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A study has been made of the effect of electronic correlation on the electronic states of in-
sulating solids. This study is based upon a many-body theory first developed by Hedin and
used in semiconductors by Brinkman and Goodman. In order to test the theory, band-struc-
ture calculations for argon were made using the orthogonalized-plane-wave method. For
comparison, calculations were made using a Slater exchange, using a Hartree-Fock exchange,
and including correlations at various symmetry points of the first Brillouin zone. In the
Hartree-Fock calculation the exchange potential was treated in a nearly exact manner, but no
iterations toward self-consistency were performed. Among the most interesting results are
as follows: (a) A Hartree-Fock exchange given an energy gap which is too large; (b) a caj.-
culation with correlation yields an energy gap within 5% of experiment; (c) correlation has
the effect of lowering the band gap by 3.5 eV, a relatively large number, as suggested some
time ago by Fowler; (d) the internal structure of the energy bands changes little with differ-
ent potentials, but the band gap varies considerably as one goes from, e.g. , Slater to Har-
tree-Fock; and (e) the width of the valence bands is relatively large.

I. INTRODUCTION

In recent years, very significant progress has
been made in the experimental measurements in
solids of effective masses of holes and electrons
and in the determination of energy gaps between
bands. ' These developments lead one to ask how

closely ordinary energy-band theory can be ex-
pected to be in agreement with experiment. In

what we term ordinary energy-band theory, one
writes the many-electron wave functions as a single
determinant of one-pa, rticle Bloch functions 4'„„(r)
labeled by a band index n and a propagation vector
R, and ideally the one-particle functions would be
self-consistent solutions of the Hartree-Fock (HF)
equations. Such a self- consistent solution is nearly
impossible to carry out because of the great com-
putational difficulties involved. However, there
are reasons to believe that even a true solution of
the HF equations would not provide satisfactory
values for the effective masses and energy gaps
in many cases. This is because the one-particle
equations, of which the 4'„ t(r) are solutions, con-
tain none of the dielectric properties of the solid.

One is, therefore, faced with the following two
problems: (a) How reliable are the results ob-
tained with the HF equations'P; (b) how can we treat
correlation effects due to electron-electron inter-
actions and how important are these effects? These
questions are the object of the present work.

The system chosen for the calculation is argon.
Argon crystallizes into a fce structure and has a
lattice constant of 5. 43 A at 38 'K. There are many
reasons why we have chosen argon, among which

are the following: (i) It is a relatively simple solid;
(ii) there are other theoretical calculations to com-
pare with '; and (iii) there are some experimental
results available.

The method used for the band calculation is the
orthogonalized-plane-wave (OPW) method. ' It is
noted that only recently has this method been ap-
plied to calculate valence energy bands in the case
of insulators. ' In the literature, the use of QPW
has been mainly restricted to metals or semicon-
ductors. Our calculation verifies that it is possible
to use the OPW method to calculate energy bands
and to obtain well-converged energy levels in in-
sulators; thanks also to the large computers avail-
able for the calculations.

In recent years, energy-band calculations in in-
sulating solids have become quite common, but,
although these calculations are extremely useful
from the practical point of view, in the sense that
they try to interpret the optical experiments, they
do not say very much from the first-principle point
of view. This is because virtually all the calcula-
tions make some sort of approximations to the
exchange potential. However, it has been seen that
different methods of approximating the exchange po-
tential can produce widely varying results. ' There-
fore, one can conclude that some of the agreement
of such calculations with experiment is merely for-
tuitous. It is important to investigate this aspect
more closely and to try to treat the exchange poten-
tial in a way as exact as possible so that one ean be
confident that the results obtained using the HF
equations reflect these equations and not the par-
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ticular approximations used in,treating the exchange.
Much use has been made in the literature of a

particular approximation to the exchange potential,
that is the Slater approximation, ' which consists
of a local approximation to the nonlocal HF ex-
change. We will assume the conventional a priori
position that the Slater approximation lies entirely
in the scheme of the HF approximation.

In Sec. II, we present the general concepts of the
band theory together with the HF equations and the
Slater approximation, and show the numerical re-
sults for argon.

The next problem is to include correlation ef-
fects. Although we now have a wealth of beautiful
theorems, fairly little has been done toward man-
ageable and reliable approximations. One of the
biggest steps in this direction has been made by
Hedin. ' '" The result of Hedin's analysis is the
introduction of the "Coulomb-hole plus screened
exchange" approximation (COHSEX). This approxi-
mation has been used by Brinkman and Goodman'
for the case of valence semiconductors. In Sec.
III, we present the result of Hedin's theory fol-
lowing closely Brinkman's notation and analysis.
In Sec. IV, we present the results of the effective
one-electron equation including correlation, and

we briefly present the theory of Haken-Schottky
and Fowler' concerning electronic polarization in
insulators. It is shown that a reasonable qualita-
tive agreement exists between the two theories.
In Sec. V, we discuss the results and we compare
them with experiment.

II. VALENCE AND CONDUCTION BANDS

A. Theory

Let us define

x')( a'v'f2m)

(T + V, + V,„) (p( E--( (p( (2. 3)

We have already decided to use the OPW method
to calculate the valence and the conduction bands.
In this method one assumes as a basis set of func-
tions,

'pq =Sr d-ds &~s ISP, )g (2 4)

where (t(& is a symmetrized core eigenfunction and

S~ is a symmetrized combination of plane waves
which have the same kinetic energy, that is,

Sc ——(NQ) ~
Q~b~~ exp(i(k+K~) r). (2. 6)

These functions are now orthogonal and the coeffi-
cients d~„are chosen in such a way that they are
also normalized.

We also introduce the core projection operator
defined as

(2. 7)
Qy ttc

so we can write (2. 4) as

Sp =(1—P, )S

If we now substitute (2. 6) into (2. 3) we get

Q dc 0 [(T+ V, + V,„)Sc —Q EEEPESSc —E, Sc

(2. 6)

Here, the quantities b&& are chosen so that S~ trans-
forms according to the n irreducible representation
of the group of the wave vector k, and N represents
the number of unit cells of volume Q. K& is a re-
ciprocal-lattice vector. The wave functions (I|)~ so
constructed are orthogonal to the core states, but
are not mutually orthogonal nor normalized.

A general expression for the valence and con-
duction wave functions is given by

4'„" „(r)=+~dc „(pc (2. 6)

8 Z
&x

I

v IX ) 5(x x )

p(r" ) dr"
lr- r"I (2. I)

+Ec ~ PncSp j = O
nc

where we have used the equation

(T+ V, + VEE)TtT(s, =E

Rearranging the terms of Eq. (2. 9) we have

(2. 9)

(2. IO)

where
N

p(x. x') =Q Sp, (x) (p, (x')
8

p(r) = Q 5(x —x ') p(x. x') (2. 2)

6(x —x') =6...6'(r —r'),
& is the spin coordinate, eZ is the nuclear charge,
R„ is the position of the vth atom, and (p, is a solu-
tion of the HF ecuations (2. 3). We can then write
the HF equations in the following concise form:

Qd~„(T T, ~ T„)S" r (E;—E;,(P„S~—E;S)=0.
P nc

(2. ll)
To solve the above equation we can use three dif-
ferent methods; a perturbation approach, ' a yseu-
doyotential one, ' ' and a direct one.

The method we shall use consists of a direct
diagonalization of the secular matrix M, whose
elements are

fvf~~ =&s: I&+v, +v,.lsg& »:.&p IP:.Ip)-
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-E~,„- P I'„, P
nc

(2. 12)
with the Coulomb part, i. e. ,

V(~) = V, (~) + V.„(x) . (2. 19)

where

x ~
~ ( I"+ Ks I) P, (cose), (2. 13)

X„,(lk+2, I) =i'[4x(2f+ 1)/n]'"

x f "~f,(lr+K, l~)P„, (~)«,
(2. 14)

cos8=(k+K;)'(M+K )/I&+K;I I&+K~
l

(2»)
Now we have to consider the problem of the po-

tential. We have already seen that our potential. is
the sum of a Coulomb part and of an exchange part.
For the Coulomb part, which is local, we can cal-
culate the Fourier transform according to

V, (K) = (NQ) ' f e '" ' V, {r)d r, (2. 16)

V,K= (4m/IM) f ~ sin(Kr) V, (r)dh (2. 1V)

where 0 is the volume of the unit cell. V(K) de-
pends only on the magnitude of E; K being equal to
K; —K&. V,(0) is chosen according to

The problem of diagonalizing such a matrix is not
an easy one. The set of basis functions includes,
in general, a very large number of plane waves in
order to obtain accurate eigenfunctions and eigen-
values. In our case, they can be as high as 50&& 50.
The standard approach to diagonalization would be
to assume a small basis set and solve the corres-
ponding matrix, then to add other sets and solve
again. The set of eigenvalues and eigenvectors
obtained in the latter case will be different than in
the former. The process is stopped when adding
further sets, the energy eigenvalues change within
a small established range. We then say that the
convergence criterion has been satisfied.

The process of diagonalizing the GPW matrix is
straightforward, but evaluation of the matrix ele-
ments involved is somewhat laborious. In order to
make the argument complete we will write explicitly
the matrix elements involved. These are the or-
thogonality matrix elements and the Fourier trans-
form of the potential. The orthogonality elements
a,re calculated by expanding the plane waves S& in
spherical harmonics. We get{:I&."r s:)=D ~~b~'~b;g&.*i(lk+K I)

The Fourier transform of V is defined in complete
analogy to the case of the Coulomb part described
before.

However, the exchange potential is, in general,
not local. Let us write the exchange operator in
the form

&xlV,„ly(x')) --e' Z "" "",' "
dx .jr-r'f

(2. 20)

In the summation, only one member with a spin-up
spin-down pair of orbitals is included. In the ground

state, only filled subshells occur. In this event,
the Bloch and the Wannier representations ' are
equivalent. Therefore, if we assume that the atom-
ic functions do not overlap, we can assume for
p, ,„ the expression

„„(r)-=X '"Q-„e'" "V„',„(r- R„)S(o), (2. 21)

where U„& is the nlrb orbital on the atom centered
at R„. S(o') is the spin function. We may define the
Fourier transform of a, function f(x, x') as

f(p, p') = V ' f f dsxd x'e '"'"e"'"'f(x,x')
(2. 22)

So we have for the Fourier transform of the ex-
change potential,

—e2

~ q-„„(r)p, „(r')e"'e "'"
k, n (2. 23)

In the Appendix we give an exact method, originally
due to Brinkman, for calculating such matrix ele-
ments, the result being

V.„lp) =P, P,(cos8)S, (lpl, Ip'I) . (2. 24)

Here I'& are the I egendre polynomials,

IIo ES (2. 25)

where II are the matrix elements

are defined in the Appendix, where the convergence
of the above series is also discussed.

Thus, everything is given. We can summarize
this by saying that the problem now is to diagonal-
ize the matrix

v,{0)= (4'/n) f,
"r' v, (~) dr (2. 18)

The exchange part needs special treatment. In
the case in which we use the Slater approximation,
the problem presents no difficulty because the ex-
change is now local, and so we can treat it together

H~ ~. = b~ ~, [ I
k+ K;

I
+ V,(0)]++ Q b~&'* b~,'z,

IW I'

~ V. {IK~ —Kz I)+&~b"*b 'r &pl v
I I'
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x Q Q bpy*b~rle P( («s()yy~)
I I'

Rnd ls

s,";,'=b„, Z~„*,(l%.+K, l)~„,(lk+K„l)ZZ

x bp~'*b~'~. P, (coselg. ) (2. 2V)

where all the quantities have been defined.
For the case in which the Slater approximation

for the exchange is used, we can write & as

bw lk+Kzl +~~b~i*bur I'IKz-Ks I)I I~

Z@.—r&.*& (p)&.i (p') &~ biz'*bp'z Pi («»sz )

(2. 28)
whereas 8 is exactly the same. It is clear that the
amount of work involved is large. Since the amount
of work involved gets larger as we go from points
of high symmetry to points of lower symmetry, we
shall diagonalize the secular determinant only at
points of high symmetry, i. e. , I', X, I, 4, andA.

B. Numerical Results for Argon

All the calculations have been performed using

%'e have used as atomic wave functions and ener-
gies the ones given by Watson and Freeman. All
the necessary quantities are shown in Table I.
Since we have done all the integrations involved
in the calculation numerically, except the one in
the exchange potential, we have used, making
some slight modifications, a program written by
Fowler, which transfoxms the Watson-Freeman
wave functions from analytical to numerical form.
In Table II, we show some values of S,(P, P ) that
appear in the expression for the exchange,

&p'll;$) =Z;P;(«»)~;(p, p') . (2. 29)

Figure 1 shows the P dependence of the exchange
potential ln the HP theoxy. This ls important since
this, dependence dlsRppeax's when the SlRter Rpprox-
imation is made. The A, „& are shown in Table III,
and in Table IV we list some Fourier coefficients
of the Couloxnb pa, rt of the argon potential. behave
calculated the band energies at I", including the 13
lowest values of k+KI at this point. At X, L, &,
Rnd A the calculRtlon hRS been done 1nclud1ng the

the CDC 6400 of Lehigh University and the CDC
6600 of the Computing Center of New York Univer-
sity. The computer language is FOBTBAN IV.

HF Calculation

TABLE I. Atomic parameters for argon (Bef. 22), HF one-eIectron energies (in Ry). E»=-237.212, E& ——-24. 638,
and Egp=19. 136.

jgenvectors Cg defi.ned in Eq. (A

0.46 8439
0.51 9233
0.037 833

-0.04 9619
0.04 8353

-0.01 9167
0. 003608

-0.00 2056
0.00 0476

—0. 124482
—0.160026
—0. 149 146

0. 118307
0. 733 993
0.304248
0. 025 407

-0.007 514
0. 001 891

0, 027 819
0. 066 067
0.042 169

—0. 048 426
—0.221211
—0.213 967

0.284222
0.714745
0. 151733

0.024363
0.272 699
0.745 831

—0.022 530
0. 029 974

—0.014849
0, 002154

—0.012 406
—0. 042 490
—0.279 285

0. 156 164
0.331960
0. 574225
0. 097 973

For 8 orbitaIs Q'=0)

pa»Ineters &J and &~ defined in Eq. (All)

20. 0999
15.6644
15.6838
10.3041
7.2867
6.8971
3.7052
2. 5450
1.5878

14.7820
9.4975
5.7870
4.2264
2. 6757
1.9232
0.9649
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TABLE II. Some values of S&(p, p') defined in Eq. (A28).

p p'

0 0
3 0

4 0
4 3
4 4
8 0
8 3
8 8

ll 0
11 3
ll 11
12 0
12 3
12 12
16 3
16 16
24 24

S()

—0. 621 144
—0.251 741
—0. 133 924
—0. 195 585
—0. 111845
—0. 095 413
—0. 078 449
—0. 059 379
—0. 040 888
—0. 041 823
—0. 039 800
—0. 030 165
—0. 034 116
—0. 035 285
—0. 028 137
-0.023207
—0. 022 945
—0. 017 188

0. 0
0. 0

—0. 187 920
0. 0

—0. 172 357
—0. 159 706

0. 0
—0. 110407
—0. 07.9 012

0. 0
—0. 077 505
—0. 050 179

0. 0
—0. 068 937
—0. 044 006
—0. 043 509
—0. 028 763
—0. 017 998

S2

0. 0
0. 0

—0. 037 865
0. 0

—0. 039 249
—0, 039249

0. 0
—0. 032 803
—0. 037 355

0. 0
—0. 025 584
—0. 030 122

0. 0
—0. 023 372
—0. 027 872
—0. 016 023
—0. 020 414
—0. 011689

S3

0. 0
0. 0

—0. 007 765
0. 0

—0. 008 856
-0.010388

0. 0
-0.008 993
—0. 015 336

0. 0
—0. 007 557
—0. 015 460

0. 0
—0. 017 035
—0. 015 181
—0. 005 114
—0.013441
—0. 009 659

$4

0. 0
0. 0

—0. 001 634
0. 0

—0. 001 999
—0. 002 557

0. 0
—0. 002 301
—0. 005 646

0. 0
—0. 002 022
—0. 006 877

0. 0
—0. 001 904
—0. 007 110
—0. 001 431
—0. 007 440
—0. 006 687

S5

0. 0
0. 0

—0. 000378
0. 0

—0. 000 484
—0. 000 663

0. 0
—0. 000 583
—0. 002 002

0. 0
—0.000 521
—0. 002 860

0. 0
—0.000492
—0. 003 091
-0.000 374
—0.003 742
—0.004 105

S6

0. 0
0. 0

—0. 000 075
0. 0

—0. 000 093
—0. 000 125

0. 0
—0. 001 05
—0. 000 274

0. 0
—0. 000 095
—0. 000 247

0. 0
—0. 000 090
—0. 000 201
—0. 000 071
—0. 000 160

0. 001 511

lowest 22 values of R+Kl.
In order to test the convergence of the valence

and conduction energies as a function of the number
of plane waves involved in the secular determinant,
we have repeated the calculation at l" using more
sets of plane waves. Figure 2 represents the con-
vergence test. The energy bands so obtained are
shown in Fig. 3.

It is observed that generally the convergence is
excellent, except for the uppermost 3P band. This
is something common and has been seen before by
other people. Reilly' had the same results in his
calculation for xenon, and Kunz" has seen the same
effect in his numerous calculations for alkali ha-
lides. Reilly has proposed two possible explana-
tions. The first possibility involves the fact that

for a P function the cancellation between V and the
repulsive pseudopotential V& coming from ortho-
gonalization to core states is not complete because
V~ takes into account only the kinetic term of the
radial motion and does not include the angular ki-
netic term l(l+ I)/r . A second possibility is that,
since the valence wave functions are tightly bound
to the nuclei and are not spread over a large ex-
tent, a large number of OPW are required in order
to describe the rapid oscillations in regions where
the kinetic energy is more important. In effect, a
very good explanation for the poor convergence of
the P valence bands has been given by Deegan and
Twose. The fact that the state (3s) is so well

TABLE III. Orthogonalization coefficients for argon at
the I' point. HF case [see Eq. (1.14)t.

ARGON FXCHANGE POTENTIAL

IN THE HARTREE-FOCK CASE

K
5

CL

CP

I

I

$0 20
I

25

P ('r2 ) (a.u. )

FIG. l. Momentum dependence of the HF exchange.

0
3

8
11
12
16
19
20
24
27
32
35
36
40

44

(ls)

0. 01226
0. 012 04
0. 012 02
0. 01192
0.01182
0.01179
0. 01165
0. 01156
0. 01152
0. 01140
0.01131
0. 01117
0.01108
0, 01106
0. 01095
0. 010 86
0. 010 84

(2s)

0. 096 51
0. 086 50
0. 083 69
0. 073 61
0. 067 05
0. 065 03
0. 05768
0. 052 83
0.05133
0. 045 82
0. 042 16
0. 03678
0. 033 94
0. 033 05
0. 02974
0. 027 50
0. 026 80

(2p)

0. 000 00
0.03439
0. 03874
0. 048 61
0. 05196
0. 052 67
0. 05423
0. 05451
0.05448
0.05396
0. 053 25
0.051 67
0. 05058
0. 05020
0. 048 62
0. 047 41
0. 047 00
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v, (z)

TABLE IV. Fourier coefficients for the argon Coulomb
potential (Hy). HF case.

K2 v. ~e K

P, O 1 l & l I I ' 1 l 1

l(3)

. 015(R)

0
1
2

3

5
6
8
9

10
11
12
13
14
16
17
18
19
20

—0, 407 941
—0.365 624
—0.331893
—0.303 924
—0.280 173
—0.259 679-0.241788
—0.212 051
—0. 199571
—0. 188 371
—0. 178 272
—0. 169128
—0. 160 817
—0. 153236
—0. 139932
-0.134 073
—0. 128 666
-0.123 665
—0. 119129

21
22
24
27
32
35
36
40
43

48
51
56
59
64
68
72
76

-0.114721
-0 110709
—0. 103 470
—0. 094239
—0. 082 116
—0, 076 293
—0. 074 542
—0. 068 331
-0, 064366
—0. 063 154
—0. 058 788
—0. 055 917
-0.051790
—0. 049 630
—0. 046 455
—0. 044233
—0. 042 243
—0. 040 449

Cf

CO
K p

-12,'-

-56 I l l i I I l l 1

0 1 1 15 18
No. OF SETS OF PL ANE

R5

l5(l)

10)

I l

19 20
yA YES

converged indicates that our core states are very
good eigenstates of our crystal Hamiltonian. Ne
also note that the 3s and 3P valence bands lie ap-
proximately at the same position as the atomic 3s
and 3P states, as shown in Fig. 2.

The most interesting characteristic, homever,
is the relatively large gap, about 1V eV, between
the top of the valence band and the bottom of the
conduction band. Experimentally, the gap, as de-
ducted from optical measurements by Baldini,
should be about 14.3 eV. This characteristic will
be discussed later.

Another characteristic of the above results is the
fact that the valence bands have a relatively large
width. This is also in agreement with other HF
calculations. Homland also found, in his calcula-
tion for KCl, relatively wide valence bands; cal-
culations by Kunz for alkali halides also confirm
the above result. Incidentally, me note that the
agreement between our calculation and the one by
Mattheiss using the augmented-plane-wave (APW)
method is only qualitative in the sense that theorder
of the energy levels is the same in both cases but
the separations are different. %e mill later discuss
more extensively the HF results.

2. Hartree-Eock-Slater Calculation

We have previously noted that it is extremely
important to use, in the OP% method, core states
that are exact eigenstates of the crystal Hamilto-
nian. %hen the Slater approximation for the ex-
change is made, we cannot use the same energies
and wave functions as in the preceding calculation.
%e have, therefore, calculated the core energies

FIG. 2. Convergence test at I'. Plotted are the
energies calculated for the various irreducible rep-
resentations at I' versus the number of sets of plane
waves used.

1. A
5,47

2

45-

-,735

-.3SS

0'
4l

w o-
C5
K
laJX
Lal

- -,388

- -.735

3'
-$5-

2'

5E

yl

-20

FIG. 3. Argon energy bands in the HF case. The
numbers on the figure refer to the irreducible represen-
tations corresponding to particular k values.
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TABLE V. Atomic energies for argon. Comparison
between solutions using the Slater approximation for the
exchange and a modified Slater exchange.

Energies (Ry)

State Slater
ls —232.448 23
2s — 22. 785 4
3s — 2.052 6

2P — 18.127 2

3p — 1.006 9

Slater corrected
—232. 5358 —232. 54 (Ref. 27)

22. 8649 — 22. 865 (Ref. 27)
2. 1069 — 2.1068 (Ref. 27)

18.2077 — 18.2075 (Bef. 27)
1.0655 — 1.0653 (Ref. 27)

using a program written by Herman and Skillman.
In Table V, we show the atomic energies for argon
using the Slater approximation and we compare them
with the energies obtained with the use of the cor-
rected approximation, i. e. , when we write the
atomic potential as

V(r) =-——— o(r') dr' 2-, dr '2Z 2 ", , "o(r')
b r y'

K
0
3

8
ll
12
16
19
20
24
27
32
35
36
40
43
44

{ls)
0. 012 05
0.01195
0. 01192
0. Oll 80
0.01171
0. 01168
0. 01156
0. 01147
0. 01144
0.01133
0. 01124
0.01110
0. 01102
0. 01099
0.010 89
0. 01081
0.01078

(2s)

0. 09531
0. 08628
0. 083 51
0. 073 52
0. 06700
0. 06499
0. 05766
0. 052 82
0.05132
0. 045 80
0. 042 13
0.036 75
0. 033 91
0. 033 02
0.02972
0. 02748
0. 02678

(2P)

0. 000 00
0. 033 86
0. 037 86
0. 04732
0, 05082
0, 051 58
0. 05334
0. 053 70
0.053 70
0. 053 22
0. 052 53
0. 050 97
0. 049 89
0. 049 51
0. 047 96
0. 04677
0.04637

TABLE VI. Orthogonalization coefficients for argon at
the I' point. Hartree-Fock-Slater. case [Eq. (2. 14)].

(2. 30)

V(r) = —2(Z-X+1)/r, r ) 80

where Ro is defined as that radius at which thevalue
of V(r) given by Eq. (2. 30) equals the value of V(r)
given by Eq. (2. 31). Table VI shows the ortho-
gonalization coefficients. The Fourier transforms
of the total potential are shown in Table VII. An

energy-band calculation has been done using the
10 lowest sets of plane waves at I' and the lowest
16 at X, L, 4, and A. ResultsareplottedinFig. 4.

The main diff erence between these bands and

those we have obtained previously is a change in
the energy gap. In this case, the gap is about 7

eV. The inclusion of more plane waves could make
the gap about 8 eV. This time, therefore, the cal-
culated gap is considerably smaller than the ex-
perimental one. Other differences are the change
of the position of some bands. This change is small
compared to the change in the value of the energy
gap, and it looks as if the difference in the two cal-
culations is mainly a shift of the conduction bands.
The large width of the valence bands is perhaps due
to the small gap. It is important to note that the
gap obtained by this calculation is very different
than the one obtained by Mattheiss. This is be-
cause, even if Mattheiss also used the Slater ap-
proximation for the exchange potentials, he made
the "muffin-tin" approximation and used the crys-
tal change density p to the one-third; whereas we
have treated our crystal Slater exchange as a sim-
ple sum of atomic Slater exchanges, which is, in
effect, a very poor way of treating the exchange
potential.

TABLE VII. Fourier coefficients for the argon poten-
tial Vc + V~. slatw= V(x) (in Ry).

0
1
2
3
4
5
6
8
9

10
11
12
13
14
16
17
18
19
20

V(K)

—l. 298 949
—0. 722 256
—0. 522 223
—0. 420 141
—0. 357 300
—0. 313 839
—0. 281 534
—0. 235 892
—0. 218 883
—0.204 444
—0. 191989
—0. 181110
—0. 171497
—0. 162 929
—0. 148 299
—0. 141997
—0. 136245
—0. 130961
—0. 126 116

21
22
24
27
32
35
36
40
43
44
48
51
56
59
64
68
72
76

—0. 117484
—0, 113630
—0. 110040
—0. 100 602
—0. 088250
—0. 082 306
—0. 080 515
—0. 074 138
—0. 070 041
—0. 068 784
—0. 064218
—0. 061 210
—0. 058 815
—0. 054 508
—0. 051 072
—0. 048 641
—0. 046 445
—0. 044 449

III. ENERGY BANDS WITH CORRELATION

A. General Remarks

The calculations that we have performed so far
have been in the limit of the HF approximation.
As already mentioned, no correlation is included
in the approximation except for that coming from
the assumption of a totally antisymmetric elec-
tronic wave function. The problem of including
correlation effects in an energy-band calculation
has been discussed by many people. There are
essentially two different ways of including these
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h,„=h (x) + V(x) + M(x, x ', e, )

has an eigenvalue spectrum e, (e;) and a corres-
ponding set of eigenfunctions f, . If we denote with

f„,the wave functions for the core states, we can
define again the projection operator

&.=~ If-)&f-I . (3. 2)
nc

When the states f; are supposed to be one-particle
functions of single Slater determinants, then I re-
duces to the HF exchange. The HF equations are,
therefore, a particular case of the more general
effective one-electron wave equations. For agiven
eigenvalue c&, the operator

-IO—

-i5 — 3'

2I

l5

4l

—-.735

It is to be noted, however, that h,« is not neces-
sarily Hermitian, and, therefore, the f„,need not
be orthogonal; however, we may expect that the
nonhermiticity is small for core-type solutions so
that we can still apply the OPW method for the de-
termination of the valence and conduction bands by
writing for these states

-20 —l,47 f;=(I-&.) q;(x) . (3. 3)

FIG. 4. Argon energy bands obtained using the Slater
approximation for the exchange potential. The numbers
on the figure have the same meaning as in Fig. 3.

Substitution into Eq. (3. 1) gives

[e, h(x) ——V(x)] y, (x) —f d'xM(x, x', e,) y, (x')

~Q (e,- e„,) P„,y, (x) = 0 (3.4)

effects, one which we will call an excitoniclike
approach and the other which we will call a quasi-
particle one. The former shows that electronic
polarization effects can be accounted for by shifting
in an appropriate way the position of the valence
and conduction bands calculated in the HF approxi-
mation. The latter allows correlation to be in-
corporated into the band Hamiltonian through an
effective one-electron potential. In what follows,
we will describe first the quasiparticle approach,
follpwing quite heavily the notation of Brinkman.
After that, we will outline the other approach in
order to compare the two.

B. Exact Equations for Electron System

Fpllpwjng Brinkman, jt js ppssjble tp wrjte a
one-particle equation which includes dielectric ef-
fects as

[e, —h(x) —V(x)]f, (x) —f M(x, x', e, ) f;(x') dx'= 0

(3. 1)
where

g2 Z8
h(x) =

2m „ Ir- R„l

and V(x) is the Coulomb potential. This is an ef-
fective one-particle equation and all the correla-
tion is included in the self-energy operator M.

G(x, x', e) =G,(x, x', e)+G„(x,x', e)

W(x, x, e) = W, + W„

where

(3. 6)

(3. 7)

p f.*,(x)f,(x')
(3. 8)

nc

and similar expressions for M„and W„. Thus, we

can write

This is an exact formulation of the generalized
OPW equations in which the correlation has been
included. An exact self- consistent calculation of
these equations is not possible. However, Eq.
(3. 4) certainly represents a, convenient starting
point for approximations which go beyond the HF
approximation. In what follows, we will consider
only the first term in M. This corresponds to the
random-phase approximation for the self-energy
operator.

So we write

M(x, x, e) =i f d(t —f )e "' ' ' W(x, x ) G(x, x )

(3. 5)

where W(x, x ) is the screened interaction poten-
tial, and G(x, x ) is the Green's function. ' The
total contribution to 6 and W' can be divided in two

parts, core electron excitations and valence elec-
tron excitations. Therefore, t" and W can be re-
written as
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& G(x, x', « —«') . (s. ii)

M = (W, + Wy) G ~+ {W~+ W„)G „
Itcanbeshomn that the first two terms can be I'e-
duced to the unscreened cox'e exchange potential
for the following two reasons: (i) The core ener-
g168 Rre lRrge compared tQ the plRSMR vRlence
energies ((()@=4wNe /5l) for argon (()p= 16.6 eV)
and (ii) core excitations are spread over a large
I'Rnge of momentum Rnd ener@r. The th1x'd term

(s. io)

represents the core polarization term and ere mill
neglect 1t 1n ou1 cRlculRtlon.

AO the correlation Rnd exchRnge between val6nce
electrons is therefore, included in the term W„G„.
Thex'efore, '%6 cRD write

M(x, x', «) = V,'„(x,x')+M„(x,x', «)

„(2w

Taking the Fourier transform according to

M(p, p')= f f dsxd'x'e"'"'M(x, x'}e "'", (3. 17)

we get for the first term in (3.4) that we call V,„,
V,„{p,p+K) = —f dx fdx'e" *'e''"'"'*

x~(x x")«-'(x", x', 0)

f..(x) f.*.(x') . (S. ie)

Here, p, ls the chemical potential. NQ%, fox' the
case of a solid with a periodic lattice me can write

d'
fK& x"-

(2w)3

~ « '(q, (1+K„o)e"""I'"'.
(3. 19)

Thus we get

v,.ti, i+«) fm,=-v(q) Z & '(i, t(+ 9, 0)

y. ( )
f.*,( )f,.( ')

Vfe novr write the effective interaction W in terms
of the dynamic dielectric function «(x",x', «} as

W(x, x', «) = f v(x -x")« '(x",x', «) d'x" . (3. 13)
If me nmv &&rite

W{«)e '"= [~(q)/«(«)le "'=e(q)e "'
+~(q){[«(q,0)] '- ij
+~(q) [«(q, «) - «(q, 0)] ',

Rnd vfe neglect the last term, %6 obtR1D Rn expres-
81on fQx' the effect1ve 1nterRctlon Which 18 1Ddepen-
dent of the energy. In this case, &re can perform
the integral in (3. 11) by enclosing the contonl at
infinity. Thus ere get

M„=-f d'x "v(x x")«. '(x-",x', 0-) p„(x,x')

+ -' f dx "v(x -x")[« ' (x",x ', 0)- 6(x"-x ') j

Z fn((P —(1}f*u(P —(1 —0}
(3.20)

where K Rnd 6 are reciprocal-lattice vectors. 'She
terms G&0 in (3.20} {nondiagonal terms) represent
the local-field effects. Since it is extremely hard
to calculate them and also since they are small in
mo8t ca868, %6 %'ill neglect them. Thex'efol 6, gfe

xnay

ferrite

M.{p,p+K}=- —

3 ~ f..{p-e)(l v(q)
(2w «{q no, I„„&(

I dan
X fm()(p+K (1) 2 (2 )5 (q)

( 0)

x (6;,.-&p- ql&. lp+K- q&}

E &re now assume, as a final simplification, that
the matrix elements of I', do not vary very rapidly
in the region of integx'ation, this region being de-

terminedd

by the fact that «(q) - 1 for q
- 2w/a, we

can finally write

M(p, p+K) = V,'„(p, p+K)+ V„"(p,p+ K)

~[6(x-x')-&xlT, lx)] .
Hex'6 vfe hRve used the relationship

Zf (x)f:(x")=6'(x-x') =Zf..(x)f.*.(x')
8 ff&

+Zf.,(x) f.*,(x') .

(s. 16)

(3. 16)

(6, -&plT', lp+K)), (3.22)

('.(i, p+K)=.-Z J (z,), ~(r)f..(5-t()

(3.23a}
The first term in E(l. (3. 15) is the static screened
valence exchRnge; the second 18 the stRt1c Coulomb-
hole self-potential for a particle which is not in a
COX'6 StRte. „„,(~ (2w) «(q
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x f*(p q+K) (3. 23b) feasible. The interpolation formula will be

d g 1
(3. 23c)

a~-ES~

where H now has as matrix elements,

(3. 24)

x [V' (P, P )+V "(P,P )]-QQQ (Ecs+&ni)
nl l I'

xbnr bp'r'A r(p)A r(p )Pr(coserr')

and S is the sarge as before, i. e. ,

(3. 25)

It is important to note that, in the above form,
the Coulomb hole seen by the valence electrons is
not seen by the core electrons since it occurs at
Ec„(1—P,). This fact, along with the fact that the
screened exchange acts only on the valence elec-
trons, shows that the total operator M becomes
equal to the core exchange operator plus a small
term when acting on a core function. Also, in this
approximation, the Coulomb hole does not contri-
bute to the shape of the valence bands. This would
not be true if nondiagonal terms of the dielectric
function were included.

Proceeding in a way analogous to the case of the
HF equations, it is easy to show that to solve the
Eq. (3.4) is the same as to diagonalize the deter-
minant

&(rf) = 1+ [A/(I+&0' ) ] (4. 1)

where the parameters A and B are calculated by
fitting our numerical results. The self-energy in-
tegral ECH can then be calculated exactly, giving

Ec„=—,
' f [d q/(2rr)'] v(q) [I/e(q) —1]

= —(A/cq') cos 2o!/sinn (4. 2)

where

q = (a/c)'r'; coen = —b/(2(ac)' 2),

a =1+A, b =2B, c =B2 (4. 3)

(4. 4)(p l
V,",,'hip')= E P, (cos~)Sr "(p,p'}

1=0

The difference in this case will be that the expres-
sion S", "(p,p ) will be

In order to see how sensitive this integral is with
respect to the choice of the dielectric function, we
have calculated the self-energy integral for differ-
ent dielectric functions. Results are shown in
Table VIII.

According to the argument presented earlier, the
core functions are very weakly changed when correla-
tion is taken into account; therefore, the core en-
ergies calculated in the HF approximation should
be very close to the ones one would obtain if cor-
relation is taken into account. We will then assume
that the HF core energies are good also in this case.

The expression for the screened exchange matrix
elements will be exactly the same as in the case of
HF, i, e. , we can still write

Sr".'r' = 5r, r &A.i (P-)A. i (P ') & & be'*br, 'r
nl

Scorr(p p~) ScOFS Sval (4. 5)

P i (cos&rre) (3. 26)

Here, 7„& are the core energies consistent with the
new Hamiltonian. These energies are a priori dif-
ferent than those obtained from a solution of the
HF equations. However, since the Coulomb hole
does not act on a core electron and since the screen-
ing does not involve the core states, we can suppose
that the difference between 7„& and e„& is small
enough that we can neglect it.

As we can see, the above matrix elements re-
quire the knowledge of the dielectric function. This
function has been calculated using a model orig-
inally proposed by Fry. This is discussed more
fully elsewhere.

IV. NUMERICAL RESULTS FOR ARGON

Since the exact expression for the dielectricfunc-
tion is too complicated, we will use an interpolation
formula in order to make the calculations more

TABLE VIII. Self-energy integrals using different
dielectric functions.

Hermanson dielectric function

Penn dielectric function

Our dielectric function

Haken-Schottky-Fowler
dielectric function

&ca y~

—0.2856

—0. 2750

-0.1759

-0.0813

where S&'" are the same as the corresponding HF
results, and S", is similar in the sense that itlooks
the same but contains the screening. Table IX
shows the matrix elements for some values of P
and p . In Fig. 5, we plot (pl V',„",„lp) versus p.
As we may see, the p dependence of the elements
is not as strong as in the case of HF. As the
screening increases, this dependence becomes
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TABLE IX. Some values of $ (p, p'), defined in Eq. (4.5).

$ CorI
0 $ COIT $ Corr

2
$ COI'I'

3 $ Corr
4 $ COIT

5 $ COIT

0
3
3
4

4
8
8
8

11
11
11
12
12
12
16
16
24

0
0
3
0
3
4
0
3
8
0
3

11
0
3

12
3

16
24

—0. 497 501
—0. 212 798
—0. 119567
—0. 167 660
—0. 101236
—0. 087 517
—0. 071 659
—0. 056 439
—0. 040 153
—0. 040 902
—0. 039 168
—0. 030 067
—0. 034349
—0.035 126
—0. 028 083
-0.024145
—0. 022 872
—0.017 0134

0. 0
0. 0

—0. 149 547
0. 0

—0. 138 696
—0. 130 096

0. 0
—0. 091364
—0. 069 171

0. 0
—0. 064 984
—0. 045 759

0. 0
—0. 058 017
—0. 040 597
—0, 037 132
—0. 027 530
—0. 017 842

0, 0
0. 0

—0. 033 786
0. 0

—0. 035 349
—0. 037 634

0. 0
—0. 030 139
—0. 035 374

0. 0
—0. 023 687
—0. 028 996

0. 0
—0. 021 679
—0. 026 940
—0. 014 939
—0. 019 966
—0. 011574

0. 0

0. 0
—0. 007 175

0. 0
—0. 008 253 0
—0. 009 757

0. 0
—0. 008227 9
—0. 014 857

0. 0
—0. 007 212
—0. 015 130

0. 0
—0. 006 725
—0. 014 896
—0. 004 911
—0. 013 278
—0. 009 603

0. 0
0. 0

—0. 001 529
0. 0

—0. 001 886 7
—0. 002 432

0. 0
—0. 002 209
—0. 005 517

0. 0
—0.001 953
—0.006 775

0. 0
—0. 001 842
—0. 007 017
-0.001391
—0.007 377
—0. 006 659

0. 0
0. 0

—0. 000 355
0. 0

—0. 000459
—0. 000 634

0. 0
—0. 000 565
—0. 001 964

0. 0
—0. 000 506
—0. 002 826

0. 0
—0. 000 479
—0. 003 058
—0. 000 366
—0. 003 716
—0. 004 091

0. 0

0. 0
—0. 000 070

0. 0
—0. 000 088
—0.000 119

0. 0
—0. 000 102
—0. 000268

0. 0
—0. 000 093
—0.000 243

0. 0
-0.000 088
—0.000 197
—0.000 069
—0.000 771

0. 001 510

weaker and weaker. This is perhaps a, reason why
the Slater approximation works well in the case of
semiconductors, since the Slater approximation
does not show any P dependence.

We now have all the ingredients necessary for
the band calculation. We have calculated the ener-
gies at the points I', X, L, ~, and A. Figure 6
shows the corresponding energy bands. The above
calculation includes 13 sets of plane waves at I' and
22 at X, I, ~, and A. In order to check the con-
vergence, we have recalculated the energy levels
at I" including ten and more sets of plane waves.
Table X shows the results at I".

An extensive discussion of the results will be
given in Sec. V. However, at this point it is note-

L
20

X
l,47

l5
2
I " l, l

10- —,735

worthy that we have computed an energy gap of 13.7

eV, which is to be compared with the experimental
value 14. 3 eV obtained by Baldini. " The agreement
is very good. Incidentally, we also note that the
value for the gap obtained by Mattheiss is 13.3
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FIG. 5. Momentum dependence of the exchange poten-
tial with valence screening.

FIG. 6. Argon energy bands with correlation effects
included. The numbers in the figure have the same
meaning as in Figs. 3 and 4.
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Irreducible
representa-
tions

Plane
wave

up to
(422)

Plane
wave
up to
(440)

Plane
waves
up to

-32.6710
0. 0645

15.8082

—1l. 8672
14.8255

10.3326

13.2086

11.9361

-32.6811
0. 0601

15.8071

—12.7562
14.7753

10.3296

12.9954

11.9302

—32. 6890
0. 0577

15.8060

—13.6371
14.7241

10,3217

12.8747

11.9296

eV, and the one obtained by Knox and Bassani is
12.4 eV. We also observe that the width of the P
valence bands is still large but smaller than that
obtained in the HF approximation calculation. Corn-
paring this last calculation, including correlation,
with the HF one we see that the main difference in
the two is a change of the energy gap, while we
have a small difference in the shape; in particular,
the valence bands go up and the conduction bands
go down. This is in agreement with Fowler's cal-
culation of the effect of electronic correlation,
which we will outline in order to have a better un-

derstanding of the above characteristic.

A. Electronic Correlation in Excitonic Theory

Following the theory of Haken and Shottky, one
of the authors' has written the interaction between
the electron and the hole in an insulator as

2 2

(
fk p efR r

X

+H„(e) +H„(h) (4. 6)

where R is the wave vector, E,„ is the exciton en-

ergy (i. e. , the energy necessary to excite an elec-
tron to the first exciton level), x is the separation
of the electrori from the hole, and ~,* and m& are
the effective masses of the electron and the hole,
respectively; I y~ I is given by

~r&~ =(E.,)'(4~/V&') (&/p) . (4 7)

Here V is the volume of the crystal, and n/p is

n/p = (e'/2E. „)(1 —I/eo),
and eo is the optical dielectric constant.

(4. 8)

TABLE X. Energies calculated for different numbers
of sets of plane waves at I'. Calculation with correlation.

Energies (in eV)

The two II„terms represent the self-energies of
the electron and the hole with respect to the elec-
tronic polarization, and are given by the second
term of expression (4. 6) with exp(fk r) replaced
by —1. Converting the summation gI into [V/(2v)']
x f dsk and integrating to k = v/a, one gets

1 1
1 l'/v' 1 «'lv') '

where v, and v& are given by

v, = (2m,*E,QK«)"'

(4. 9)

(4. 10)

—(e'/~) (1- 1/eo) (v, +v„)

In the latter case, where one supposes v&» v/a, so
that the term k /v, is negligible, one gets

Hf„= —(e2/r) + (e /r) (1 —I/eo) (1 —e "")

—(2e /a) (1 —I/eo)

After observing that the static value for the self-
energy agrees closely with the Mott-Littleton (ML)
result

—e (1 —1/eo) [(1/2R, )+ (1/2R„)]

where B, and RI, are the ML radii, and that the
~ dependence of H, „t is much closer to the static
than to the dynamic result, for large I*insula-
tors, it was proposed in Ref. 17 that a reasonable
approach would be to write H&, t as

H„,= —(e «/~) + (e ~/r) (1 —I/e o)

where

x [1—,'(e '&"+e '«")]+H—„(h)+H„(e)
(4. Is)

H„(i) =-,'e (1 —1/eo) n, (4. 14)

and the parameters && are chosen such that the
self-energies calculated with the above expression
are equal to the ones calculated with ML theory.
Values of &~ for different ionic and rare-gas crys-
tals were tabulated in Ref. 17. For argon, one
obtains o.', = n«=0. 88 A ', givingH„(e) =H„(h) =1.1
eV. It was then argued that the number H, =H„(h)
+H„(e) represents the approximate self-energy
corrections that should be subtracted from the one-

One may then calculate the expression (4. 9) in two
approximations: the static and the dynamic approx-
imations. In the former, obtained supposing that
v, and v„are much smaller than v/a and, therefore,
replacing the upper limit of the integrand by , one
gets, in accord with Haken and Schottky,

H"„,= —(e /r)+ (e /x) (1 —1/eo)[1 —«(e "8"+e "«")]
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electron energy gaps in order to obtain optical or
experimental gaps; i. e. , the conduction bands must
be lowered by the value H„(e) and the valence bands
raised by the amount H„(h).

Even though the values for the self-energies we
have calculated are different from those obtained in
Ref. 17, it is evident that we have a striking quali-
tative agreement. The quantitative differences are
not surprising in view of the different physical na-
ture of the initial interactions.

V. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENT

We have se&n that the OPW method is able to
give convergent results for the energy bands for
insulator crystals. Others had also used this meth-
od previously to calculate energy bands in insula-
tors, proving the soundness of the OPW method,
in contrast with its original use. In our case, we
have seen that, even if the exchange potential is
state dependent, OPWis still able to give conver-
gent results.

In the first part of this work we have performed
two energy-band calculations without including cor-
relation in order to see how good the results are
which one obtains by doing a HF calculation. We
have seen that a HF calculation yields bands with
an energy gap (-17 eV) which is larger than the
experimental one, 14. 3 eV, whereas a HF calcu-
lation including the Slater approximation for the
exchange changes appreciably the calculated energy
gap ( 7. 6 eV) which now becomes smaller than the
experimental one. There are also changes in the
structure of the different bands even if this effect
is not as large as the first.

It is, therefore, evident that when one performs
a calculation including the Slater approximation one
obtains results which do not reflect any more than
the HF scheme. The Slater approximation is a
useful one from the practical point of view, but
one should be aware that when one is using it, one
cannot claim one is doing a HF calculation.

We have also seen that it is possible to include
correlation in an energy-band calculation, and this
requires the knowledge of the dielectric function.
The energy-band calculation including an approxi-
mate treatment of the correlation effects has been
shown to give very reasonable results.

Since there has been some previous work done
for argon, both from the theoretical and experi-
mental point of view, it is desirable to compare
our results with these. Theoretically, our energy
bands can be compared with the calculations per-
formed by Knox and Bassani and by Mattheiss.
Knox and Bassani used a tight-binding method for
the valence bands and the OPW method, in a per-
turbation approximation, for the conduction bands.

TABLE XI. Comparison between Mattheiss results
and ours. For more details see Ref. 7.

State

Energies {in eV)
Our cal-
culationMattheiss

r, {1)
~i5(1)
r, (2)
125'(»
r, (2) —r„(1)
r»'(1) —r f(2)
X,'(1) —X4'(1)
X,(1) -X,(2)

~~5(1) -X4'(1)
X)(2) —I")(2)
L2'(1) —L3'(1)
L2'(2) —L2(2)
L,'(1) —L,'(1)
L) (2) —I'((2)

—31.9736
-17.0408

3.7264
2. 1488

13.3144
5. 8752
0. 3536
1.1288
0. 5576
2. 5704
0.5304
l. 6456
0. 5984
2. 6792

-32.6811
—13.6371

0. 0601
10.3296
13.6971
10.2695
l. 3446
2.2347
2. 0575
2. 9557
l. 8970
l. 8958
2. 3124
3.3927

There is very little similarity between their bands
and the ones we obtained. The reciprocal posi-
tions, absolute energies, and details of the bands
are different. The main agreement is that both
calculations predict ~, to be the lowest conduction
point and I'» to be the highest valence-band point.
The band-gap value obtained by Knox and Bassani
is 12.4 eV.

A better comparison can be made between Matt-
heiss's calculation and ours. The method used by
Mattheiss has been APW. Table XI shows a com-
parison of some energy values calculated by Matt-
heiss with ours. There is a generally satisfactory
agreement. The order of the bands is the same
for the valence states and the lowest conduction
states, whereas there are some discrepancies for
higher conduction states. In our case, the d con-
duction states are higher; the width of the valence
bands is in his case 0. 7 eV, whereas in our case
it is 2. 3 eV. The band gap obtained by Mattheiss
is 13.3 eV as compared with our 13.7 eV.

Experimentally, solid argon has been studied
recently by many people. ' Baldini ' has
studied the optical properties of solid krypton,
xenon, and argon. Other experiments on solid
argon have been done by Bostanjoglo and Schmidt
using light- absorption and fast- electron techniques.
A very recent measurement of the reflectance of
solid argon at 20'K xn the energy range from 10-30
eV using synchrotron radiation has been performed
by Haensel et al. Results of such an experiment
are given in Fig. 7.

We do not discuss here the excitonic structure
in argon and how it is possible to explain it. We
only say that from the position of the different ex-
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FIG. 7. Reflectance spectrum
for solid argon after Haensel et al. ,
Ref. 37.

citon peaks it is possible to determine, in a good

approximation, the value of the energy gay. From
the above experiments, one deduces a gap of about
14. 3 eV. The value predicted by our energy bands
is about 13.7 eV. The agreement is, therefore,
good. We remember that the value obtained from
the HF band calculation without correlation was
17. 2 eV, so that we really see how the inclusion
of correlation is necessary in order to get agree-
ment with experiment. The width of the valence
P-like bands predicted by our calculation is about
2. 3 eV. Unfortunately, there are not experimental
data available on this and therefore it would be use-
ful to perform some experiments similar to that
done by Parratt and Jossem for KCl. Deslattes
has measured emission spectra for gaseous argon.
A similar experiment using solid argon, if possi-
ble, could give useful information.

The experiment performed by Haensel et al. is
the only one where transitions are shown occurring
above the band- transition edge. Phillips has
shown that it is possible to explain the ultraviolet-
energy-region spectra in terms of energy bands.
We can then try to interpret this structure. Figure
7 shows two peaks at 16.05 and 16.90 eV. Our
energy bands predict two possible transitions,
X,-X; and I ~-13, at 16.48 and 16. 62 eV, re-
spectively. A correspondence between our pre-
dictions and the two experimental peaks is, there-
fore, possible. Figure 7 shows another transition
occurring at 19.40 eV, which could correspond to
our X3 X4 which occurs at 20. 06 eV. Finally, the

peak at 27. 54 eV could correspond to the transition
I',z- 1"» (predicted 26. 5 eV). An interesting ques-

The authors are grateful to Dr. A. B. Kunz for
some very useful discussions and help during this
work. Thanks are also due to Eduardo Calabrese.
Thanks aredueto Dr. R. Haensel for his permission
to use some of his results before publication.

APPENDIX: TREATMENT OF EXCHANGE POTENTIAL

We can write the exchange operator in the form

( I I ) p ( fr,„(x)f.„*„(x')4(x')dx'
I r —r 'I

kn (Ai)

tion could be why there are no transitions shown
to occur between 19.40 and 27. 54 eV, whereas our
bands predict some possible transitions in that re-
gion. One possible answer to this question could
be that the intensity of these transitions is too
weak. However, some other experiment performed
in this range of energy could be useful to clarify
this point.

We have, therefore, seen how it is possible to
obtain reasonable energy bands for insulators when

the correlation effects are taken into account,
whereas a pure HF calculation does not compare
well with experiment. We have also seen that
Fowler's treatment of the effect of electronic po-
larization is fundamentally correct. It could be
useful to perform energy-band calculations inother
insulators where the dielectric constant is greater
in order to confirm the above conclusions. Alkali-
halide crystals look promising in this sense. Other
pure HF calculations could be useful in order to
determine the limits of the HF approximation.
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Since we work in a. u. we will have in the following
e = 2. It is our purpose to calculate the matrix
elements (p! V,„!p), where P's are plane-wave
momenta. According to the argument presented
in the text, we now assume tha, t the functions f;„
are given by the expression

1/'Q-, e'" "u'„,.(r H.—)S{o), (A2)

where u„, (r- R+) represents the nfm orbital of the
atom located at B~ in the unit cell; thus we have

(p'~! ..Ip) =-2

Freeman, i. e. ,

P„,(r) = Q, C/, R/(~),
and the basic functions R/(r) are of the form

(1+Agy1) e-S~r (A11)

[(2g )2)d2A/+3/(2f 2A 2) 1 ]1/2

Using (AQ), we have

1/2 m

(A12)

N& is a normalization constant which can be ex-
pressed ln terms of the other quantities Rs

(A3)

d~ 4m
=n 2~ q~

~ f„„(r}f"„„(r')e' 'e' '"'

~ pBecause of crystal symmetry, p =p+K, where K
is a reciprocal-lattice vector. We now write

1/
I
r —r 'I = f [d'&f/(»)'] (41//A) e"-"". (A4)

Carrying out the sums over k, p, , and p, we get

d &A d1) (2/2)
1 f )

dz'*~" &d', z')"')

(A12)

where the coefficients 8„"'depend on C„,, N&, C&,
and A.&. We can, therefore, write for the exchange
matrix elements

x d'~'e'""""u„*, r '
{As)

Following Woodruff, since core and valence shells
are filled, we have

l + I'
l

' j'
(! !2 gd))nn+1 (!~d !2 g2)n„+1 1(CO

P„—fd're't"""n , &/) r'ed' „„'tu ', &r). '

A„,( ~p'+q ~)A„*,( ~p+ q ()P, (cos8)

n, l ff, v
(A14)

cose=(p+q) ~ (p'+q)/~p+q~ ~p'+q~, {A7)

'q p q I
'

(»)' e (!f+a!'+%)"'
I', is the Legendre polynomial, and

A2„1,(~K~) = n '"f ~„,„(r)e"'d3~
= [4v(2f + 1)/0]'" (f)' f 3 P„,(~)j,(&3') d1';

(A8)
where we have written

~..(~)=F (8, V)P.,(~)/~ .

&i'Iz..13)=-~T J &,

' d. &13 nl)d."&ln' nl)
nd1

4w», (cos8) ~ —
2 . (A9)

Here, the j,(k3') are the spherical Bessel functions.
Thus we get

!2 g2)n„+1 P1 (cosa)
V

(A15)

gv gv d q, 4~
0 n (2 )3 r (! ~!2 g2))nn+1

This is the essential integral to be evaluated, Since
this integral is very complicated due to the angular
dependence in every term of it, the first thing one
hopes to see is if it is possible to separate the an-
gular dependence from the radial dependence in
every term in the above expression. This is the
idea of Brinkman. We first consider the case
f =0. From (A15) we have

In order to make the calculations practically fea-
sible, it is good to have analytical expressions for
A. „, so that we are left with only the int;egral in q.
In order to do this, we assume analytical radial
wave functions of the form given by Watson and

(! d
!

2 g2))nnd'1

Now we can write

1 1 (- 1) n

(lp+ ql' +g',
"}'n(2p&f) n" m„!

(A16)
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(
dm

X
dx & x+ cos$ (A17) x r ))'„'H,"'(x. , y.)),

V

(A28)

1 = Z (- 1)'(2j+ 1)P (z) Q)(x)0+@ (AI8)

Expression (AIS) is valid for any point z= $+iq
which is inside the ellipse drawn through the point
x and having foci at the points +1. We have, there-
fore, after some manipulations,

4(2j+I),I'
" (-I)"

x q, (x)
dx )" ' m, ! (2p q} ~'

(- 1) ~ d ~

„ ,. q,.(x') ,
V '

(A20)

where cos8=p p'/ pl lp'l. If we define

$~ =p + g + Z~ X~ = 2PQ'

g) =p +q +Z„, x„=2p q

we can write

T,""(p,p )= Z P) (cos8)S;"(p,p') (A21)

where

—4(2j+1) H, '(x, , v, ) H, (x„,y„)
w Pl g ~V '

(A22)

and similarly for H, "(x„,y„).
We, therefore, have

(p
l
V,„"p) = p P, (cosa) S&(p, p )

j-0

where

(A24)

s,'((,(') 5)"'
~q ZD".='sr";(,.))

ft 71 0

where

x=(p'+q'+z'„)/2pq, cosy=p. q/lpl lq . (A18)

We now use the Heine's formula

and D" =H"„/m~!. The sum over n means sumover
all s states.

For states different than s states, i. e. , for p
and d states for which I = 1, 2 (in our case we have
only P states), we can show that we have expres-
sions similar to the l = 0 case. In effect, for l = 1
we see that

lp+ql lp'+qlP («»&)=(p+q) (p'+q)

Using the relation

poq
( Ip+ q I'+ z', )"~'

1 1 (P +q+Z, )

(()7~ rT(' ~ Z'„) ~ ((p pT(' ~ Z'„) ')
(A27)

we can treat the angular integration in the same
way as in the l =0 case, so that, as a result, we
have the same type of radial integral as S,. but sev-
eral of them for p states. We then obtain, in gen-
eral,

(p
l

V,„p ) = 2 P, (cos8) S&(p, p ), (A28)
j=0

where S,(p, p') contains a sum over all the atomic
states. The one-dimensional integral involved into
the S,(p, p ) has been carried out numerically. An

important point involves the question of how many
terms in the series expansion (A28) one should in-
clude in order to obtain a good estimation of
(p I V,„!p'). One observes that the convergence
of (A28) depends onthreefactors: (a) the type of
atomic states involved in the summation, (b) the
extension of these states in real space, and (c)
the magnitude of P and P . Brinkman, in his orig-
inal calculation for silicon, included five terms in
the above expansion. In our case, these terms are
not enough (i) because we have many plane waves
so that p and p' can become very large, and (ii)
because we are including in our exchange all the
atomic states, whereas Brinkman included only
core states. It is, therefore, necessary to include
more terms. In our calculation we have included
another two terms because the further addition of
another two terms does not produce any substantial
variation in the results (less than 0. 001 eV).
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