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Using a canonical-transformation method, a formal expression for the isothermal polariza-
tion induced by an arbitrarily time-varying field is obtained which includes the population
change due to the energy shift which is proportional to the field intensity. The result is ap-
plied to the static linear susceptibility and nonlinear refractive index induced by an intense
laser beam. It is shown for the latter that the lowest- (third-) order isolated susceptibility of
an isotropic medium is a lower bound for the isothermal susceptibility if both the polariza-
tions and frequencies of the laser beam and the probe light are the same.

I. INTRODUCTION

The concepts of the isothermal and isolated sus-
ceptibilities of electric or magnetic media are well
established. In the isothermal process, the sys-
tem is in thermal contact with the heat bath and

maintains its temperature constant at all times
when the field is applied, while in the isolated pro-
cess the system was in thermal contact with the
heat bath at the infinite past which was then iso-
lated from its surroundings. The field is applied
very slowly (adiabatically in Ehrenfest's sense),
and the isolated motion of the system obeys the
Liouville equation. Quantum mechanically, the
population of a given energy level must be held
constant for the isolated process, while for the
isothermal process the population change is pos-
sible. The difference of the two susceptibilities
arises from this fact.

The quantum-statistical formulations of both the
isolated susceptibility for a time-varying field and
the static isothermal susceptibility have been ac-
complished to every order in the applied field.

However, there seems to be no generalformulation
of the isothermal susceptibility for an arbitrarily
time-varying field. The main purpose of thepres-
ent paper is to deal with this problem by a quan-
tum- statistical method.

Performing a canonical transformation on the
Liouville equation, the rapidly oscillating part of
the Hamiltonian is eliminated. The density ma-
trix for the isolated system is then driven by a
time-independent Hamiltonian at time t, when the
system is again brought into contact with the heat
bath so that it is represented by a new equilibrium
density matrix. It is found in Sec. II that the iso-
thermal expectation value of an operator is ob-
tained by replacing the equilibrium density ma-
trix at the infinite past by the new one in the ex-
pression for the isolated expectation value of the
operator. In Sec. III, the resultis applied to the
well-known problem of static linear susceptibili-
ties. Those for the nonlinear refractive index
induced by an intense laser beam are discussed
in Sec. IV.
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II. GENERAL FORMULATION

The isolated system is described by the Liou-
ville equation for the density matrix o,

Bo'
ik =[H—, o], H=H + V,

If(1) H&1) i [S(1) H(0)]+gj(l)

Q(2) H(2) i [S(1) H(1)] i [S(2) H(0)]

S&1) [S&( ) H (0)] gj (2)
7 (16)

(3)

is treated classically, where e is the unit polar-
ization vector.

Now the following canonical transformation is
performed on 0'

-&sp=e ge (4)

where S is an Hermitian operator. p then obeys

irf =[K p] .—Bp

&t

where the Hamiltonian H consists of the unper-
turbed part Ho and the perturbation V,

V=- P ~ Ee"' (2)

which is turned on very slowly in the infinite past.
In Eq. (2), P is the electric dipole-moment oper-
ator, E the applied electric field, and g a small

positive quantity which is set equal to zero at the

end of the calculation. In this paper, E with fre-
quency &,

E 1 e (Eht &(0& E (0e(ld&)

and higher-order equations which we neglect here.
We choose S"', S' ', H', and H" so that K"' and

EC' ' vanish. For a sufficiently rapidly time-vary-
ing field, H does not contribute to the energy
shift so that the elimination of K") results in

H~„= Vm~ for 8' „-=W —8'„=0 (16)

where the subscript mn means the matrix element
between states m and n in the representation diag-
onalizing H' ', and W is the energy of the state
m. We neglect the second-order energy shift in
the static field, and choose H' ' and S' ' in the
form

H'„'= —,'i([S"', V] „), for W „=0, (20)

hS' ' —i [S"',H' ']+ V=0 (time-varying). (17)

For a static field, H and S"' are chosen in the
form

The transformed Hamiltonian K is given by

-s ~sK=e ' He' +IS S=—.
&t

The original Hamiltonian is divided into three
parts:

(6)

where( ), means the time average over many cycles
of the time-varying frequency. This choice is
readily seen to eliminate K' ' if one notes the uni-
tarity of e ', namely, [S& ), S")]= 0. Integration
of Eq. (17) from —~ to f yields, with the use of
Eqs. (2) and (3),

H -H"'+H"'+H"'

where H' ' =Ho+H +H',

and

H"'= V-H

H (2)

(7)

(6)

(0)

(10)

As shown in the following, H and H' represent the

first- and second-order energy shifts by static and

time-varying fields, respectively. H' ' is a re-
normalized unperturbed Hamiltonian taking into

account the energy shifts. K and S are similarly
expanded according to the order of the perturba-
tion,

~ ~

geo fQ)t fest
&& . + . (22)W„+@0)+iaaf)i W„„-Ii&0+ i)2))

where I'= P ~ e.
Then, H'„' is calculated from Eq. (20) as

2qt
H&2) g e &m&&)„

mn ) 4@

(
(&d( —(u)E "E" (, +0))E"E "
(&d&m +) +)) (&01m+ &d) +'0

(23)

z=z")+z"'+z")+ "
7

S t,
'1 ) S (2)

~ ~ ~

(11)

(12)

where &d& = W& /5, and for classical field

E-"E"=E"E-"=2(E'), .

we obtain K' '=H (14)

Substituting Eqs. (7)-(12) into (6), and using the

expansion for any operator D,

e ' De =D —i [S,D] ——,
'

S, [S,D] + ~ ~ ~, (13)

It is noted here that since H and H'= —H' ' are
diagonal in the energy representation of H' ', the
quantities H' ', Ho, and H '" commute with each
other as is readily seen by taking the matrix ele-
ments of the commutators in the same represen-
tation. Then, they are diagonalized simultaneous-
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0' = e 0 Tro' (24)

where P is the inverse of the temperature times
Boltzmann's constant. Then the system was iso-
lated, and has evolved according to the Liouville
equation so that at time t the transformed density
matrix is described by a. time-independent Hamil-
tonia H"',

N =[H' ', p]— (26)

Considering the commutability of H' ' and Hp, the
solution of Eq. (25) is simply

U(0) gP U(0) f gp (26)

ly by a complete set of the eigenfunctions. H'
= —H"' in Eq. (23) includes the perturbed energies
W 's, and therefore higher-order terms than the

second in the applied field. H~ is not a true sec-
ond-order term. The higher-order terms are,
however, parts of the higher-order corrections to
the energy shift, and may be neglected in our ap-
proximation. The condition W „=0 in Eqs. (18)
and (23) means that the perturbed states I and n
are degenerate of n ~nz. Then, except for an
accidental degeneracy, corresponding unperturbed
states will also be degenerate. Thus, we can
hereafter reinterpret 8' 's as the eigenenergies
of the unperturbed Hamiltonian Hp, and through
secular equations for degenerate perturbation the-
ory, expressions for H and H' exactly determine
the first- and the second-order energy shifts caused,
respectively, by static and time-varying fields.

At the infinite past, the density matrix is assumed
to be in thermal equilibrium with the heat bath,

0 and 0
' are given explicitly only for the first

terms as

o = —o = —Po (H'+H') (sl)
The isothermal ensemble average of the operator
P is thus given by

(P) r= Tro'e ' Pe' /Tro' (32)

where the temperature must be held constant. Now

the solution of Eq. (1) is formally written

a=UO U

where U=T exp[ ih-' f' H(t')dt']

=Up+2 U
"

l=1

Oa= exp(-ih 'Hat)

(34)

O'"=Uo(ih) ' J dt, f '
dt's ~ ~ ~ f ' dt,

x [v(t, ) v(t, ) v(t,)],
V= Up VUp

(s6)

(3&)

Expanding the both sides of Eq. (38) into the power
series of the applied field, we have

O' ' U iOS' ' —ih f H' dt, (s9)
w oo

O"'O'= S"'--'S""i aS'"' H~dt- h~ 00

x f H" dt —,'h (f —H dt) . (40)

U is the Hermitian adjoint to U, and T is the time-
ordering operator. From Eqs. (4), (26), and(33),
e' is given by

(s8)

where U' '= (-ih ' f H dt) (27)
Substituting Eq. (38) into (32), and using the cyclic-
invariance property of the trace, we finally have
for (P) r

o'= exp(- PH' ') (28)

which makes a time-independent solution of Eq.
(25). Since Ha and H '" commute, o' is written

o'=o exp[- P(H' yH")]

Expanding exp[- t3(H" +H")] in powers of P, and

writing

(28)

o'=o +o', (Tro') '=1+Tro" (so)

However, to obtain the isothermal density matrix,
one must again bring the system into thermal con-
ta.ct with the heat bath at time t. Then, while the
field is applied, many incoherent transitions will
occur among the various renormalized states (ei-
genstates of H' ') of the system, and the system
will approach the new thermal equilibrium after a
sufficiently long time. Then, the boundary value
of Eq. (25) is nota, but will be

(P) r= Tro'U'P U/Tro' . (41)

In Eq. (41), use is made of the commutability of
U' ' and 0'. This is a formal expression for the
isothermal polarization correct to the first- and
second-order energy shifts caused, respectively,
by static and rapidly time-varying fields. On
the other hand, the isolated ensemble average of
P is given by

(P)~ = TraP/Tro

With Eq. (33), (P) ~ is rewritten

(P), = Tro'O'P U .

(42)

(43)

As seen from Eqs. (41), (43), and (24), the iso-
thermal polarization is given by simply replacing
0 by 0' in the expression for the isolated polariza-
tion. The difference of the two polarizations
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arises from the population change included in

(P)r, and is written, using Eq. (30),

(P) r-(P)z-—Trv U P U+ Trv U P U Trv"
+ Tro U P U Tro" . (44)

Equations (41) and (44) with (29) are the main re-
sults of this section. Now we apply them to the
static linear susceptibilities and nonlinear refrac-
tive index. In both cases, we neglect any reso-
nance phenomenon, namely, we discard imaginary
5-function terms which arise as we set q- 0 at the
end of the calculation. Local field corrections are
also not considered explicitly.

In Eq. (51), the first term is non-negative from
the Schwarz inequality, while the second term is
also non- negative for positive temperature. x s is
thus a lower bound for x~, as found recently by
Falk for the magnetic susceptibility.

It will be seen from the above calculation that
the isothermal susceptibility may formally be ob-
tained from the isolated-susceptibility formula-
tion, namely, from Eq. (42) by neglecting the s
operator. The neglect in Eq. (48) yields an addi-
tional term which is equivalent to the first term
in the bracket of Eq. (50). This neglect, of course,
violates the unitarity of U, and one has another
additional term from the expansion

III. STATIC LINEAR SUSCEPTIBILITIES
(Tro) ' = 1 —Trv"' —Trv' '+ (Tro "') + ~ ~ ~, (52)

where P = P ~ e, e is the unit vector of P, and
the static linear isolated susceptibility xs is given
by

=limTrv (UotP U"'+Ut"'P'Uo)/E .
0

yz is explicitly calculated using Eqs. (39) and

(22) with &@=0, and the relation

(46)

as

1 1
lim .

&
=s —itt5 (W )

g-0 nm+ ~ nm

0 0~~n-am
Xs =6' ~ PmnPn

m, n mn

(4V)

(48)

where 6' is the principal-value operator. Note
that for xs the contribution

(49)

For the static case, only the linear term H is
considered in Eq. (29). From Eqs. (44) and (31),
we have for the static linear isothermal suscepti-
bility x»
l(r=ltz+lim(Trv UOP Uo+ Trv UOP Uo Tro )/E,

q "0
(45)

IV. SUSCEPTIBILITIES FOR A NONLINEAR
REFRACTIVE INDEX

The classical theory of a nonlinear refractive
index has recently been investigated widely for
liquids. The following discussion, however, may
also cover other kinds of media. In the case of a
nonlinear refractive index, an intense laser beam
with frequency cuL induces changes in the refrac-
tive index which may be probed by another light
with frequency ~s. The electric field thus con-
sists of

(@(dr e thli t E-4I~ t(d~t) (53)

Es I es(gute tm~t+E-u~eiv~t)

where (r " and 0 ' are the first- and second-order
density matrices in the applied field, respectively,
and obtained by expanding v in Eq. (33). Similar-
ly neglecting the p operator, the second term in
Eq. (52), combined with the term Trv P, is seen
to contribute to the second term in the bracket of
Eq. (50). Kubo discussed the condition for which

X &= Xs in terms of the ergodicity of the system.

is excluded by the 6 operator. Substitution of
Eqs. (31) and (18) into (45) yields

xr-xs+PL L

m, n; Wmn= 0

0
+m Pmn Pnm

g0 P gOP (50)

P Q voPR
mAn 1Vmn- 0

(51)

Equation (50) is the same with the result obtained
by the usual method. ' For media whose symme-
tries allow the relation e=c'and thus P=P, the
difference of the two susceptibilities can be writ-
ten as

2-
X:-Xs=» v'-P.'.— ~ v'. P..

m m

~J ~Swhere & and e are unit polarization vectors. E
changes so rapidly that we need not consider the
linear term O'. Substituting Eq. (31) into (44),
and using (10), we obtain (P) r for the lowest-order
(second in E and first in E ) nonlinear refractive
index as

(P)",'=(P)","+lim P E v' H"„'
ri-0 m n', 8' =0mn=

x(U'"' P U U'P U"') - Trv'e"'

&& Trv (U "' P Uo+ Uo P U"') (55)

In Eq. (55), U' ' should be calculated using Eq.
(39), where the perturbation V is due to the probe
light. Explicit calculation with the use of Eq. (23)
gives for the nonlinear isothermal susceptibility
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mn) W „=0

e2nt
(2) Ut) )

' ml'!n(~ )
0 mn t gr (62)

go L 00 ~ S 56

L L
L Pml Pln 2 Mlmwhere X

(d l
—(dL

s
s V'PmlPln 2 &lm

aCm~ ~
@

+ 2&lm- +S

P =-P e, and P =-P

(5'f)

(58)

The difference between the two susceptibilities is
now written as

NL NL j. X~ 0 L S
XT Xs 2~ ~ om mm+ mm

~m mm On +nn

NL & NL
XT =XS (60)

The equality holds when the system is nondegener-
ate and 3C is independent of rn.

The isolated susceptibility Xs may be calculated
from Eq. (42). Using unitarity of U, namely,

U U()+ U0U =0

and U(') Uot+ U(') U(')'+ Uo
U(')' = 0,

the second-order density matrix o' „' is written as

(61)

The time average of (U"' Uot) „ is explicitly calcu-
lated from Eqs. (89) and (22) as

(59)
m 0 n, Wmn=

If the medium is isotropic, P=P, and further,
both the polarizations and frequencies of the laser

~ s
and probe lights are the same, e =e and &L=vs,
the first and the second terms of Eq. (59) are non-

negative by the same argument as the linear case.
Thus, under the above conditions, ys is a lower
bound for yT

2 col„—2g'g
2 2 2

CO l~ —47 —2Z'g(d lq
—'g

Equations (62) and (4'7) show that ((U' '
Uo)~„), with

W „=0does not contribute to the nonlinear refrac-
tive index of the isolated system. However, in a
way similar to that in the linear case, one may
formally obtain the isothermal susceptibility from
Eq. (42) by neglecting thea operator. The neglect
in the limit of q- 0 in Eq. (62) yields an additional
term which is equivalent to the first term in the
bracket of Eq. (56). The third term in Eq. (52)
similarly contributes to the second term in the
bracket of Eq. (56). The author has previously
calculated the isothermal nonlinear refractive in-
dex by neglecting the p operator and retaining suit-
able terms for the population change due to the
energy shift.

V. CONCLUSIONS

We have shown that the isothermal susceptibil-
ity for arbitrarily time-varying field can be for-
mulated by a canonical-transformation method.
The formulation has been explicitly discussed for
the static linear susceptibility and nonlinear re-
fractive index of dielectric media, but it may cov-
er also other media, such as magnetic and other
higher-order effects in the applied field intensity.
This formulation may also be used when resonance
phenomena occur. For example, stimulated absorp-
tion and emission are given by taking the imagi-
nary 6 function in Eq. (22) which arises as we set
q - 0. Multiquantum absorption and stimulated
Raman scattering are similarly given by taking the
imaginary 5 function in the limit of the solution of
Eq. (21). For coherent resonance phenomena,
the population change should not be taken into ac-
count since the applied pulse is short compared
with the phase memory time and thus the longitu-
dinal relaxation time, although the energy shift
itself may affect them appreciably in certain
cases. '

~R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
K. F. Niessen, Phys. Rev. 34, 253 (1929).
This may be anticipated from the quantum-mechani-

cal H theorem, R. C. Tolman, The Principles of Sta-
tistical Mechanics (Oxford U. P. , London, England,
1938), 1st ed. , p. 453. However, by considering the
total Hamiltonian including those for the heat bath and
its weak interaction with the system, F. Bloch [Phys.
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tern density matrix tends to relax towards the thermal
equilibrium at the instantaneous value of the Hamiltonian
which varies slowly compared with the correlation fre-
quency of the heat bath. The relaxation equation for our
case may be obtained by the same procedure of Bloch by
writing E and Ep which appear, respectively, in his Eqs.
(2. 1) and (3.1) as E=H H 0) +Hi) +H 2) and. Ep=H 0)

H. Falk, Phys. Rev. 165, 602 (1968). However,
R. M. Wilcox [Phys. Rev. 174, 624 (1968)] has shown
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the entropy constant (the constant entropy does not
mean, in general, the constant population).'¹Bloembergen and P. Lallemand, Phys. Rev. Let-
ters 16, 8 (1966); S. Kielich, Acta Phys. Polon. 30,

683 (1966); R. %'. Hellwarth, Proceedings International
School of Physics "Enrico Fermi, "Varenna, Italy,
1967 (unpublished); M. Takatsuji, Phys. Rev. 165,
171 (1968); J. Hanus, ibid. 178, 420 (1969).
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Effective Mass and Spin Spht ting in Hg, .x Cd„Te
G. A. Antcliffe

Texu8 Ess~wsNts Eseotporcted, Dallas, Ferns 75222
(Received 15 Janua~ 1970)

Shubnikov-de Haas measurements have been performed on single-crystal n type -Hg~ „Cd„
Te (x= 0. 204) alloys with carrier concentration from 2 &10 to 1 &10 cm . Comparison
of the electron effective mass as a function of Fermi energy with k p theory yields the fol-
lowing band paraIneteI s, band edge mass ~(I' 5 60 + 0» 25 & 10 ppf 0 s interband matrix element
E&=17+1.4 eV, and direct energy gap (at 0 = 0) E~= 0.0635+0.008 eV. We also observed
spin splitting of the @=1, 2, and 3 Landau levels, from which the electron g factor was deter-
mined as a function of energy between 8 and 23 meV from the conduction band edge, with g
= 164+16 at the band edge.

I. INTRODUCTION

The Hg& „Cd„Te alloy system is of considerable
interest from several viewpoints. Hg& „Cd„Te at
X= Q is a semimetal which exhibits a semicon-
ductor-semimetal transition at x = Q. 18, which is
not yet completely understood. ' As x is increased
further, the energy gap at k = 0 between a I'6 con-
duction band and the I"8 valence bands increases to
about Q. 10 6V at x = Q. 21 and around this com-
positioll sensltlve 8-14-p, photoconductors have
been x'eported. ' For 3n excellent summary of
earlier work and for a discussion of the variation
in band structure through the Hg&. „Cd„Te system,

refer the reader to two excellent reviews and
references cited therein. We will be concerned
ln t is paper only wit one alloy composition-
Hgo, y96Cdo 204Te& whex'6 the conduction band has
F6 character. While there is agreement that this
I 6 band is nonparabolic and should be described
adequately by Kane's k p theory, 6 developed for
the I'6 band of InSb, there is, at present, no
systematic confirmation of this near the band edge
for the semiconducting alloys (x & 0. 18). Interest
has generally centered on investigations of the
physical properties as functions of Cd concentra-
tion, with detailed measurements being 1 ax'6 due
to the difficulty in attaining homogeneity in this
system. For example, the recent helicon prop-
agation results' in low carrier concentration
Hg, „Cd„Te still do not allow complete character-

ization of the I"6 band. %6 present in this paper
the first detailed measurements on single-crystal
low-concentration n-type Hg, „Cd„Te (x= 0. 204)
using the Shubnikov-de Haas effect at liquid-
helium temperatures. The experiments are aimed
specifically at a determination of the 1 6-band
parameters, at one alloy composition, where the
energy gap is close to Q. 064 eV at 4.2 'K. The
single-crystal alloys used in the px esent study hed
electron concentrations between 2 ~ 10"cm and
1&10' cm and electron mobilities greater than
2&&10 cm /V sec at helium temperatures. We
have determined the electron effective mass over
this carrier concentration range and observed spin
splitting of the lower quantum number Landau
levels, which has allowed us to determine the en-
ergy dependence of the electron g factor. I imits
have also been placed on the sphericity of the Fer-
mi surface from the angulax dependence of the
Shubnikov-de Haas period.

Vfe describe in Sec. II the experimental details
together with a discussion of critex ia which must
be considered to ensure reliable Shubnikov-de
Haas data. The results are presented in Sec. III
together with a comparison with Kane's k p
theory. The relevant formulas from the theory
are well known and summarized in the Appendix.

II. EXPERIMENTAL DETAILS

The single-crystal HgI~Cd„T6 alloys from which
the experimental samples were cut were grown


