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Retarded Dispersion Energy between Macroscopic Bodies
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We calculate the change in self-energy of the electromagnetic radiation field in the pres-
ence of two dielectric bodies A and B. Starting from Maxwell's equations, the perturbed
radiation field is expanded in terms of plane waves. The perturbed frequencies are obtained
by applying quantum-mechanical perturbation theory. The sum over the perturbed minus
the unperturbed frequencies, giving the retarded dispersion energy between the two bodies,
is evaluated explicitly for the case of two spheres A and B. It is shown to assume a finite
value at zero separation d of the spheres, so that no assumptions regarding an appropriate
minimum separation are necessary. The total dispersion energy between bodies A and B,
which includes also the energy gain of the material modes, is found via a complex integral
transform. The total dispersion energy at small and Inedium separations is in agreement
with previous results, i.e. , we obtain a d relationship at separations smaller than the
radii of the spheres, and a d relationship at separations larger than the radii of the spheres.
In the retarded case, i.e. , at separations d large compared with the characteristic wave-
lengths in the absorption spectra of the dielectrics, the dispersion energy is found to obey
a d law at separations d smaller than the radii of the spheres and the Casimir-Polder d 7

law at separations d larger than the radii.

I. INTRODUCTION

The dispersion energy between two molecules
A and 8 is due to a correlated motion of their elec-
trons. Calculations of the dispersion energy be-
tween the two molecules must account not only for
these quantum-mechanical electron correlations,
but also for their quantum-electrodynamical cou-
pling to the external radiation field. The energy
gain due to the electron correlations is proportional
to the inverse sixth power of the separation d be-
tween the molecules. The coupling of the electron
correlations to the radiation field removes the
latter from the position of the molecules so that
the d dependence of the dispersion energy is re-
duced to a d dependence at separations d larger
than the characteristic molecular wavelengths.

The dispersion energy between two macroscopic
bodies A and 8 was first treated by de Boer and
Hamaker, who calculated the dispersion energy be-
tween two spheres by summing that between any
two molecules. These additive pair terms do not
account for the screening of the interaction fields
by the remaining molecules, so that the calculations
on the dispersion energy are correct only at separa-
tions d smaller than the Debye radii of the dielec-
trics involved. Lifshitz3 conducted a macroscopic
investigation on the dispersion energy between two
dielectric half-spaces. In his treatment, quantum
mechanics is replaced by a random field term in the
induction equation. He finds the perturbed radiation
fieM by solving the relevant Maxwell equations and

calculating the force of attraction between the half-
spaces from the Maxwell stress tensor. A some-

what simpler approach, based on reaction field
methods, has been adopted by Linder and by Mc-
Lachlan for the investigation of the dispersion
energy between macroscopic bodies. The only
quantum-mechanical element left in their treatment
is the fluctuation dissipation theorem, which re-
lates the intensity of the dielectric fluctuation
fields to their dissipative effect.

A third method of minimizing the quantum-me-
chanical effort is to calculate the dispersion energy
between macroscopic bodies from the energy
change of their electromagnetic normal modes.
This method is generally applied in connection
with the dipole model of dispersion. Its application
to molecules is included in London" s basic papers
on dispersion forces. Bade~ investigated the higher-
order interaction terms between identical mol-
ecules. Renne and Nijboer succeeded in summing
this perturbation expansion exactly for the case of
one molecule opposing a half-space consisting of
the same kind of molecules. An extension to in-
clude arbitrary spatial distributions of arbitrary
molecules was proposed by Langbein. " Since only
macroscopic screened dipole fields enter the final
energy expression, it is now possible to treat the
dispersion energy between bodies of different geom-
etry explicitly.

Compared with the fluctuation field methods, the
dipole model has the disadvantage of not including
retardation effects. The electric field of a har-
monic dipole oscillator does not satisfy the vector
Helmholtz equation, i.e. , a harmonic dipole oscil-
lation has only a finite lifetime and interacts only
incompletely with the neighboring harmonic dipole
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oscillators. An exact treatment of this retardation
requires an expansion of the dipole fields in terms
of eigenfunctions of the vector Helmholtz equation.
This suggests avoiding the dipole model altogether
and starting directly from eigenfunctions of the
Helmholtz equation.

The inverse method of calculating the dispersion
energy between macroscopic bodies only from the

energy change of the external radiation field was
introduced by Casimir, ' who applied it to the case
of ideal conductors in vacuum. It was later ex-
tended to the nonretarded dispersion energy be-
tween dielectric half-spaces by van Kampen,
Nijboer, and Schram. '

In the present paper we expand the radiation
interaction between two macroscopic bodies A and
B in terms of plane waves, which represent a com-
plete set of eigenfunctions of the Helmholtz equa-
tion. We calculate the dispersion energy from the
change in self-energy of the total electromagnetic
radiation field. The eigenfrequencies of this radia-
tion field we determine by means of perturbation
theory. Owing to the use of plane waves, we can
simply write down the perturbation expansion of
the eigenfrequencies of the delocalized vacuum
modes, which arise by a one-to-one correspondence
from the vacuum modes in the absence of the di-
electrics. The localized material modes of A and

B, on the other hand, arise from proper linear
combinations of degenerate plane waves, so that
before setting up their perturbation expansion, one
needs a diagonalization with respect to the perturb-
ing dielectrics A and B.

We discuss in detail the effect of the delocalized
vacuum modes. By calculating the perturbed
eigenfrequencies and adding up the resultant energy
changes, we obtain the dispersion energy. The
expression thus derived we evaluate for the case
of two attracting spheres. This vacuum contribu-
tion to the dispersion energy turns out to be finite
at zero separations and to vary as cp cgd
+(c2 —cslnd)d at small separations d of the spheres.
At separations d larger than the characteristic
wavelengths of the dielectrics, we obtain a d
relationship for the dispersion energy at separations
d smaller than the radii and a d 7 relationship for
the dispersion energy at separations d larger than
the radii of the spheres. By shifting the contour
of the frequency integration to the imaginary axis,
we find that the total dispersion energy between
the two spheres A and B at small separations d is
given by the extended nonretarded Hamaker formula
which we derivedpreviously by means of the dipole
model, and by an extended retarded Casimir-
Polder formula' at large separations d. These re-
sults still depend on the contour integrals around
the poles of the reciprocal dielectric constants
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FIG. 1. Dielectrics A and B.

(m /c —curl curl co/e) D„=0. (4)

By assuming that the total volume V is large com-
pared with the volume of the dielectrics A. and 8,
we can consider these dielectrics to be small per-
turbations for the eigenfunctions of (4) in absence
of A. and B. A complete set of such unperturbed
eigenfunctions are the transverse plane waves,
which suggests a relation of the form

D. =2; a. (q) q),
where

~q)= V ' exp(iqr) and (qa) =0, (6)

in agreement with (2).
The substitution of (5) for D„ in (4), and the use

of the Fourier transform

cancelling with the material-mode contributions
to the dispersion energy, as is the case in the
Casimir-Polder' and in the Lifshitz calculations.

A more detailed treatment of the material-mode
contributions to the dispersion energy will be given
in a later paper.

II. PERTURBATION THEORY

Let us consider a large volume t/', in which two

macroscopic dielectric bodies A. and 8 of arbitrary
shape are embedded (Fig. 1). Bodies A and B may
be inhomogeneous with dielectric constants e, (~, r)
and &2 (v, r) but at present nonmetallic, so that
Maxwell's equations reduce to

(1/y) B +curlE=0, —(1/y)D +curlH=O, (1)

divB = 0, divD = 0, (2)

where y =co p. o.c . In order to solve Eqs. (1) and

(2) with regard to the eigenfrequencies of the exter-
nal radiation field, we seek the harmonic solutions

(3)

thus obtaining the modified Helmholtz equation
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a.(q) «a(k) for qok. (8)

The material modes of the dielectrics A and B, on
the other hand, are associated with the removal of
the vacuum modes from A and B. They arise from
properly diagonalized linear combinations of plane
waves, which for instance in the case of spheres
A and B are given by the spherical Bessel functions".

Assuming (8), we restrict ourselves in the follow-
ing to the investigation of the vacuum modes. A
second-order perturbation treatment of (7) by means
of the inequality (8) yields

—
z

—k~ k —0&

(ql &o/e k) &kl &o/e q&

;.; (~'/c')-q'&ql eo/e lq&

x [kx [kx [qx [q x a(k) ]]]]=0 (9)

Since it is a vector equation, (9) is equivalent to a
second-order secular determinant, hence

+ (ql eo/e lk)(kl co/& lq)
(~'/c')-q'&0l eo/e l0)

x [q' ——,'(q|+qo)]+~, (10)

before application of the curl operators, yield

(~'/c')a(q)+~; &ql eo/e. lq'&I:q Iq a(q')]]=o.
(7)

Equations (5) and (7) are valid for both the vacuum
and the material modes in V. The vacuum modes
in the presence of the dielectrics A and B arise by
a one-to-one correspondence with the vacuum modes
(k) in the absence of A and B, i. e. , they can be
obtained by the assumption

field must include both the vacuum and the materi-
als modes and both polarization directions for a
given wave vector k. This entails that out of the
three terms on the right-hand side of (10), only the
second contributes to the dispersion energy 4E».
The first term does not depend on the relative posi-
tion of A and B; the splitting + ~ vanishes by sum-
ming over the polarization directions.

Since the dielectric constants e,((o, r), eo((o, r)
are, in general, complex, the perturbed radiation
frequencies ~ are also complex. The presence of
bodies A and B causes the perturbed modes to de-
crease exponentially in time according to the gen-
eral relationship Im /so/&;; (o&, r)[( 0 for arbitrary o&.

This exponential decrease is a consequence of the clas-
ical treatment of the perturbed modes by means of the
macroscopic Maxwell equations. Its quantum- me-
chanical analog is the destruction of single photons
by absorption in the dielectrics, that is, by absorp-
tion by the material modes of A. and B. However,
if the two bodies A and B are assumed to be in
thermal equilibrium with the radiation field, the
material modes of A. and B must emit as many
photons to the vacuum modes as the latter emit to
the material modes.

The total sum over the imaginary parts of the
perturbed frequencies must vanish in the case of
thermal equilibrium. Thus for the vacuum con-
tribution to the dispersion energy, we have

nE» = Re Z —,'k (o& —ck) coth + const, (12)
R, pol 2kT

where by const we indicate terms independent of
the relative position of A and B.

Substituting (10) for o&, we obtain

nZ»= —,'kRe Xckcoth g(d

2kT

where q» q2 denote the components of q normal to
k, and ~ is given by

(ql ~o/~ lk&&kl eo/e lq&
oqS,"gr, ((o'/c') —q'(ol eo/e

l
0)

(fl ' &' I»(&l ' &' l~&

((o'/c') —q (ol eo/e I0)
(»)

2 ~ is the splitting between the two transverse
modes corresponding to the same wave vector k.

III. DISPERSION ENERGY

((o'/c') —q'

k'q'+ (kq)'
x — +const .

2k

The sums over k and q in (12) include all plane
waves, which satisfy periodic boundary conditions
at the surface of V, i. e. , the number of terms in
these sums is proportional to V. The matrix ele-
ments &kleo/e q), on the other hand, are inversely
proportional to V due to the orthogonality of l k)
and lq) for Kwq and eo/e =1 in the exterior. We
obtain, according to (8),

The dispersion energy ~F.» between bodies A
and B is given by that portion of the total radiation
energy, which depends on the relative positions
of A and B. The summation over the radiation

k —'q = —— + dr] ——0

x exp [-i(R —q, r)] . (14)
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Equation (14) allows a continuous transition to in-
finite volumes Vin (13), if simultaneously the sums
over k and q are transformed into integrals. This
transition means that the perturbation of the indi-
vidual plane waves lk), lq) by the presence of
bodies A and B becomes infinitely small, while the
number of waves increases in such a manner that
the total energy change remains finite.

Hence,

g Sc S(d&Z»= (2,6 Re dkkcoth —„27j 2kT

k'q'+(k q)'' "2k'(k' —q')

x [E„(k—q)Fa(q —k)+F„(q- R)Fa(k- q) j,
where Ez(R), Fa(k) are the dielectric form factors

FIG. 3. Polar coordinates.

2@c ~ @Qp
rkE» =Re 4 dkkcoth dqcosq z

F„a(k)= f„dr(1 —co/e)e' ''. (18)

Equation (15) is valid for arbitrary composition
and geometry of the two bodies & and &. It repre-
sents only the vacuum contribution to the dispersion
energy, and is obtained by applying second-order
perturbation theory, i. e. , higher-order terms in
Ez(k), Ea(k) are omitted.

IV. SPHERES

In the following, we restrict ourselves to the
attraction between two spheres A and B, see Fig.
2. We denote the centers of the spheres by 0 and
z and their radii by 8, and R2. The composition
of the spheres we assume spherical, so that the
dielectric constants depend on the relative radii
r„ra only. Then, for the form factors E„(R),
Ea(g we obtain

Z„(@=4fk.,",((
'l sinks

e, ((o r,) ] kr,

sinqra kalk —ala+(k, k —q)
q, k'(k' —lk —q l')

(19)

and find

' 2k-q1 q'
2k+q

l

2k (2O)

Sc 6p
&F~B=~ Re dkcoth —

[ dip', 1 ——
7r 2kT

0

For an evaluation of the k and q integrals in (19), we
introduce polar coordinates with respect to the axis
z for q and with respect to the axis q for k (see
Fig. 3). Noting that the H„q(, integrals relate
only to cosqz, whereas the 6)k, yk integrals relate
only to the last quotient, we use

4'd k'lk - ql'+ (k, f -q)' k q q'
ka(kz lk

~

z) q 2k 8k

4' ( k) = 4 p (ik ~( 4efde, e', ((—
EZ (4(, ra

B

Substitution of (17) and (18) in (15) yields
(18) where

drzrz 1 ——(t((k, z),
B 2

(21)

4(k, z) =
qa sinqz sinqr, sinqr2

(0

'2k-q '

k ——,'k q +-8 q ln — — — — —4k'q+-,'kq
2k+q

(22)
By partial integration we can obtain for P(k, z) the
simpler equation

2k

(t((k, z) = —v (dq/q ) cosqz sinqr, sinqrz
0

FIG. 2. Attracting spheres. x (k' ——,'k'q'+-, 'q') (23)
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In the special case of homogeneous spheres A. and
&, we also evaluate the r, and x2 integrals in (21),
yielding

~F»- — '--'- d~ Re 1--' 1-—'

x coth —X(k z)
A(d

2kT (24)

where
20

X(k, s) = dq cosqs — —cosqx,sinqx&

0 q'V1

slnqt'2 k 1k 1—cosqf2 ————
2
+-

qfj q4 2q2 8

(2s)

(26)

The dispersion energy between two homogeneous
spheres turns out to be a frequency integral (ra = ck)
over the deviations of the dielectric constants
E&(&d), 62(&d) from 60.

A sketch of the weight function X(k, s) over k is
shown in Fig. 4. The parameter of the different
curves is the separation d = z —R, —R2 of spheres
A and &. By expanding the brackets in (25) as a
Taylor series with respect to qR~, qRz in the region
kR„kR2«m, and by retaining only the cosine terms
in the region kR&, kR2» &, we obtain the following
approximations:

for kR;, kz «m

X (k, g)- g RtR~
k sin2ks/s, for kR;«v, kz» v

~~t' k ——,
' vk (z —Rg —Ra},

I
for kR, » v, kz «w

sin2k(s —R~ —R2)

& for kR;, k(s —R, —Rg)» & . (27)

The degree of approximation to this asymptotic be-
havior can be gathered from Fig. 4, which is plot-
ted using the assumption of equal radii, R, =R2.

V. ASYMPTOTIC BEHAVIOR

For the evaluation of (24) we note that the dielec-
tric factors 1 —&0/&~(&u) are in general resonance
functions, i. e. , 1 —e o/c,.(u&) is positive at u& = Q,

has peaks at the characteristic frequencies & =co;&

(j = 1, ... , n) of the dielectrics A and &, and de-
creases with & at high frequencies co» co;&.

These properties, together with properties (26)
and (27) of X(k, s), guarantee the convergence of the
dispersion energy (24) for arbitrary radii R, and
R2 and arbitrary distances z, and also for arbitrary
temperatures T. Omitting the temperature de-
pendence of ~~&, we distinguish the following
types of convergence of (24):

(a) The dielectric term Re(1- eo/e, ) (1 —zo/em)
decreases more rapidly than the structure term
X(k, s). This is the case if k(s+R, +Rz)«v for all
values k up to the characteristic wave numbers
k=k;;=+;~/c of the dielectrics, that is, if the
radii R, and R2 and the distance z are small com-
pared with the characteristic wavelengths ~;, of
the absorption spectra. Substituting for Re (1 —&o/
e,) (1 —eo/ez) its limit at high frequencies, we ob-

3
R;X tk,z )

FJG. 4. Weight
function X(k, z).

I

2K
I

1

I

CENT,

I

0.5

I

Sz
I

0.333

81T.
I

@25

10' R; k
I

Qj X/R;
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00 1 ~ ~s'6 &s+ &3
dk X(k, z) =

R R, (z —rgrz) z —r, —r

"dkx —„, X(k, z),
0

(2S)

-, +Rg -~+R~—In(z —r —r )
J -R~ g -R

2

. (34)

f"dk
k, X(k, z) =-—,4 —, (z'+3R', +3R',)

0

(z-r, —rz)' 1, z Rh

RR 24 6 &&g —&(&a+ &a ~

At separations small compared with the radii,
z —R, -R2«R» R&, we keep only the first term in
(34) and find

&E»= ——
7 lim Re 1- 1—

Ri R

x (z+r, +ra) ln(z+r, +ra) (29)

RjRg
z(z-R, -R,)' (33)

At separations small compared with the radii,
z —R, -R~«R»R„~E» takes the general form

b E„z~ jco —c)(z —Rq —Rz)

w [cz —c3 ln(z —R, —Rz)](z —R, —Rz) j . (30)

The dispersion energy ~E» and its spatial deriva-
tive, the dispersion force, are finite at the separa-
tion d = z —R, —Rz = 0, whereas the second derivative
has a logarithmic pole. For the dispersion force
I"» at z-R, —R&=0, we obtain

d co cq R(R2 2

d* " (R ~ R 'I R R (R R

(d«Ri, Rz« X;,) . (31)

For radii R, and R2 small compared with the sep-
aration d, we obtain from (28) and (29)

t

~E» ~ — '3 lim O'Re 1 —~ 1-~
zp~oo E'p

(32)

The dispersioa, energy between spheres with very
small radii, R» R2«z«X;&, is proportional to the
volume of the spheres and inversely proportional
to the third power of the separation d =z.

(b) The structure term X(k, z) decreases more
rapidly than the dielectric term Re(1 —zo/e, )(I —zo/
zz), which requires that k(z sR, +Rz)» v for the
characteristic wave numbers k= k, , = m, ,/c of the
dielectric s. We expect a retarded interaction. Sub-
stituting for Re(1 —eo/e, )(1 —zo/zz) its limit at low
frequencies, we obtain

The retarded dispersion energy &E» between two
rather close spheres is proportional to the inverse
square of their separation d. This is one power in
1/d more than we obtained for the nonretarded case
in Ref. 10. Moreover, the frequency integral over
the dielectric term Re(1 —zo/e, )(1 —eo/ez) is re-
placed by its limit at low frequencies.

At separations large compared with the radii,
z-R, -Rz»R„Rz, we obtain from (33) and (34)

(36)

The retarded dispersion energy is proportional to
the volume of the spheres and obeys a z law. This
again is one power in 1/d more than obtained for
the nonretarded case in Refs. 10»d 11.

We will learn in Sec. VII that the oscillations (27)
of X(k, z) and the explicit shape of Re(l —zo/e, )
x(1 —zo/&z) may cause oscillations of &E„a with the
separation d, which at medium separations pre-
dominate over the d ' relationship.

(c) A third important situation occurs if the radii
R& and R2 are large, but the separation d is small
compared with the characteristic wavelengths of
the dielectrics. From k(z-R, —Rz) «v and

k(z+Ri —R2), k(z —Ri+Rz), k( +Rz&+Rz)» v,
we deduce that, of the products of circular functions
in X(k, z), only those yielding circular functions in
q(z-R~ —Rz) must be retained. Using (27) we ob-
tain

&E»= — ' lim Re 1 —~ ——v (z- R& —R2) dk k Re 1 —— 1 ——1 2 ~o &0

16 1 2

0 Eg

dkX(k, z) (33) + (z- R& —Rz) [cz —c~ ln (z —R& —Rz)] . (37)
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Since from the general relation e*(m) = e( —(()*) we

can prove

dk k"Re 1 ——1-~ =0 for n = 0, 2
Ep

0 &2

dkk 1 —— 1 —~ for n=1,
p &a

(38)

we find the first term in the braces of (37) to be
negative and the second term to vanish. We obtain
apositive dispersion energy ~E», i.e. , a repul-
sion of bodies A and B rather than an attraction.
The removal of the vacuum modes from the inter-
space between A and B causes an increase of the
total radiation energy.

Expression (37) matches the general form (30)
for small separations d, so that we finally obtain

the investigations of Casimir and Polder and of
Lifshitz and that the results based on this sugges-
tion agree with our previous results for the non-
retarded case. Casimir and Polder' exclude the
poles of the molecular susceptibility by their path
of integration and add the material modes after-
wards. Lifshitz3 includes the material modes from
the beginning, so that the resultant integrand has
no poles in the + region in question. The cancella-
tion in the case of Dirae electrons in a common
external potential, which interact with photons, was
discussed in detail by Power and Zienau. '

Let us first transform the weight function X(k, z)
according to (25). We express cosqz as exponen-
tials, introduce complex variables +iq instead of
q, and shift the contour of integration from the
dashed line to the solid lines in Fig. 5. I" is an
arbitrary point on the real positive q axis. Hence,

AE»~ [c()—c~d+(ca —cslnd)d ]R)Ra/z, d «&;q, R;

R,Ra /zd,
~R,'R,'/z',

R,'R,'/z',

g,.
&
«d «R,

R,.«X, «d

X,„R,. «d . (39)

sinhqR,x coshq R(—
qR,

VI, COMPLEX INTEGRATION

We stated in Sec. III that nE» according to (15)
represents only the vacuum-mode contribution to
the dispersion energy. However, an exact theory
on the dispersion energy must include the material-
mode contributions.

The material modes of a dielectric are linked to
the zeros of its dielectric constant c. Close to
these zeros large electric fields E require only a
small electric displacement D, so that the electric
modes inside the dielectric have only small ampli-
tudes in the exterior. " Correspondingly, we find
that the perturbation expansion (9) for (&u/c) in the

presence of A and B diverges in the vicinity of

e, = 0. There exist additional branches for ((()/c)
which can be obtained by a perturbation treatment
of (7), if zero-order functions diagonalized with

respect to A or with respect to 8 are used.
Although we defer an exact treatment of the

material modes to a later paper, we may obtain a
strong hint regarding their influence from this
correlation to the poles of 1/e;((()): A shift of the
contour of integration in CE» according to (24)
from the real to the imaginary frequency axis re-
quires an exclusion of the poles of I/e;(~). We
suggest that the contour integrals around these
poles yield the contribution of the material modes
to the dispersion energy. Arguments in favor of
this suggestion, besides the general correlation of
both quantities, are the fact that it proves true in

sinhqR2 . k 1 k 1
&& coshqR2- +

qR, q' 2 q' 8
(40)

For the complex integration of (24) we represent
Re (1 —», /e, ) (1 —e, /z, ) on the real k axis by

—,
' [(1—e()/z, ) (1 —co/ea) j»

+-,' [(1—e()/», ) (1 —e()/e, )]»,
according to the general relation»*(&, )) = z( —&u*).

Inserting (40) in r E» according to (24), we shift
the contour of integration from the dashed line to
the upper and lower solid lines in Fig. 6 in the
terms containing the q integrals from —2ik to I"

2ik

-2ik

FIG. 5. Contour of XE'k, z) integration.
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+ ) oo those of c(&u): The poles shown in the first quadrant
in Fig. 6 are complex conjugates of those shown in
the fourth quadrant and yield complex-conjugate
contributions to the dispersion energy. We obtain

dP = i ~Re Z Re s (1 ——
)(1

—~)

sinhqR,
dq e "coshqR, —

qR,

0 ~ ~ ~ ~ ~ +
mk

-I CO

FIG. 6. Contour of 4E~ integration.

and from I' to 2ik, respectively. The k integrals
over the quarter-circles vanish if we put I'= ~.
The contours of the q integrals can then be chosen
such that (q I

& Ik t everywhere, entailing that the
last parenthesis in (40) stays finite and the real
parts of the total exponents —q(z + R, + Rp) are
negative. In the k integrals over the straight lines
in Fig. 6 we introduce complex variables +ik in-
stead of k, yielding

sinhqR, k' 1 k' 1x coshqRp — ~ ——~ +-
qR2 q 2 q 8

(42)

with the sum over k covering all poles k;, of I/&q(&),
1/ep(~) .

We consider 6&F» to equal the negative of the
material-mode contribution to the dispersion
energy, so that both terms cancel after adding the
latter. We are then left with ~,F-».

From (42) we find that the material-mode contri-
bution to ~„sdecreases with exp[- 2(z —R, —Ra)
x (Im k, , ~ ] with increasing separation and increasing
absorption. This is in agreement with an exponen-
tial decrease of the material modes in the exterior.
However, the material-mode contribution diverges
for zero separations, leaving us with a likewise
diverging total dispersion energy 4,F.» .

We start the discussion of ~&E» with the case
R„R2«z, that is with separations d large
compared with the radii R;. Noting that in the q
integral of (41) exp( —qz) decreases more rapidly
than the brackets, we expand the latter as a Taylor
series and keep only the first term [coshqR;

sinh qR ' /qR '] 3 (qR;) Carrying out the q
integration, we find

a,E~ = — ',' dk 1-~ 1-~

&jFgp ——— dk 1 —— 1 ——

sinhqR~dqe " coshqR, —
k qR(

sinhqR2 k 1 k 1coshqRp- ~ --—
2 +-

l
qR, , q 2q' 8 ~

(41)

In order to evaluate the k integrals around the
poles of [(1-ep/c, ) (1 —Ep/62)]~ we use the fact
that the zeros of e( —&u) are complex conjugates of

(ke)' (kz)' (kz)'

(43)
This expression agrees with that obtained by
Casimir and Polder for the dispersion energy be-
tween molecules [Eq.: (55) in Ref. 14], if we re-
place the molecular polarizability by that of macro-
scopic spheres.

If exp( —2ka) decreases more rapidly than the
dielectric terms [(1 —ep/ez)(I —ep/&2)], &„ we can
replace the latter by their value at k = 0, again
yielding (36). At separations large compared with
the characteristic wavelengths of the dielectrics,
only the s contribution of the vacuum modes is
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left. In the case of small separations, i.e. , if
the dielectric terms in (43) decrease more rapidly
than exp( —2kz), we cancel the latter and all terms
except the last one in parentheses. This leaves us
with a z law for the dispersion energy, which is
due primarily to the material modes.

More general findings on both the retarded and
the nonretarded limit we obtain by the following
symmetric method: In the retarded case, we put
k = 0 in the dielectric term in (41), yielding

23 Sc
&1E~a = ——

15 2' - 61 &2

rir2 — ri +F2
(z r, -r,)-z -r, r, -

- Ri — R2- ln(z rq --r, )
—-R 1

—-R2
(44)

in accordance with (33) and (34). In the nonretarded
case, we put k = 0 in the q integral in (41), yielding

-20—

X +1+2
! Z -ri -y2

Ri R2
+ z ln(z r~ —-ra)

— -Ri -'
R

(45)

-25
0,5

FIG. 7. He(l —&p/&f) (1 &p/&p) versus k.

2.

This result agrees with that obtained previously by
means of the dipole model of dispersion. We ob-
tain the unscreened Hamaker formula, i.e. , Eq.
(18) in Ref. 10, in accordance with our restriction
to a second-order perturbation treatment in Sec. II.

Eq. (45) yields a dispersion energy proportional
to 1/d at small separations d of the spheres and

proportional to 1/d at large separation d. The ef-
fect of retardation is an additional factor 1/d, in
accordance with our statement in Sec. V.

VII. COMPUTED RESULTS

(k —ki)(k+k*;) ' (48)

so that the dielectric factor Re(1 —eo/e&)(1 —zo/tz)'
takes the form shown in Fig. V. It is constant and
positive at small wave numbers, has a sharp nega-
tive peak in the vicinity of the characteristic wave
numbers k» and k», and decreases with k at large
wave numbers. The area of the negative peak
equals that of the positive regions, in agreement
with the general relation (38). In order to obtain
the vacuum-mode contribution 4E» according to

In Figs. V-13 we exhibit some computed results
on the dispersion energy between dielectric spheres
exclusive or inclusive of the material modes. For
the dielectric terms 1 —eo/e „we assumed the typi-
cal resonance behavior

(24), we have to multiply Re(1- &a/eg)(1 tp/Ea)
with the weight function X(k, z) as shown in Fig. 4,
and to integrate over k. For Ri = 1, R2= 1 and

R, =0.6, R2= 3, we obtain Fig. 8 and Fig. 9, re-
spectively. The units of Ri, R2, z, d, and of 4E~
are arbitrary units, with the unit of 4E» being
inversely proportional to that of the lengths, [4E~]
= 0.01 c,czm. /v[R]. The parameters noted for the
different curves are the characteristic wavenumbers

(k~~, k&z, kz&, kaz), in units 1/[R].
For small characteristic wave numbers, we ob-

tain the upper parts of Figs. 8 and 9, i.e. , a mono-
tone decrease of ~» with increasing separation
d. These plots verify the properties discussed in
Sec. V using condition (a), k(z+Rq+Rz) «v. &Eza
assumes a finite value. at zero separation d, and
decreases with ~ ' at large separations. While the
dispersion energies 4E~ differ in the two cases
R, =1, R, =1 and R, =0.6, R, =3, we find their
spatial derivatives, the dispersion forces, to co-
incide at small separations d, in accordance with

(31).
An increase of the parameters (k&» k&» ka&, kza)

entails a gradual transition to conditions (c) and

(b) of Sec. V. We see from the lower parts of
Figs. 8 and 9 that the vacuum-mode dispersion
energy ~~ becomes positive at small separations
d, as inferred from (37) and (38), and oscillates
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(0.3,0.03;1,0.1)
I I I I

0 02 0.4 0.6 0.8 1.0 1.2
separation d

AB (3,0.3; 3,0.3)

—.4,—

0 0.2 0.4 0.6 0.8 1.0 1.2
separation d

shown in Figs. 10 —13. Figure 10 demonstrates
the general behavior of ~&E». The solid line of
Fig. 10 shows the result computed from (41) with
the assumption

R(--R2=1, (k(3, k(2, k23, k22)= (1, 0. 1; 1, 0. 1).

The dash-dotted curve represents the retarded ap-
proximation (44), the dash-dotted straight lines are
the respective asymptotes, the d relationship at
small separations and the d ' relationship at large
separations. The dashed curve likewise represents
the nonretarded approximation (45), the dashed
straight lines are its asymptotes, the d ' relation-
ship at small separations and the d relationship
at large separations. From Fig. 10 we gather a
rapid approximation of the exact dispersion energy
to the nonretarded and the retarded findings, and
a slow approximation to the limiting power laws.

Using (46) we find the dielectric factors in the
retarded expression (44) and in the nonretarded
expression (45) given by

-h EAB

.00

—.0 2

—.0 4
0

(10, 1; 10,1)

I I I I I I

0,2 0.4 0.6 0.8 1.0 1.2
separation d

[(1 «0/«1)(1 «0/«2)]0 = c1c2/k1k1 k2k2

and

(4f)

FIG. 8. Vacuum-mode contribution, R& ——R& ——1.
-hE

at separations d larger than the characteristic
wavelengths. A glance at Figs. 4 and 7 shows that
the oscillations of AE~ are linked to the position
of the peak of Re(1 —«0/«&)(1 —«,/«2) relative to the
extremes of X(k, 2). The oscillations vary roughly
as sin2kd, and vanish exponentially at large separa-
tions, as can be shown by a complex integral trans-
form of (24). For this limit only the retarded 2 7

relationship is left.
Similar oscillations of the interaction energy are

known from the interaction of two localized per-
turbations in a free-electron gas. The character-
istic wavelength in that case, i.e. , the character-
istic wavelength of the interaction field, is the Fermi
wavelength of the electrons. Grimley' reported an
interaction energy proportional to z cos2kz. In
the present case the characteristic wavelengths
are those of the dielectrics A and B. While the
origin of the oscillations is the same in two cases-
the characteristic wavelengths have to fit the inter-
space —the z dependences of the amplitude are found
to differ owing to the exponential decay of the radia-
tion field of the dielectrics and owing to the different
statistics used.

The total dispersion energy between bodies A and
B, inclusive of the material-mode contribution is

I I

0 0.2 0,4 0.6 0.8 1.0 1.2
separation d

-hE
AB (3, 0.3; 3, 0.3)

J
0 0.2 0.4 0.6 0.8 1.0 1.2

separation d

.00

-.0 2
(10, 'I; 1~0, 1)

-0
0 0.2 0,4 0.6 0.8 1.0 1.2

separation d

FIG. 9. Vacuum-mode contribution, R& -—0.6, R2=3.
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AB

1p I

100

10

-2
10

10

10

for the nonretarded limit (45) and proportional to
d ' for the retarded limit (44).

In Fig. 12 we varied R, and Rz such that R1R2/
(R1+R2) is constant. We note the coincidence of
all curves at small separations, and the approxima-
tion of a d relationship at large separations if
R,» R,.

Figure 13 shows the dependence of the totaldis-
persion energy on the characteristic wave numbers.
An increase of (k,1, k, ~; k21, k22) causes the dis-
persion energy to be shifted to lower values and
the transition from the nonretarded case to the
retarded case to be shifted to smaller separations.
The solid lines of Fig. 13 are based on equal char-
acteristic wave numbers k&=k2, whereas in cal-
culating the dashed curves we assumed k& = 10k2.

VIII. CONCLUSIONS

10

10

The reported treatment of the electromagnetic
self-energy in the presence of dielectrics provides
a general expression for the dispersion energy,
which covers (a) the attraction between spheres or
half-spaces, (b) arbitrary separations of the inter-

-7
'10

10

104 10 10 ' 10 '

separation d

10 10' 10

10

FIG. 10. Comparison of different approximations.

vC1C?(kll+ k21)
k11k~1[(k11+k„)'+(k1z —k~2)']

(48)

10

10 2

respectively. An increase of the characteristic
wave numbers lowers the retarded factor (47) more
strongly than the nonretarded factor (48), so that
the dash-dotted lines of Fig. 10 are lowered rela-
tive to the dashed lines. This entails a transition
from the nonretarded case to the retarded case at
smaller separations d, in agreement with the general
conclusions discussed in Sec. V. An increase of
the radii R& and R~ raises the asymptotes for large
separations relative to the asymptotes for small
separations. This entails a shift of the crossing
points R and N in Fig. 10 to the right, and again
a transition from the nonretarded case to the re-
tarded case at smaller separations d.

In Fig. 11 we plotted the dispersion energy versus
the separation for a fixed radius R& = 1 and different
radii R2. The dispersion energy increases rapidly
with increasing R~ if R~ &R&, and only slowly if
R~ &R~. If R2- ~, we obtain the dispersion energy
between a sphere of radius R& = 1 and a half-space,
which at large separations is proportional to d '

10

10

-5
10

10

10

10

I

10 1p
2 10

separation d

10 10'

FIG. 11. Total dispersion energy, Rq fixed,
R~ variable.

10
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waves, we can also derive all the above results for
metals, with e replaced by the generalized dielec-
tric constant c —io/v .A difficulty to be kept in
mind is the increased effectiveness of screening,
which increases the importance of higher-order
perturbation terms and requires a consideration of
the wave-number dependence of the dielectric con-
stant. We expect that the latter effect will largely
cancel out, owing to the fact that the weight of an

unperturbed plane wave I q ) in a perturbed wave
I k) generally equals that of the unperturbed plane
wave I k in the perturbed wave I q) .
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Metal-Insulator Transitions: A Simple Theoretical Model
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A simple theoretical model for metal-insulator transitions is presented. It is based on the
existence of both localized (ionic) and band (Bloch) states. It differs from other theories in

that it assumes the one-electron states to be essentially unchanged by the transition. The
electron-hole interaction is responsible for the anomalous temperature dependence of the num-

ber of conduction electrons. The model is studied in detail for several specific band models,
in particular, for an s-like tight-binding cubic structure. The conditions for the presence of
metallic and insulating phases at all temperatures as well as for the existence of first-order
and higher-order transitions are given. The possibility of formation of bound-exciton states
and the scattering mechanism responsible for the resistivity are also discussed.

I. INTRODUCTION

Transition-metal as well as rare-earth oxides,
sulfides, and borides constitute a large group of
substances which exhibit an unusually wide variety
of electrical and magnetic properties. ' Among
these substances there are (i) excellent conductors,
such as TiO, ReO&, and Cr03, with resistivities
as low (for ReQs) as 4x10 Oem at 77 'K; (ii) in-
sulators such as MnO and CoO with room-temper-
ature resistivities of 10'-10"Oem; and (iii) some
substances whose resistivities show an unusually

large variation with temperature. Qf this third

group, some materials present a first-order tran-
sition in the resistivity as a function of tempera-
ture; the transition temperature' ranges from
119'K for Fe30& to 1070'K for NbO~ and thechange
in resistivity at the transition ranges ' from a fac-
tor of about 20 for Ti,Oyg to a factor of 10' for V~O,
(see Fig. 1). In most cases there is a simultaneous
change in crystal structure, as for instance in V&03
which goes from rhombohedral (corundum struc-
ture) at high temperatures (~ 150 'K) to monoclinic
in the low-temperature phase (& 150 'K).


