2 D.
waves, we can also derive all the above results for
metals, with € replaced by the generalized dielec-
tric constant € —ioc/w. A difficulty to be kept in
mind is the increased effectiveness of screening,
which increases the importance of higher-order
perturbation terms and requires a consideration of
the wave-number dependence of the dielectric con-
stant. We expect that the latter effect will largely
cancel out, owing to the fact that the weight of an
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uilperturbed plane wave | ) in a perturbed wave
| k) generally equals that of the unperturbed plane
wave |k in the perturbed wave Q).
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Metal-Insulator Transitions: A Simple Theoretical Model

Ricardo Ramirez, * L. M. Falicov, and J. C. KimballT

Department of Physics,:t University of California, Bevkeley, California 94720
(Received 27 April 1970)

A simple theoretical model for metal-insulator transitions is presented. It is based on the
existence of both localized (ionic) and band (Bloch) states. It differs from other theories in
that it assumes the one-electron states to be essentially unchanged by the transition. The
electron-hole interaction is responsible for the anomalous temperature dependence of the num-
ber of conduction electrons. The model is studied in detail for several specific band models,
in particular, for an s-like tight-binding cubic structure. The conditions for the presence of
metallic and insulating phases at all temperatures as well as for the existence of first-order
and higher-order transitions are given. The possibility of formation of bound-exciton states
and the scattering mechanism responsible for the resistivity are also discussed.

I. INTRODUCTION

Transition-metal as well as rare-earth oxides,
sulfides, and borides constitute a large group of
substances which exhibit an unusually wide variety
of electrical and magnetic properties.’ Among
these substances there are (i) excellent conductors,
such as TiO, ReO,, and CrO,, with resistivities?
as low (for ReQ;) as 4x107" Q cm at 77 °K; (ii) in-
sulators® such as MnO and CoO with room-temper-
ature resistivities of 10°~10'® @ cm; and (iii) some
substances whose resistivities show an unusually

large variation with temperature. Of this third
group, some materials present a first-order tran-
sition in the resistivity as a function of tempera-
ture; the transition temperature!'* ranges from

119 °K for Fe;O, to 1070 °K for NbO, and the change
in resistivity at the transition rangess'6 from a fac-
tor of about 20 for TigOy, to a factor of 10% for V,0,
(see Fig. 1). In most cases there is a simultaneous
change in crystal structure, as for instance in V,0,
which goes from rhombohedral (corundum struc-
ture) at high temperatures (2 150 °K) to monoclinic
in the low-temperature phase (£ 150 °K).
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FIG. 1. Conductivity of V,03 in (2 cm)~! as a function
of T-! (after Feinleib and Paul, Ref. 6).

A second subgroup of substances in this third
group exhibits a fairly large but smooth change in
resistivity as a function of temperature. The usual
exponential behavior to be expected from a semi-
conductor changes in a rather abrupt way to amajor
decrease in resistivity followed by an almost con-
stant metal-like value at high temperatures. A
typical example in this subgroup is Ti,O3, shown
in Fig. 2; here” the resistivity drops by a factor
of 40 as the temperature is raised from 300 to
750 °K.

A third subgroup of substances corresponds to
those where the resistivity undergoes a very grad-
ual transition as the temperature is changed by a
large factor. As an example of this type of ma-
terial, ® we can cite SmBg; here the resistivity
changes in a smooth semiconductorlike fashion
from 4 to 20 °K with an effective energy gap of
0.046 eV, and after a somewhat steeper decrease
between 20 and 50 °K, it saturates to a metal-like
value between 50 °K and room temperature (see
Fig. 3).

With respect to magnetic properties, these ma-
terials also behave in a variety of ways. There
are several antiferromagnets among them, for
instance, Fe,O3, FeO, and Cr,0;, as well as fer-
rimagnets (e.g., Mn3O,) and ferromagnets (e.g.,
Cr0O,). The resistivity properties are not neces-
sarily correlated with any long-range magnetic or-
der. For example, VO,, V,03, FezO,, and NiS
all present similar first-order transition in the
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FIG. 2. Conductivity of Ti,0y in (2 cm)™! as a function
of T™! (after Abrahams, Ref. 7).

resistivity, with transition temperatures of 340
150, 119, and 264 °K, respectively. However,
VO, shows no long-range magnetic order, ! NiS is
an antiferromagnet with a Néel temperature equal
to its metal-insulator transition temperature, Fe;O,
is a ferrimagnet® with a Néel temperature of 850 °K,
and there is still a controversy over whether V,0;4
is an antiferromagnet in its insulating phase. 1
While band theory has been successfully used in
explaining the electrical properties of some of the
materials of the first group (conductors), it has
strikingly failed in many other cases. As an ex-

10”
o
10
1
=1
10
o 100 200
3 -1
10/T (°K)
FIG. 3. Conductivity of SmBg in arbitrary units as a

function of 77! (after Menth et al, Ref. 8).
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ample we quote the case of MnO mentioned by Ad-
ler. ' Here we have a d band with ten states per
cation which the crystalline field and spin-orbit
coupling could split at most into two fourfold and
one doubly degenerate band. Now since MnO has
five 3d electrons per unit cell, we conclude from
band theory that MnO is metallic, in contradiction
with the experimental fact that this oxide is a very
good insulator. 2

The assumption that these substances have a d
band which is too narrow to support conductivity
(an assumption that would explain the properties
of MnO) also fails in some cases, such as that for
ReO;, which has one 5d electron outside the filled
bands; then, according to this assumption this ma-
terial should be an insulator. However, ReOQj; is
a very good conductor with a conductivity of 10°
(Rem)™,

Several models have been also proposed to ex-
plain the insulator-to-metal transitions that occur
in these substances. The simplest way to obtain
a transition from an insulator at low temperatures
to a metal at high temperatures is by means of a
temperature-dependent band structure which shows
a band gap at the Fermi level at low temperatures
and a band overlap at higher temperatures. How-
ever, this mechanism would not be applicable to
the many cases where the transitions are sharp,
since, being a continuous parameter theory, it can
only produce a second-order phase transition. A
sharper transition could be obtained if an excitonic
insulator'? state were formed just before the gap
vanishes. It appears, nevertheless, that this model
produces a somewhat gradual transition'? and it is
not likely to yield a first-order one.

Another possibility is to start from the metallic
state and find a mechanism that would produce a
low-temperature insulator. One possible mechan-
ism is a crystalline-structure distortion'® which
could give rise to a reduction of symmetry result-
ing in additional splittings of the bands; then, if
these band splittings produce a gap in the density
of states at the Fermi energy, a low-temperature
insulator is obtained. A similar effect can occur
if the material became antiferromagnetic below
the transition temperature since the antiferromag-
netic order corresponds to doubling the periodicity
of the lattice and therefore to a reduction of the
Brillouin zone to one-half of the original size. Then
the spin-dependent part of the exchange interaction
would produce a gap at the surface of the reduced
magnetic Brillouin zone, 4 and in this way a ma-
terial with a half-filled band would become a low-
temperature insulator. The first of these mech-
anisms, however, cannot explain transitions where
no structural change occurs (e.g., TiyO;, see Ref.
5) and the second one is not applicable in those
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cases where the low-temperature phase is not anti-
ferromagnetic (e.g., VO,, see Ref. 1).

A quite different mechanism for explaining the
insulator-conductor transition was proposed by
Mott. ** In this model two different situations are
considered. First, if only one free electron and
one hole are present in the material, they would
attract each other by a Coulomb interaction V.
=—e?/kr and they would form a bound exciton; in
such a case neither of them could participate in
conduction. Inthe second situation, therearealarge
number of free carriers and therefore the attraction
between electrons and holes would be a screened
Coulomb interaction Vy=— (e2/kr) exp(-7/)).

Then in this case electrons and holes would not
form bound-exciton states and they could partici-
pate in conduction. In the first situation we have
an insulator and in the second a metal. If westart
from a low-temperature insulator in the first situa-
tion and then increase the temperature, the number
of carriers will go from a small to a large number,
and an insulator-metal transition will be produced.
This type of transition will always be sharp because
it is not possible to have a small number n of free
carriers since the energy increases with n near

n =0; therefore, if the state with a large number

of carriers is energetically favorable above certain
temperatures, a sharp transition will be produced.

Mott argued that the state with a large number
of carriers is energetically favorable at high tem-
peratures if the lattice constant is smaller than a
certain critical value. A requirement that the lat-
tice constant must pass through this critical value
can be considered as a main condition for the ex-
istence of this type of transition.

The main objection to this theory is that real
crystals have a lattice constant which can vary
only by small amounts with temperature, andthere-
fore it is very unlikely that their values are near
the critical one. The main criticism we can make
to all these models is that every one of them is
applicable to only certain members of an otherwise
homogeneous family of substances, and therefore
their general validity is very questionable. In this
respect it has become very important to have a
more general mechanism that would be capable of
explaining the wide variety of behaviors which are
found in these substances. It is therefore import-
ant to isolate the relevant parameters and to for-
mulate a model which allows for the various be-
haviors as the parameters are changed. Such a
model is presented here.'® We describe it in Sec.
II, where the various parameters are defined and
estimated. Section III is concerned with the pos-
sibility of exciton formation. In Sec. IV, we pre-
sent the thermodynamics of the model and the pos-
sibility and range of existence of a stable insula-
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tor, a stable metal, a first-order phase transition
between the two phases, or a higher-order gradual
transition. In Sec. V, we discuss the scattering
mechanism which might contribute to the resistiv-
ity. Section VI contains the conclusions.

II. MODEL

The anomalous temperature dependence!” of the
magnetic susceptibility of many of the materials
under discussion (e.g., SmBg) suggests that local-
ized moments play an important part in the mech-
anism of the transition. We propose here a model
which assumes that in the insulating phase (if pres-
ent) the electrons move in highly correlated atomic-
like orbitals which strongly resemble the orbitals
of the corresponding free ions. They therefore
produce a well-defined total-angular-momentum
quantum number J,. One of these localized elec-
trons can be promoted to a delocalized band state.
In this fashion, it can contribute to the conductiv-
ity and it can leave behind an ion with one extra
positive charge and a total-angular-momentum quan-
tum number J. For example, V*(Jy=3) - V***(J = 2);
Sm*™*(Jy=0) -~ Sm***(J = 3).

In this model, therefore, both localized and itin-
erant quasiparticle states are present. Under these
circumstances we have two different types of single-
electron states: (a) bands of extended Bloch func-
tions, and (b) a set of localized states centered at
the sites of the metallic ions in the crystal. The
insulating ground state of this system corresponds
to the case where the localized states are fully oc-
cupied by electrons. Therefore, quasiparticle ex-
citations correspond to either localized holes or
itinerant electrons in the conduction band, 8

In the language of second quantization, the one-
quasiparticle terms of the Hamiltonian are written

as

3= Z} €, (&) aﬁiaa,,;tﬁ? Eb;ob,‘, , (2.1)
o

vko

where a'y, creates an electron in the state K, band
v, with spin o; and bL, creates a hole with spin o at
site ¢. The energies ev(ﬁ) and E are positive defi-
nite and such that

A=min[E +€,(&)]>0

is the energy gap between the valence and the con-
duction band.

The quasiparticle interaction is assumed to be
screened with a screening constant such that only
intra-atomic terms need be considered. The six-
teen kinds of terms that constitute the interaction
part of the Hamiltonian can be arranged into six
groups, each of them characterized by different
interactions G. In this way we are left with the
following six basically different terms:

(2.2)
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G1b1,blsb50, (2.3)
G2blablsClizbia (2.4)
Gabloblzchizclis | (2.5)
GyblsCligiCorigrbia (2.6)
G5CligClriorDlor Crrio (2.7
G6CliaChrio Corrigr Corrnio (2.8)

where the operator ct,; creates a Wannier state at
site ¢ corresponding to the Bloch band (v0) and is
related to alg, by the transformation

Tt _ a2, ikeR; ot
cvfa—N Z>l(e Ty -

The largest terms in the interaction are (2. 3),
where G, corresponds to the hole-hole repulsion.
The values of G, are of the order of 10-20 eV for
this type of material. For example, in the case of
V,0;, the V?* ion becomes V** as one electron is
promoted into the conduction band. The difference
in ionization potential for V? and V**, which is 18
eV, % is a reasonable estimate of G, in this case.
Even when corrected by screening effects, these
values are much larger than the energy gaps found
for these substances. For example, for V,0; the
measured® energy gap is 0.1 eV and in general is
at most of the order of 1 eV. Therefore, the hole-
hole repulsion is the dominant term in the Hamil-
tonian. Configurations which involve more than
one hole per ion are energetically very unfavorable
and need not be considered in our arguments. In
other words, in the limit as G, - «, two holes can
never coexist in one ion, and such a state can be
eliminated from all calculations. In this way in
the manifold of states with no more than one hole
per ion, terms of the form (2. 3), (2.4), and (2.5)
give identically zero contribution; they have, there-
fore been projected out. The most important re-
maining terms are of the form (2. 6) and represent
the electron-hole attraction. Interaction (2.7) and
(2. 8) are smaller since they involve three or four
extended wave functions instead of only two; these
interactions are ignored in this model.?® In this
fashion, the final Hamiltonian is reduced to

(2.9)

= Z; GV(E)aIicavia'*’E Ebgobiﬂ
vko io

-G 2

iga’vv’

b;oczia’ Cyrige biu ’ (2» 10)
where we have assumed G >0 corresponding to an
attractive electron-hole interaction independent

of spin and band index. The model therefore in-
cludes as parameters the effective interaction G
and the band-energy function E +€,(K). This last
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function has an absolute minimum A (which is one
of the most important features of the band struc-
ture) and a bandwidth

W = maxe (k) -min €,(K) . (2.11)

We can also define the corresponding density of
states D(e) and restrict ourselves to either a finite
bandwidth or an infinite one. In either case, it is
also useful to define a density-of-states bandwidth
W, such that the total number of available states
between [mine, (k)] and [W, + mine (k)] is equal to
one electron of each spin per metallic ion. For
the cases in which there is one electron of each
spin per unit cell, we obtain W= W,.

iII. POSSIBILITY OF EXCITON FORMATION

It is important to examine under what conditions
in the present model the electron-hole interaction
leads to the formation of a bound exciton. We know
that in the cases in which we are mostly interested
excitons do not occur since, being bound states,
they cannot contribute to the conductivity of the sub-
stances. We therefore must restrict the parameters
to take on only those values which do not lead to the
formation of an exciton.

In order to study this possibility, let us first con-
sider the system in its insulating ground state where
there are no localized holes and no electrons in the
conduction band; ¥C is then identically zero. Now
we take one electron from the ion at the lattice po-
sition 0, leaving a localized hole there. The Ham-
iltonian (2. 10) reduces now to

=23 €,K)algap+E~G 2 choycpug . (3.1)
vko

w'o

If we restrict this calculation for the case of only
one conduction band and choose the energy scale
such that E =0, then Eq. (3.1) further reduces to

3(3:%;) €50 01, a5, — (G/N) 10 abyaze, (3.2)

kk’o

where we write ez =€(k) and we have made the trans-

formation
ag=N -1/22j eik-chj . (3.3)

The Hamiltonian (3. 2) is diagonalized by making the
transformation

Oy = Ll 03 (3.4)
such that
36:2 Eny arwanc ’
no
where E,; are the new eigenvalues of the system.
The equation of motion
[3€, 0pe)=9C 0y~ 0y 3C==E 1 Oy (3.5)

gives the result
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(Enc - E;ﬂ)un;"' (G/N) .Z; Upge =

k'c

(3.6)

If we now consider the case in which the electron
and the hole form an excitonic bound state, the en-
ergy E,, of this state will be outside the band €3, .
This means that E,, #€g, for all kK and ¢, and Eq.
(3. 6) can be reduced to

/N2 [1/(E, - €2)]= - 1/G (3.7

From this equation, we can find the exciton energy
level E,,. We consider now several types of con-
duction bands. Let us first consider a conduction
band made out of an s electron in a simple-cubic
lattice. The lattice parameter is a and the unit cell
volume is equal to a®. Then in a tight-binding ap-
proximation with nearest-neighbor interactions only,
€3, can be written as

€3,= A+5 W -4 W (cosk,a + cosk,a +cosk,a) , (3.8)

where A is the energy gap at K=0. Equation (3.7)
now reduces to

_l__lf”f"f” dxdydz (3.9)
G 1o JoJo €-E,~flx,9,2)°’ ’
where
GO—A+§W’ (3.10)
fle,y,2)=%W(cosx +cosy +cosz) . (3.11)

We notice that the right-hand side of Eq. (3.9) has
its maximum value at E,= A, which is also the max-
imum value that a bona fide exciton energy might
take. The result of the integral (3. 9) for that value
of E, is known®! and yields (8W)™, where

B(simple cubic)=0.32973 . (3.12)
Consequently, excitons exist if and only if
G=8W |, (3.13)

or in other words, if the electron-hole interaction
is greater than about one-third of the bandwidth.

Similar calculations can be made for a s-like
tight-binding band in the fcc and bcce structures.
Equations (3.9), (3.10), and (3. 13) still hold, but
Eq. (3.11) has to be replaced by

f(x,v,2)=%W(cosx cosy +cosy cosz

+cosz cosx — 1), fce
=3 W cosx cosy cosz , bce (3.14)
and the values of B8 in (3.13) are*
Blfce)=0.557176 (3.15)
B(bce) =0. 35889 . (3.18)

If an electron-hole exchange interaction
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G’ E bJ;uCEocio'bia' (3.17)
ioo’

is considered in addition to the direct term (2. 10),
the excitons that we have considered thus far, whose
energy is independent of the electron and hole spins,
split into a singlet and a triplet excitonic state, with
different binding energies. It is easily shown that
the results (3. 13), (3.12), (3.15), and (3.16) still
hold if the interaction G is replaced by G—~G'(1+s)
where s =1 for the singlet and s =~ 1 for the triplet
excitonic state.

It is also instructive (although not consistent with
any physically reasonable band) to consider a trun-
cated free-electron approximation, such that

€o= A+ WEE/RE | |k <k, | (3.18)
where
ko= (67%)3/a (3.19)

a® is the volume of the primitive unit cell, and the
Brillouin zone has been approximated by a sphere
of radius k,. In this case, the condition for the
existence of an exciton is still given by Eq. (3.13),
but now we have

(3.20)

In order to investigate the exciton-exciton inter-
action, we have studied the possibility of exciton
formation when two electrons are promoted from
the ionic sites 1 and 2 into the conduction bands,
leaving two holes behind. If we restrict ourselves
to only one conduction band, (2.10) takesthe form

Bltruncated free electron) =3

e=2 €(R)al ag, +2E - G2 (¢l cip+chocyy ). (3.21)
ko 4

If as before we choose E =0, use the transformations
(3.3) and (3. 4), and choose the origin such that
R,=-R;=R, Eq. (3.5) yields

(Encr" Efc) Unic+(G/N)Z Yike Un.l;'vzo 3 (3 22)
k’c
where
vip = 2 cos[(K'-K) - R]. (3. 23)

The solution for the “molecular”’ excitonic state
is now obtained following the same line of argument
as for the “atomic” case. It is found that an ex-
citonic (discrete) solution exists only if Eq. (3. 13)
is satisfied, but 8 is now given by

Bl=6 + [B(R)]T

where B is the value for the “atomic” exciton
f(3.12), (3.15), (3.16), or (3.20)] and
W « cos(2k-R)

Za W cos(2k-R)
[BI(R)] "N %3 €0- €3 ’

(3. 24)

(3. 25)

where €, is the value of €3 at the bottom of the band
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k=0. The integral in the right-hand side of (3. 25)
is very complicated in most cases. It is, however,
quite simple for the truncated free-electron model

and yields
[8,(R)]™" = (3/4m)* (a/R) Si(2kyR)

where Si is the integral sine function
Si(x) = f TS gy
o ¥

and %, is defined by (3. 19).
bor distance, we find R=%a:

(3. 26)

For the nearest-neigh-

[Bi(3a))t=1.37 , (3.27)
which yields
B8=0.228 (3. 28)

This calculation, however, is not to be taken too
seriously since it does not take into account the
electron-electron interaction for the two electrons
in the conduction band. Such an interaction is in
this case very important since we must place two
electrons in the same orbital. The interaction, if
properly taken into account, would push the value
of B up to values quite close to the value of original
“atomic” value, implying that “molecular” excita-
tions do not exist. We therefore consider the one-
electron exciton condition (3. 13), with 8 given by
(3.12), (3.15), (3.16), and (3.20), as the boundary
line between excitonic and normal states.

If G <BW, it can be easily proved that (3. 6) yields
no bound state and that the energy eigenvalues E
are corrected from their unperturbed value €3, by
an infinitesimal amount of order (G/N). For N,
excitations, that correction is of order (GN,/N),
in which case the Hartree mean field approximation
is a sensible one to make.

IV. THERMODYNAMICS

In this section we study the behavior of the model
as a function of temperature when the Hartree (mean
field) approximation is made. This means that the
interaction Hamiltonian

Kint==G 27 blctigicyiigibi (4.1)
igo v’
is replaced by its mean field value
(3yae) == Gnz [ D(€)nle)de (4.2)

where ny is the average number of holes per ion,
D(e) is a density of electron states, and n(e) is the
average occupation of electron states of energy €.
The internal energy of the system in this self-
consistent field approximation is therefore given by

8= [ D(e) (e~ Gny)nle)de (4.3)

Equation (4. 3) is subject to the constraint
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Nnz= [ D(e)nle)de (4.4)

which simply states that the number of electrons is
equal to the number of holes. In (4.4), N is the
total number of ions in the crystal, and, as in Sec.
III, we have taken E (the hole energy) to be zero.
The free energy of the system is obtained by (a)
writing the internal energy, (b) substracting the
entropy term, and (¢) minimizing the whole ex-
pression with respect to n(€), subject to the con-
straint (4.4). The expansion to be minimized is

F=8-Ts= f: D(e) (e~ Gnp)nle)de +ky T
X f: D(e){n(e) Inn(e) + [1 - n(e)]In[1 - n(e)]}de

+Nkg T(1=ng)In(l =ngz) +Nkg Tnplaler/q),
(4.5)

where ¢ =(2J +1)/(2J,+1) is the ratio of the spin
multiplicities of the ions with and without a hole,
respectively. The three entropy terms in (4. 5)

correspond, respectively, to the electrons, the

holes, and the ion spins. Minimizing (4. 5) with
respect to n(e) yields

-1
n(e) = l:aTexp<—€;—2§,£1> +1] , (4.6)
B
where
ar=ng/q(l-ny) (4.7)

and (4. 4) should also be satisfied. Replacing (4. 6)
and (4. 7) in (4. 4), we obtain a transcendental equa-
tion for n,, the solution of which depends explicitly
on D(€) and G. For given values of these quantities,
and as a function of temperature T, the transcen-
dental equation may give one or more solutions for
np. In the case of multiple solutions (usually three
appear), the absolute minimum of Eq. (4.5) has to
be determined. (In the case of three solutions, two
are relative minima and one is a relative maxi-
mum; the values of the minima have then to be com-
puted to determine which one of them is the absolute
minimum. )

In what follows, we discuss in detail the special
case of a simple-cubic lattice in which ¢ =2 and the
density of states D(e) is approximated by

D(e)=0, €e<A

1 6{c — A 1
=Do[1—;cos'1(—(—w—>—l>} , A<e<A+sW
ZDD; A+%W<E<A+%W(4.8)
Do oot (M—5> , A+EW<e<a+W

T w

=0, e>W+a,
where
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FIG. 4. Occupation of the conduction band as a function
of T™! for an insulating phase. The parameters are W
=704, G=17.5A,

(4.9)

The model thus specified contains only three param-
eters: the band gap A, the bandwidth W, and the
electron-hole interaction G. If we measure ener-
gies in units of A, the only two parameters are
G'=G/Aand W'=W/A. Inthe G'= W’ plane there
will be, therefore, several regions in which the
system will exhibit different behavior: (i) Excitonic
phases appear when conditions (3.13), (3.12) are sat-
isfied:

G'>0.32073W"' .

Dy=3N/W .

(4. 10)

(ii) The solution of n, as a function of A/ky T for a
given set of parameters might take the five general
shapes shown in Figs. 4-8. Of these, Fig. 4 is the
only one which shows only one solution as 7- 0.

We call this an insulating behavior. The existence
of three solutions as 7= 0 corresponds to

()0
anT np=1 ’

and consequently the boundary line for the insulating
behavior is given by

(4.11)

G'=0.25W'+0.5 (4.12)

(iii) Figure 8 corresponds to what we call a metallic
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FIG. 5. Occupation of the conduction band as a function

of T7! for a system that exhibits a smooth transition. The
parameters are W=704, G=20, 64,

behavior, i.e., as T'- 0, there are three solutions,
but the absolute minimum corresponds for all values
of T to the higher value of n,. This means that a
metal is obtained whenever

Enp=1)<0 .

The boundary for the metallic case is therefore
given by

fAA*l’zweD(e)de =NG ,

(4.13)

(4. 14)

which yields

G'=0.3125W'+1 (4. 15)

(iv) Figure 6, which is a limiting behavior between
Figs. 5 and 7, corresponds to the boundary between
a first-order phase transition (Fig. 7) and a smooth
insulator-metal transition (Fig. 5). If we define the
quantity

A=Ay T (4.16)

the condition for critical behavior, i.e., the ex-
istence of a curve of the type shown in Fig. 6, is
that

(aA’) 0 (32 A') 0
= —‘T— -
me/w,c ’ mr /w,c

are both satisfied simultaneously.

(4.17)

In other words,
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np as a function of A/ky T has a “long” vertical
slope. We have calculated the implicit equations
(4. 17) numerically and we find that they are satis-
fied (approximately) whenever

G'=0.204W'+0.633

(v) All these curves are summarized in Fig. 9. In
the G'—= W'plane, there are five well-defined re-
gions: (a) insulator, (b) a region of smooth insula-
tor-to-metal transitions, (c) a region of first-order
metal-to-insulator transitions, (d) a metallic region,
and (e) a region where excitons can occur (whichwe
have not analyzed in detail).

It is interesting (although physically meaningless)
to consider the limit W- 0, ignoring at the same
time the possibility of exciton formation. In this
case, all calculations can be made analytically
(they have been reported in a previous paper from
two of the present authors!®). For the present ex-
ample, in such a limit we find (a) insulating behavior
for G<0.54, (b) smooth transitions for 0.5 A<G
<0.633 A, (c) first-order transitions for 0.633 A
< G< A, and (d) a metallic phase at all temperatures
for A<G.

For this model, and in the region where first-
order transitions take place, the transition tem-
perature is well approximated by

(4.18)

1.0

0.4

0.2

0.1
o 0.2

0.4 A /kT 0.6

FIG. 6. Occupation of the conduction band as a function
of T! for a system showing critical behavior. The param-
eters are W =704, G =20.92A.
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FIG. 7. Occupation of the conduction band as a function

of T-! for a system that exhibits a first-order transition.
The parameters are W="704, G=21,4A,

kp T,=0.481(A-G) , (4.19)
which gives a maximum value of
kg Toy=0.1774A . (4. 20)

For the general case, an approximate formula for
the maximum possible transition temperature is
given by

gy Toy=0.177A+0.052W | (4.21)

which allows for higher values of the transition tem-
perature in the case of wide bands.

V. LOCALIZED HOLE SCATTERING

In Sec. IV, we have discussed the equilibrium
value at various temperatures of the number of
electrons in the conduction band. The curves
(Figs. 4-8) shown in Sec. IV strongly resemble®
the conductivity curves (Figs. 1-3) as determined
experimentally. However, the proportionality be-
tween carrier density and conductivity is only valid
if a constant mobility, i.e., a constant relaxation
rate, is obtained. Most of the data (with some no-
table exceptions, e.g., those shown in Figs. 1 and
2) reported in the literature are taken on powders
and dirty samples. Therefore, impurity and im-
perfection scattering should dominate at most
temperatures.
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FIG. 8. Occupation of the conduction band as a function

of 77! for a metallic phase. The parameters are W=70A4,
G =23.0A,

In our model, however, the electrons excited
from the localized states into the conduction band
leave behind a set of randomly distributed holes
which, in principle, might produce some contribu-
tion to the scattering rate. We have therefore cal-
culated the contribution from such a scattering pro-
cess to the reciprocal relaxation time and found the
contribution to be negligible in all cases.

In the insulating limit, the standard procedure

GI
METAL (ALL T)
30
EXCITONIC PHASES
20
SMOOTH
FIRST ORDER
S TRANSITIONS
TRANSITIONS
10
INSULATOR (ALL T)
0 50 w' 100
FIG. 9. Phase diagram for a simple-cubic structure.
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for calculating relaxation mechanism in semicon-
ductors® was applied. The same attractive term
in the Hamiltonian which gives rise to the phase
transition produces a relaxation rate given by

1/7(€) = (2Y2m32 Qo/ 1 "®) np G2 (e — A)2,

when m, is the effective mass at the bottom of the
conduction band, (e - A) is the electron energy mea-
sured from the bottom of the conduction band, and
Q, is the specific volume (volume per ion). In all
cases, (5.1) should be much smaller than the im-
purity relaxation rate, due to the factor n,.

The situation is not so clear in the metallic range,
and in principle the localized ions may be respon-
sible for Kondo-type24 scattering at very low tem-
peratures. Such an effect may be of interest and
deserves a special study in itself. There is, in
addition, the straightforward scattering produced
by the same interaction term which we have con-
sidered thus far. In the limit in which#,—-1, the
scattering rate at the Fermi level for a free-elec-
tron-like band® is given by

(5.1)

1/7(ep) = m*kpQy/1H3) (1 =ny)G? | (5.2)

where %k is the Fermi wave vector. Such an effect

again is negligible.

We therefore conclude that, with the possible ex-
ception of those substances which are metallic at
very low temperatures in which some spin-dependent
scattering may be important, the temperature de-
pendence of the conductivity, as reported experi-
mentally, can be interpreted in our model as de-
scribing the carrier density at equilibrium.

VI. CONCLUSIONS

We have presented here a very simple model for
the metal-insulator transition in transition-metal
and rare-earth oxides, sulfides, and borides. It is
based on a mean field approximation applied to qua-
siparticles, which of course may have some im-
portant many-body corrections.

The main feature of this model is the presence
in the same substance of two kinds of electronic
states: (a) localized highly correlated states, which
strongly resemble the configuration of the corres-
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ponding ions and in which the interionic effects are

negligible and (b) bona fide Bloch-like states, which
extend throughout the crystal and in which the elec-
tron correlations are only of secondary importance.

The residual interactions between localized and
extended states (which in the mean field approxima-
tion are proportional to the square of the carrier
concentration) are responsible for the changes in
occupation of these states. The relative position
of the localized levels with respect to the extended
ones is therefore strongly dependent on the occupa-
tion of both.

The model is flexible enough to allow for all va-
rieties found in the substances under consideration:
good insulators, good metals, first-order transi-
tions, and smooth transitions. In the way presented
here, however, it is not complete, because (a) it
does not include higher-order many-body correc-
tions; (b) it does not allow a self-consistent rear-
rangement of the parameters (which should be very
important in the case of first-order transition with
their concomitant change in crystal structure, unit
cell volumes, band structures, etc.); (c) it neglects
smaller effects, like spin-spin interaction which
are responsible for the very interesting magnetic
properties found throughout the family.

The most serious criticism which can,be applied
to the model is the assumption of a short-ranged
interaction G which is independent of %, the con-
centration of electron in the localized level. The
long-range Coulomb interaction cannot be completely
screened off in the insulating limit, and corrections
due to the long-range tail may become important.

If the short-range assumption is taken at face value,

however, the dependence of G on %, should be small,

since only short distances are involved and screening
is therefore not important. The problem, however,

deserves more study and further thought.

In conclusion, we would like to point out that sim-
ilar models can be built for substances which are
not necessarily insulators but which have bothwell-
defined localized and extended states. Such a case
can be made for the rare-earth metals, and some
of the interesting phase transitions found in them?®
can probably be explained along lines similar to
those presented here.
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The annealing behavior of KBr, y-irradiated at 10 °K, was studied by means of simultaneous
measurements of the thermally stimulated conductivity and luminescence and of the optical
absorption. Over the investigated temperature range between 10 and 35 °K, the conductivity
and luminescence behaved very similarly, and the latter did not change its spectral distribu-
tion, All observed peaks have been ascribed to the annealing of the irradiation-induced im-
perfections of the lattice structure. Four peaks, appearing at 14, 17, 20, and 24 °K with
characteristic activation energies between 0. 025 and 0. 058 eV, which saturate in intensity
after a moderate irradiation dose, are believed to be due to the generation of conduction
electrons. A smaller peakat22°K, which was observed only in the conductivity data, may be
due to ionic motion. The most prominent peak appeared at 27 °K, and it was shown by “ther-
mal cleaning” experiments that this peak is caused by processes with activation energies of
0.062 and 0.100 eV, Here, too, the signals are believed to be caused by conduction electrons

and their consecutive recombination with traps.

The 0.062-eV process has “mixed-order”

kinetics, i.e., there is an excess of recombination centers. At higher irradiation doses, the
0.100-eV process becomes dominant. This process seems to be associated with the first an-
nealing stage of the H band, which had an activation energy of 0.097 eV. A tentative model of
the H-center decay involves the dissociation of the H center followed by an interstitial-vacancy

recombination.

I. INTRODUCTION

It is generally believed that the low-temperature
annealing processes of the interstitial-type centers
in irradiated KBr crystals are associated with the
recombination of complimentary centers. Consid-

erable light on the nature of the annealing of the Br~
interstitial has come from the kinetic studies of

the a-band annealing carried out by Smoluchowski
and his co-workers.}’? In particular, these workers
suggest that the annealing event at 22 °K is due to a
random migration of Br~ interstitials with a motion



