmetry,
and, at least, we must treat the second-order
terms in these totally symmetric modes. We will
ignore terms which are of higher order in other
distortions, since we can then simplify the calcula-
tion considerably. This simplification would not
be valid in some circumstances. Thus, if there
were appreciable mixing of the 2s and 2p levels we
would have to treat other modes in detail.

The calculation of the higher-order terms follows
very closely the treatment of the linear terms.
For this reason we will only mention the points of
difference. We now have derivatives of W(X, x)
with respect to (X —Xo), including those which enter
into the variational condition. The simplest of
these is A', which can be found during the varia-
tional (computer) calculation to determine Ao.

Since this parameter is not readily obtained at other
times, we give values of A' for all alkali halides in
Table III. Values are given for both the point-ion
model and for the model including ion-size correc-
tions. The other derivatives are obtained analyti-
cally. Itis important to note that the ion-size cor-
rections to the potential [Eq. (4. 7)] already involve
V which is a function of the variational parameter

The variational condition is to be taken as

—,', (e(~) l7' p(&')le(~)&l-' =0, (5. 6)

where [P(A)) is normalized to unity. This form
was correctly used in Ref. 4, and its use introduces
a number of changes in detail.

Another point of difficulty arises because the par-
ticular variational trial function we use has a dis-
continuous second derivative d R/dr, at y =a. We
have estimated the second derivative in several
ways, by taking the limit as r tends to r = a from
both larger and small values of x, by setting
d R/dr~ equal to zero, and also by setting d~R3/dr~

equal to zero. The various choices give negligible
differences in the results.

For simplicity of exposition, we assume that only
two coordinates Q~c and Q» become sufficiently
large for the second-order term to be appreciable,
It is clear from Sec. IV that nonlinear terms in
these coordinates may be large. It is useful to
write out some of the equations of Sec. IIB in a
form which can be applied directly. We abbreviate
Q~c to x and Q» to y. The forces which corre-
spond to x and y are Fc and F&, respectively. The
linear theory gives results corresponding to (2. 11):
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TABLE III. Values of A'for I centers in various hosts. E($) =E()p) +2 A ($ —$p)
' $:A, . Results are ordered in

increasing (anion radius/cation radius). Units for A' are By.
Crystal Ground state Excited state

(point-ion model)
Ground state Excited state

(vrith ion-size corrections)

CsF
RbF
KF
RbCl
RbBr
NaF
KCl
KB1
RbI
KI
NaCl
LiF
NaBr
NaI
LiCl
LiBr
LiI

0.73195
0.807 64
0.87023
0.662 21
0.613 93
1.07765
0.69141
0.653 27
0.556 ll
0.59068
0. 808 84
1.297 00
0.742 08
0.67413
0.91553
0. 842 21
0.739 10

0.494 72
0.51618
0.53763
0, 460 15
0, 442 27
0.56624
0.482 20
0.460 15
0.419 02
0.433 33
0.515 58
0.54061
0. 503 66
0.469 68
0.544 19
0, 537 04
0.497 70

0.724 79
0.743 87
0, 743 87
0. 52929
0, 454 19
0, 791 55
0. 517 96
0.446 44
0, 424 98
0.423 79
0, 563 86
0. 944 14
0.478 63
0, 460 74
0.634 19
0. 529 89
0.514 98

0.368 95
0.367 16
0.31471
0.302 79
0.258 68
0.316 50
0.301 60
0.252 13
0.272 39
0.278 95
0.324 85
0.352 26
0.259 88
0.309 94
0.382 66
0.305 18
0.355 84

sc+c++ssEs

But these forces are themselves linear in x and y
because of the higher-order terms. Consequently,
we have

&c =&co++co&+&csX,

&s =F so+F sex+I' ssy. (5. 8)

Solving (5. 7) and (5.8) simultaneously we find that
the displacements can be calculated from (5. 7) us-
ing

eff+c-=+c = &ccI"co+&csI"s o,
eff+s —+s —~sc+co+ ~s s +s ~

(5.9)

where

rcc = (1 —&sc&cs —&ss&ss)/& =5cc/~~

rss = (1 —~csusc —~ceo'cc)/~=-5ss/n,

'Ycs = (&cc&cs+&cso'ss)/~ =-5cs/+,

»c = (I" sc&cc+&ss&sc)/~ = 5sc/&, -
& = &cc&ss —&cs&sc.

The results of taking the terms in the spherically
symmetric distortions to second order are shown
in Table II. The main effects are a significant re-
duction in the symmetric distortion, and small
changes in the electronic wave function. In part,
the smallness of the change in the wave function
may arise from our use of a si.mple one-parameter
trial function. Consequently the results in Table I
are not sufficiently accurate to test the hypothesis
(Ref. 18; see also the comments in Ref. 5) that
the wave function is very widespread in the relaxed

excited state. The methods we have described can,
of course, be extended to discuss this point.

VI. DISCUSSION

We have developed a general method for treating
the polarization and distortion near color centers.
Two basic approximations are made: The host lat-
tice is assumed to respond to the average, consis-
tently chosen charge distribution of the defect elec-
trons, and the shell model or some equivalent mod-
el is used to describe the host, There are no re-
strictions on the symmetry of the distortions which
result, nor on the range of the distortions. Terms
in the electron energy which are very sensitive to
the lattice configuration can be treated provided
that the harmonic approximation remains valid.
However, such terms usually reduce the value of
knowledge of the static distortion since many of the
observable properties depend on the details of the
defect lattice dynamics; in particular, the Condon
approximation (Ref. 19, for example) may break
down.

The methods have been illustrated by a discussion
of the 2P excited state of the I' center in KBr. This
state is electronically degenerate and exhibits a
JT effect. The calculations give the change in to-
tal energy, the totally symmetric and JT distor-
tions, and the change in defect-electron wave func-
tion. Since these calculations mere designed to il-
lustrate the method rather than to provide a full
treatment of this very complex system, tmo sim-
plifying approximations mere made. The first ap-
proximation was the use of a one-parameter varia-
tional trial function, and the second the neglect of
the influence of the nearby 2s state. However, a
number of conclusions are apparent. First, it is
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essential to go beyond the point-ion model' for the
defect-electron-host-lattice coupling. We have
used the ion-size corrections described in Ref. 4.
Second, our knowledge of the lattice dynamic and
dielectric properties of the host lattice may not be
good enough to predict defect properties accurately,
This is because there are a number of models, dif-
fering only in actual magnitudes of parameters and
in some small terms, all of which give perfect
crystal properties with comparable accuracy. The
anharmonic properties of the host lattice are even
less well known. We emphasize that the use of
simple approximations, such as Born-Mayer inter-
actions or even continuum models, does not resolve
any of these difficulties; at best, such simplifica-
tions merely hide the problems. For all the lattice-
dynamic models we have used, we find an outward
motion of the nearest neighbors to the vacancy, to-
gether with a JT effect in which the trigonally and
tetragonally distorted configurations are compara-
ble in energy. The change in total energy on distor-
tion is of order 0. 5 to 1 eV, depending on the de-
tailed model. This change is clearly in line with
the substantial Stokes shifts observed for I" centers.
The change in wave function on distortion is rela-
tively small, probably because of the restricted
form of variational function.

In the past, many calculations of color-center
properties have used intuition as a major constitu-
ent. We have attempted to show, both in an earlier
paper and here, that detailed atomic calculations
are practical, and that the methods developed are
sufficiently general to treat complicated systems
without restrictive approximations or sophisticated
computation.
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APPENDIX: SHELL-MODEL PARAMETERS

3 eo —1 3 E —1
Q Q~ =

4m co+2 ' "
4m &„+2

p=M+M /(M+ +M ),

R = 2e»/(e '/va) + 2. 718 94 Z

In terms of the shell-model parameters Y„Y,
k, , and k we have

n, = Y, v/k, , n =Y v/k,

n„=[(Y, + Y ) R+(Y, k + Y k, )]/&,

[Z —( Y, k —Y k, ) R/&]
1 —(k, + k )R/d

where

and

4=k, k +R(k, +k )

(1-—,'wn, ) R
k""'= (1--',.n. )

We used a least-squares fit in which we minimized
the sum

5 xfit xexy 3
8',

7=1 xg

with x; given by n, , n, a„, ao, and p.&0, to find
values of k, , k, Y, , and Y . The problem was,
thus, overdetermined, and the residuals gave an
estimate of the accuracy of the fit. The weights
8'; were usually unity, but could be varied to re-
duce the importance of any poor data.

For KBr we use the data ' ' given in Table IV.
The other data used were taken from the fit to dis-
persion data of Ref. (22). A number of different
sets of parameters appear in the literature, for
example, those given by Havinga~' and by Bron. ~4

We have not made use of these other sets.

These parameters, the shell charges Y, and Y
and the shell-core force constants k, and k, can
be fitted from neutron data. Here we describe one
other approach, a least-squares fit from elastic,
dielectric, and infrared data.

The input data consisted of the static and optical
dielectric constants eo and e„, the lattice parameter
a, the ionic polarizabilities n, and a, the ionic mas-
ses M, and M, the restrahlen frequency&o, and
the elastic constant c». From these, we define
variables which may be related to the shell-model
parameters:

TABLE IV: Lattice dynamic data.

e, =0.83 x10 24 cm3,
e —4. 77x10 cm
M, = 39.100 amu,
M =79.916amu,
eo =4. 78,
6~ =2 ~ 33
~0 =2. 13x10 rad/sec,
cff 3.46 x 10' dyn/cm
a =3.301..
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The E-center growth curves for undoped KCl and KC1 crystals doped with Ba, Co, and Cd
have been obtained by x irradiation at room temperature. These growth curves are fitted to
an equation with two exponential terms and a linear term, and the parameters occuring in the
equation are evaluated. Two exponential terms have been found to be adequate to describe the
first-stage coloration, with which this paper is mainly concerned. The analysis shows that the
slower exponential component is strongly influenced by the presence of impurities; specifically,
the rate of coloration during the process responsible for this component decreases, and the
saturation level for the process increases, on account of the impurities. The faster exponen-
tial component appears to be relatively insensitive to the presence of impurities. These re-
sults are discussed with reference to certain mechanisms that have been put forward to account
for the first stage.

I. INTRODUCTION

There has been considerable interest in recent
years in the mechanisms of color center production

by ionizing radiation in alkali halides. ' Among other
methods employed, the analysis of the plots of F-
center growth versus time of irradiation (or radia-
tion dose) has yielded useful information regarding


