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A careful discussion is given of the application of the resolvent or Koster-Slater method to
a surface-state problem described by a model Hamiltonian of the tight-binding type. Because
of a special symmetry, peculiar to the surface-state problem, it is possible to reduce the de-
gree of the characteristic determinant by a factor of 2. The usual, "truncation" method of
doing this is shown to sometimes lead to spurious solutions. The origin and properties of these
are determined and a prescription for recognizing them presented. An alternative, "pre-se-
vered" approach to the reduction of the determinant is described. This latter is less useful for
numerical calculation, but has advantages in obtaining analytical results. The general form of
the surface-state wave function is derived from the integral representation of the resolvent. It
proves possible to characterize this form using only simple properties of the bulk band struc-
ture as represented by the model Hamiltonian. This then permits the popular "ansatz" method
of treating the surface states to be routinely used in problems having an arbitrary degree of
complexity. The results of the general discussion are applied to determine the surface states
associated with the (110) cleavage face of a semiconductor having the zinc-blende structure.
The "pre-severed" resolvent method is used to derive some preliminary analytical results,
and a program is set up for the numerical calculation of the surface-state properties for more
realistic models of the surface perturbation.

I. INTRODUCTION

The (110) face of a II-VI or III-V semiconductor
having the zinc-blende structure is an especially
interesting surface for theoretical study since it is
found experimentally not to be reconstructed, i. e. ,
the physical surface retains the full translation
symmetry of a parallel bulk plane. This paper,
together with its companion work, ' describes the
results of a theoretical investigation of the proper-
ties of the electronic surface states associated with
such a surface. We have used the molecular orbital
(MO) scheme to describe the one-electron states
of the crystal and have treated the effects of the
surface perturbation via the resolvent technique.
This present paper sets up the required formal
machinery and applies it to the system of interest.
The appropriate matrix elements of the resolvent
are here obtained; some results which can be ob-
tained analytically are derived, and the method used
in the remaining numerical calculation is outlined.
The subsequent paper' will display the surface bands

derived by numerical calculation for some physi-
cally interesting cases. Threshold conditions,
which can be obtained by several routes, will be
studied there. A discussion will be given there of
the physical justification for the particular MQ rep-
resentations chosen to describe the bulk band struc-
ture and the surface perturbation, and the results
will be compared to experiment.

Section II of the present paper contains a complete
and elementary description of the methods used.
Various somewhat i;='ricate points, as well as some
useful extensions of the basic method which are not
required in the present work, are pursued in the ap-
pendices. Section III then applies the method to the
system of interest. Portions of Sec. II describe
methods which are not new and have been used by
other authors. 2, 7, 13,17, 18, 20, 22 However, the central
technique used here to obtain the surface electronic
states has not been developed or employed before,
In addition, the various preliminaries and subordi-
nate techniques characteristic of the surface-state
problem, which are usually glossed over, are here
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described in a systematic fashion. It seems de-
sirable that such a pedagogically oriented treatment
should be available. A number of alternative meth-
ods of solving the equations of motion for a surface
one-electron state are ultimately obtained. They
are all exact within the context of the MO model
Hamiltonian and thus give the same answer. How-
ever, the interrelations among these different ap-
proaches have not previously been displayed, as
can be done here. Finally, a number of rather
central results are derived here for the first time.
Our systematic presentation permits these new fea-
tures to be fitted into the development of the subject
in their proper logical context.

In detail, the organization of Sec. II is as follows:
II A the tight-binding-model representation of the
bulk states is set up. IIB the surface is introduced.

IIC the translation symmetry parallel to the sur-
face is exploited to reduce the dimensionality of the

problem. IID .a general discussion of the resolvent
method is given. IIE the resolvent method is ap-
plied to the task of obtaining the surface electronic
states, and the special features of this particular
application are studied in detail. II F the integral
representation of the resolvent is derived and used

to determine the general form of the surface-state
wave function. The subsections correspond to this
division of the subject.

II. FORMAL TREATMENT

A. MO Description of Bulk Bands

In this paper we shall use the MO approach to de-
scribing the surface electronic properties of a
solid. This technique achieves a marked simplifi-
cation of the equations of motion by truncating the

band structure and the surface perturbation, re-
taining only the part which can be described in

terms of a limited basis of states. The resolvent
or Koster-Slater method can then be employed to
solve the equations of motion without further ap-
proximation. Although this approach is well known

and widely used, it will be described here in some
detail. We hope thus to make this work, together
with its companion paper, ' reasonably self-con-
tained, and also to bring out certain features of the

method which are not widely appreciated. Some
new formal results will be given; for the most part,
their detmiled derivation is relegated to Appendix
A. Appendix B extends the method to the treatment
of reconstructed surfaces and surface defect states.

The essential feature of the MO description of
the electronic properties of a solid is that the one-
electron states are assumed to arise as linear com-
binations of a limited basis of atomic orbitals pres-
ent on the various ions in a unit cell. This is anal-

ogous to the fashion in which MO's are built up out

of atomic orbitals in the treatment of the one-elec-

tron states of a molecule. The Hamiltonian is
given by specifying its various diagonal and off-
diagonal elements in terms of these localized basis
states. The diagonal elements are commonly called
"Coulomb integrals" and the off-diagonal ones
"transfer" or "resonance integrals. " We shall use
a MO nzode/ Hamiltonian approach following the
example of Levine and Davison. That is, the Ham-
iltonian will be specified solely through these ma-
trix elements between localized "atomic orbital"
states. The values of these matrix elements will
be obtained by fitting various known properties of
the bulk band structure rather than as explicitly
calculated integrals involving an actual one-electron
Hamiltonian and some sort of atomic orbital wave
functions.

Let us consider in more detail the description of

the band structure of the bulk crystal —a perfect
crystal infinite in all directions and thus free of

surfaces. The basis states will be described in the
Dirac notation i m P); they are taken to be ortho-
normal. Here m specifies a particular unit cell,
and P enumerates the various basis states associated
with that cell; P runs from 1 to v. This abstract
notation is appropriate since the dynamical
problem is specified by the matrix elements of the

Hamiltonian in this basis, and the spatial wave

functions of the orbitals are never employed. ' The
vector cell index m is defined: m= m, a+ m2b+ ~n3c,

where a, b, and c are the primitive translation
vectors of the lattice. In the usual fashion, m rep-
resents the translation which carries the unit cell
containing the origin into that characterized by the

triple of integers (m„mz, m, ). We now specify the

bulk Hamiltonian 3CO:

(mp
~
X,

~

in) = W,.(m- i) . (l)

As indicated on the right, these matrix elements
depend only on the difference, m —1=n. This is
an expression of the translation symmetry of the

bulk crystal, i. e. , of X'o. It is essential to our
treatment of the surface problem that W~ (n) van-

ishes unless n is one of a finite set of near-neighbor
displacements. The nonzero values of WB,(n) are
picked to fit the known band structure.

The eigenvectors of Xo satisfy

SCO|I) = Eg

where g stands for a column vector with compo-
nents g(mp):

(=Q ~mp)q(mp)
m0

The translation symmetry of Xo permits us to char-
acterize these solutions by a wave vector k=k, a
+ kpb + k3c and a band index p, running from 1

to v. Here a", b~, and c* are basis vectors for the
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reciprocal-lattice dual to a, b, and c. Each com-
ponent k; mill be assumed to lie in the range
—m &k; &m. This defines a primitive cell of the re-
ciprocal lattice which is not the first Brillouin
zone (FBZ). We shall seldom have occasion to
employ the FBZ. In terms of the local basis ImP),
the components of such a solution Pp„have the
form

„{m"P)= ei™e~{k,p) (4)

Here e~(k, p) is determined as a normalized solution
of the v-dimensional eigenvalue equation,

V

Q X,.(k)e.(k, p) =e,(k, p)~, (k) .
o= f

The v-dimensional matrix X(k) is just the Fourier
transform of W (n ):

X,„(k)=Q„-e-""W,.(n) . (6)

The eigenvalues X,(k} represent the energy bands
of the bulk, and the vectors g„", are the correspond-
ing band states. It is worth noting explicitly that
Schrodinger's equation, which provides the exact
description of the one-electron states, is a differ-
ential equation, and its solutions form a complete
set. Any arbitrary form of spatial variation of a
wave function can thus be described. Correspond-
ing to this feature is the necessary existence of an
infinite number of bands of solutions. The MO ap-
proximation replaces the differential equation by a
difference equation based on a constrained spatial
variation for the wave functions. ' This in turn leads
to the presence of only a finite number of bands of
solutions. The number v of basis states ImP) used
to describe the spatial variation of the mave function
within a unit cell is just equal to the number of
bands. The constrained variation implicit in the
finite value of v is central to the resolvent method.

B. Introduction of Surface

We must now proceed from the description of the
bulk to the description of a crystal with a surface.
The basis states I mP) can still be used to define
the Hamiltonian and to expand its eigenfunctions.
Now, however, some of these correspond to sites
"inside" the crystal and some to sites "outside. "
This will be reflected in the matrix elements of the
Hamiltonian {mP (Kilo), which are specified in such
a way as to represent the surface. The usual way
in which this is done, starting from the infinite
crystal characterized by K, is to sever the two
halves of the crystal on opposite sides of some
crystallographic plane. One thus converts an in-
finite crystal into two semi-infinite crystals, each
of which has a surface, as desired. In particular,
one includes a potential &~ in X which just cancels
out those resonance integrals in Ko connecting the

two halves of the crystal. Then Ko+ g&, unlike Xo
alone, is block diagonal in subspaces referring to
the "left" and "right" half-crystals, as we shall
call them. The two half-crystals will be essential-
ly identical if the surface plane is a reflection plane
or a glide plane, othermise the two halves repre-
sent two different systems which can be treated
simultaneously.

Let us define a set So of left-side surface orbitals
consisting of those basis states I mP), which are
associated with the left half-crystal, but to mhich

Xo assigns nonzero transfer integrals to basis
states on the right. The corresponding set of right-
side surface orbitals will be called S,. According
to the scheme described, V& has matrix elements
only between S, and S, states, and its matrix ele-
ments between such states are just the negatives
of the corresponding matrix elements of Ko. If we
introduce a projection operator I'0, for the states
S, and another I', for the states S„ then the defini-
tion of V~ can be conveniently summarized:

'U
~ ——(Po XOP, + P, Ko Po)

Now, in general, we will take

X—$CO+ 'Up+ g~

where g& provides for changes in the Coulomb and
transfer integrals in the vicinity of the surface.
Like Ko+ 'U &, '0& is block diagonal in left and right
half-spaces. It might represent, for example, the
changes in the Madelung energies of the surface ions
or changes in the transfer integrals resulting from
a distortion of the surface layers compared to those
in the bulk, Surface states which result simply
from severing the crystal without the presence of a
surface perturbation 'U& mill be called Shockley
states. When it is desired to emphasize the pres-
ence of U~, a surface state mill be called a Tamm
state. This terminology is consistent with the
customary use of these terms.

The method of decoupling described above is em-
ployed in this work and in Ref. 1, but it is by no
means the only one possible. Instead of severing
the bonds connecting the two halves via U&, me could
have introduced a potential barrier. Thus, consider
Ko+'U&, where

Ve = (I/e}P, ;
the effect of 0& is to increase the Coulomb integrals
of the basis states in So by e '. As e -0+, this
amounts to an infinite potential barrier, which mill
prevent an electron in the right half-crystal from
entering the left. The electronic states of the right
half-crystal resulting from Ko+ 'U& must be identical
to those resulting from Ko+ g8. This fact mill be
exploited in Appendix A. It has been pointed out'
that a finite and position-dependent potential barrier
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would be the physically most plausible representa-
tion of the surface. Unfortunately, such a scheme
becomes rapidly more difficult to treat as the thick-
ness of the effective surface region increases. Fi-
nally, i4 should be mentioned that, in any ease,
there is no reason why the severing of the two half-
crystals must take place across a lattice plane. In-
stead, one might leave certain unit cells or individ-
ual ions sticking out farther than others, thus, rep-
resenting a reconstructed or faceted surface. This
possibility will be explored further in Appendix 8
and in a subsequent paper. '

We must now find the eigenvalues of the Hamilton-
ian K defined in Eq. (8). Solely as a matter of con-
venience, it will be supposed that the matrix ele-
ments of g~ are nonzero only within So and Si As
a first step, let us exploit the symmetry properties
of K. Of course, the translational symmetry of Ko
perpendicular to the surface plane has been lost, but
that parallel to it remains. The symmetry of '0&

parallel to the surface is assumed to be as high as
that of Xo, otherwise we would be dealing with a
reconstructed surface. For such a surface the
translational periods would be increased, and the
low-energy electron-diffraction (LEED) pattern
would show fractional order spots.

C. Exploitation of Surface Symmetry

We can choose two of the three primitive transla-
tion vectors a and b to be parallel to the surface
plane. The third, c, is taken to point into the right
half-space. Labeling the various primitive cells
in the fashion m, a+ mob+ m3c, the right half-crystal
is defined to include m~ ~1 and the left m, «Q. For
an unreconstructed surface, this w01 always be pos-
sible when the primitive cell is appropriately chosen

(We shall often drop the subscript 3 from }}},and

its conjugate variable 0,.} The reciprocal-lattice
vector c" is now perpendicular to the surface plane.

By assumption, K is unchanged by a translation

through m, a+ m~b. It follows that the components

of the wave vector in the a and b* directions are
conserved, and the eigenstates of the system can be
classified according to their values of k„=k,a*
+ k~b*. Those states belonging to a particular value

of k„c3nbe expanded in terms of the "layer orbitals"
~ k„;mP&, defined

[k((,'}}}P&= Q e'"~~™)mP&

An eigenstate 4(k„) has components%'(k„; mP) along
these basis elements:

@(k„)=Z ~k„;~P&e(k„;mP) .

The eigenvalue equation now takes the form

K(k,)y(k„) =So(k„) . (i2)

For states of fixed k„, the Hamiltonian has reduced
to K(k„), which has the matrix elements

&k„;mP~K(f„)~k„;fr&= Z e ' '™-1}&mP~K~in& .
1,fft2

The relation between K and K(k„) can be written ex-
plicitly:

(k' mP~K~k fn&=(2v)'~ "}(k'-k)

x(k„;mP~K(k„)~k„;i~& . (i4)

Replacing K by K(k„) and regarding (k„;mP& as nor-
malized to unity amounts to factoring out the 5-
function normalization of the surface states cor-
responding to the parallel degrees of freedom m,
and m~. The operators 3CO U z and Qz have

analogous reduced forms within the restricted set
of states having fixed k~j Similarly, in this context,
the projection operators, Po and P„will be consid-
ered to project on the appropriate, finite collection
of layer orbitals.

The surface states are describable in terms of the
two-dimensional Brillouin zone of the wave vector
k„. The equation of motion, (12) plus (13), depends
on the coordinate mP only and is simply parameter-
ized by k„. It describes an effectively one-dimen-
sional problem, and we shall often drop explicit
mention of the label k„.' Note that Ko(k„), which is
defined in terms of the matrix elements of $CO by

an equation of the form of (13), describes the bulk

states of fixed k, . It gives rise to the energy bands
and corresponding bulk eigenstates associated with

a one-dimensional transection at fixed kjj through
the three-dimensional bands of the bulk. The sets
So(k„) and S~(k„) are now finite collections of layer
orbitals, Ik„;mP), and the matrices Vz(k„) and

'Ur(k„) have nonzero entries only within the finite
dimensional subblock whose rows and columns
refer to these finite sets. "

D. Resolvent Method —General

The states of principal interest here are those for
which the electron remains localized in the vicinity
of the surface. In terms of the effective one-dimen-
sional problem, such a state is a normalizable.
bound state —in contrast to the plane-wave eigen-
states of Ko(k„). Now the solutions of Eq. (12) are
of two types: (1) plane-wave-like states which scatter
off the surface but whose energy is unaffected there-
by and thus lies within one of the continuous bands
of energy eigenvalues of Ko(k„) and (2) states whose

energy lies outside these bands. These latter states
are necessarily normalizable; they are surface
bound states. Moreover, barring additional unex-
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y = $(Z)U@ (16)

Now 'U has matrix elements only within the rows and
columns referring to the finite set of surface layers,
S:Sp + Sy, Def ining the pro jection operator P cor-
responding to S, P=Pp+P„we can write those
components of @ within the set S as P4'. Clearly,
only the finite dimensional vector P4 is required to
evaluate the right-hand side of Eq. (16). Using Eq.
(16) to evaluate Pq itself, we find that it must sat-
isfy the equation

Py =P@(E)~(Pq) . (17)

Writing N to represent the dimensionality of Sp and
of S„assumed to be the same, ' this is seen to be
a family of 2N linear equations for the 2N compo-
nents of PC. We know that a necessary and suffi-
cient condition for a solution of such a system to
exist is the vanishing of the determinant

ploited symmetries of the Hamiltonian X'(k„) these
will be the only such localizable states. Our task
is thus to find those solutions of Eq. (12) for which
E lies outside the transect of the bulk bands at
fixed k„. The technique we shall use is the so-called
resolvent or Koster-Slater method. In principal,
it permits the problem to be reduced to the evalua-
tion of some integrals and solution of an algebraic
equation. A general description of the method can
be found in the original paper of Koster and Slater. '
Its application to surface-state problems is des-
cribed by Koutecky, ' among others.

The basic problem is simply stated. The Hamil-
tonian X' is the sum of 3Cp and 'U = 'U ~+ g~. The bulk
term BCp takes a simple form in a plane-wave rep-
resentation, in which it reduces to block diagonal
form. The remaining diagonalization problem (5)
is v dimensional and thus tractable. On the other
hand, g, which represents the effect of the surface,
has a simple form only in a position basis, in which
it vanishes except for a single finite-dimensional
subblock. The over-all Hamiltonian X has neither
of these simplifying properties; yet we must exploit
both to solve the problem. The technique is very
simple. Since we are seeking a solution whose en-
ergy E lies outside the effective one-dimensional
energy bands, the operator E —R'p has no zero
eigenvalues and therefore its inverse exists. This
inverse is the so-called resolvent and will be written
here Q(E). As willbe seenbelow, the block diagonal
form assumed by R'p in a plane-wave representation
permits us to explicitly evaluate the necessary ma-
trix elements of $(E). We now write Eq. (12) in
the form

(16)

and multiply through by the inverse of (E —Ko) to
obtain

A(E) =detP[1 —(R(E)U] = 0 (18)

So far our application of the resolvent method to
surface states has not differed in any essential re-
spect from its application to other sorts of bound
defect states. At this point, however, it is helpful
to recognize that ultimately the system described
by K consists of two disjoint noncommunicating
half-crystals. A surface state pertains to one par-
ticular half, and its amplitude vanishes identically
on the other. Equation (18), on the other hand, in-
volves both sides of the crystal. One might expect
that it would be possible to reexpress the problem
so as to depend explicitely on the properties of only
a single half-crystal. This is indeed the case and
has the effect of reducing the dimensionality of the
determinant to be calculated by half. In fact, we
can argue, as above: If PC satisfies Eq. (17), then
@constructed via Eq. (16) is an eigenstate of Ã.
Since 3C has no matrix elements connecting the two
halves of the crystal, @ can always be assumed to
vanish on one side or the other. ' Suppose, for de-
finiteness, that + vanishes on the left; then Pp@ = Q.

Equation (17) now implies that

(19)

and hence, equating the determinant of the trans-

Here, 1 stands for the unit matrix. We have in-
troduced a notation here which will be frequently
employed below: The determinant is to be taken
of that finite-dimensional matrix obtained by re-
stricting the rows and columns of the operator
[1 —6t(Z)'V] to the subspace projected on by P. Equa-
tion (18) is the fundamental equation of the Koster-
Slater method. It states that the surface-state
energies are just the values of E for which 4(E)
vanishes. It is worth noting that h(E) is real. '

Having found such an energy, P4 can be determined
from Eq. (17). The other components of @are then
found from (16) after P4' has been substituted on the
right. Thus the zeros of the determinant A(E) are
just the surface-state energies. The motivation for
the various approximations implicit in use of the
resolvent method should now be clear. In order to
keep the dimension 2N of the system (18) sufficiently
small to be dealt with, we try to minimize the size
of the set S. This involves neglecting interband
transitions involving bands much higher or lower in
energy than the states sought; it involves neglecting
transfer integrals coupling distant neighbors, ne-
glecting surface perturbations of extended range,
and truncating the distance to which the electrons
can tunnel outside the crystal. Any of these con-
straints could be quantitatively relaxed at the price
of increasing the dimension of S.

E. Adaptation of Resolvent Method to Surface-State Problem
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O= P,N(z)~P, e
from which it follows that

det[e. (z)~]„=O .

(21)

(22)

(The subscript 01 indicates that the square matrix
with rows from SD and columns from S, is denoted. )
Such relations as this have sometimes been found
useful 'e

We have shown that Eq. (20R) or its left-side
analog,

~,(z) =detP, [I —61(z)~]= O, (2ol.)

must hold for any surface-state energy; that is, one
or the other of these equations holds whenever (18)
is satisfied. However, we have yet to establish that
(20L) or (20R) is actually sufficient in order that E
correspond to the energy of a surface state. %'e

must show that (18) actually follows from either of
these conditions. This question of the sufficiency
of the truncated determinantal condition has been
generally overlooked. An affirmative answer has
been implicitly assumed. '7'8 It turns out, however,
to be quite difficult to prove that (20L) or (20R) im-
plies (18) for the very good reason that it is not
quite true. Instead one finds that the following
identity holds:

detP, (l —O'U) detP, (l —61'U)

= detP(l —8,'U) detP(1 —61'0, ) (23)

Note the presence of the subscript 8 in the rightmost
determinant. This equation is proved in Appendix
A. It shows that among the zeros of 60(E) and

&,(E), the factors on the left, are included not only
the zeros of 4(E), which we know correspond to the
true surface states, but also the zeros of hs(E)

detP[l ——61(E)Us]. These latter give the energies
of the Shockley states, the surface states present
when U~ is set to zero.

Using Eq. (23), it is possible to deduce the prop-
erties of ho(E) and A, (E) in detail. Specifically,
4, (z), the right-side truncated determinant, has
zeros at the energies of the surface (Tamm) states
of the right half-crystal plus zeros at the energies
of the Shockley states of the left half-crystal. These

formation to zero,

~,(z) -=detP, [I- e.(z)&]= 0 .
This determinant tI, (E) is lV dimensional, and Eq.
(20R) represents the desired reduction of the prob-
lem. This truncation of the surface-state problem
has been used by Koutecky and co-workers. ' "'
Evaluating Po+', which is supposed to be identically
zero, from Eq. (17), we obtain the additional rela-
tion

latter are spurious roots, which do not imply the
presence of surface states at all. These two cat-
egories of zeros exhaust the roots of ~,(z); t10(E)
has analogous properties. It is instructive to go
through the argument leading to these conclusions.
We shall need to make use of the additional identity,

detP, [l - (R(E)Q,] = {detP,[I—$(E)V,]}*, (24)

which is also proved in Appendix A. " If we set o~
to zero in Eq. (23) and use Eq. (24), then we see that

/detPO[I —(R(E)'Us]
f

=
/
detP, [1, —CR(E)Us]

/

= /detP[I-N(z)~, ]/ . (»)
This last determinant is real, like C (E) in general;
its zeros give the Shockley state energies for both
half-crystals. Clearly, each of the subdeterminants,
+0(E) and +y(E), must now vanish at the energies of all
Shockley states, both left and right. Now reintro-
duce or= X'Ur and consider what happens to b, (E)
when A. is gradually increased from 0 to 1. For
X= 0, the zeros of &,(E) give the Shockley states for
both half-crystals. As X increases, the part of 'U~

which perturbs the right half causes the energies
of those erstwhile Shockley states located on the
right to shift. Additional zeros of &,(E) may appear
or some may be lost. In any event, none of these
displaced energies coincides with a Shockley state
energy. In Eq. (23), they can only match up to zeros
of b (E) and thus represent the true bound states.
On the other hand, those zeros of d, (E) associated
initially with Shockley states of the left half-crystal
are left to match up to zeros of hs(E) in Eq. (23).
These zeros of d, (E) do not shift and remain at the
energies of the left Shockley states when A. = 1.
They can be easily identified as spurious by this
very property. To reiterate, each of the truncated
determinantal conditions, (2OI ) and (2OR), yields as
its solutions the true surface-state energies for the
side to which it nominally refers plus spurious solu-
tions at the energies of the Shockley states of the
wrong side.

There is another, quite different method of reduc-
ing the 2N-dimensional problem (18), to N dimen-
lons Suppose we had sta~t~d from +()+s as un

perturbed Hamiltonian and then applied 'U~ as the
surface perturbation. The surface-state energies
for the right half-crystal would then be given by the
solutions of the determinantal equation

detP, [1—61'(E)'Ur] = 0 (28)

Here 61 (E)= (E —Ko —'Us) ' is the resolvent for the
Hamiltonian X'o+'U ~. Since the latter is block di-
agonal, so is 61 (E), and the two half-crystals are de-
coupled right from the start. This approach is
closely related to that employed by Baldock; he
dealt with a model crystal so simple that the solu-
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tions of Xo+'U ~ could be determined by inspection.
This permitted 61 (E) to be constructed by essentially
the same method we shall use for (R(E) below. How-

ever, in general, this is not feasible. Fortunately,
there is a general prescription which permits
61 (E) to be routinely derived from (R(E) itself.

We define n(E),

n(z)= l-tR(z)n, .

If n(E) ' could be found, then (R (E) could be ob-
tained as X)-'(R:

n(z) 'e.(z) = (dl(z) ' [1—e.(z)v, ] }'

This shows that, regarded as 2N-dimensional
finite matrices,

pn(z)-'p= [pn(E)p]-' . (34)

The inverse of the finite-dimensional matrix
Pn(E)P can be routinely constructed.

In Appendix A, it is shown that we can improve
on Eq. (34) and write out a more explicit expres-
sion for Pn(E) 'P. Using subscripts to denote the
submatrices involving different combinations of
rows and columns from So and S„we find that

=(E-St, —11,)-I . (28)

Here 6t(E) ' = (E —Ko), which is essentially the def-
inition of 61(E), has been used to obtain the second
line. Now n(E) is just the unit matrix except for
those eozumns referring to the surface basis states,
i. e. , to the set S. This property is summarized
by the relation

n(z)(I- p)=(I- p) . (28)

The projection operator 1 —P just picks out those
components which do not involve S. Multiplying
Eq. (29) through by n(E) ' on the left shows that
n(E) ' also has this property

n(z)-' (1 —P) = (1 —P) . (so)

Thus only the columns of n(E) ' referring to S have
to be determined. From (26) and (28), we see that
it is only the rows of (R (E), and thus of n(E) ',
referring to S which are of immediate interest;
that is, we want to find Pn(E) '. We multiply
Eq. (30) by P on the left and use the property of
projection operators P(1 —P) = 0 to obtain

pn(z)-'= pn(z)-I p . (31)

p61'(E)p = pn(E)-'61(z) p
= pn(z)-'pe, (z)p . (s2)

It is perhaps worth noting explicitly that although
(R (E) llas Ilo matrix elements connecting So and
S„both n(E) ' and (R(E) do. The multiplication in
Eq. (32) involves the components of both these
sets. Finally, we use Eq. (31) and the analogous
equation for n(E) itself to determine Pn(E) 'P.
Multiply the definition, X)X) '= j., on left and right
by P, then

p n(E) n(E) p = pn(E) pn(E) p= p. (33)

In short, only the finite dimensional submatrix of
n(E) ' with both rows and columns referring to S
is required, and the relevant portIon of 61 (E) to
use in Eq. (26) is found by multiplying finite-dimen-
sional matrices as follows:

(36)
The E dependence is to be understood. Note that
($00), say, stands for the matrix inverse of the
finite-dimensional matrix 6100. From Eq. (32),
we now obtain

61„-tRII —S,IO(6IOO) 6loI . (s6)

Though this rather resembles second-order per-
turbation theory, it is not an approximation.

From the identities derived above, together with
the definition of n(E), and the usual rules for ma-
nipulating the determinants of finite-dimensional
matrices, we derive that

]=deu {D(z)-' [I-e.(z)U]}
detP[1 —N. (z)n]

=detP[1 —6t (E)0 ]
=detP, [l —S.''or] detP, [l —4I 'Ur] .

(37)
The first line required the use of (34) and (31) and
the second (28) or (32). The third then follows from
the fact that both 61 (E) and ur are block diagonal,
having no matrix elements connection So and S,.
Suppose we are interested in the right half-crystal
and choose 'U~ to be nonvanishing only on' the right.
Then it is clear from Eq. (37) that Eq. (26) is
identical to the condition

[~(z)/~, (z)]= o .

Her«e(E) stands for detP[1 —61(z)& e] « ~s~al.
As far as the Tamm states of the right half-crystal
are concerned, Eq. (26) in the form (38) is equiva-
lent to our original fundamental condition, Eq. (18).

When the definition of n(E) given in Eq. (2V) and
the form of Pn(E) 'P given in Eq. (35) are substi-
tuted into the relation (33), various identities in-
volving the matrix elements of 8.(E) are generated.
These identities are sometimes useful in simplifying
the various determinantal conditions: (18), (20), and
(26). In general, it requires less effort to deter-
mine the surface states from (20) than from (26).
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The latter equation does have the advantage, how-

ever, that the necessary effects of breaking the
crystal are explicitly segregated from the optional
effects of the surface perturbation U~. In addition,
it avoids spurious solutions at the Shockley states
of the wrong half-crystal, though at the price of
poles at the Shockley states of the right half.

Here A(k; E) is the determinant of the matrix
[E 1 —X (k)] and & z(k; E) is the minor of its nP
entry. Another representation of the inverse has
the form of a sum over the eigenvectors of X(k):

eii(k, p) e*(k, p)
p i E —Xpk

IkP) =P"e"' ImP) . (6o)

We shall require the relation between these states
and our basis of layer orbitals Ik„; mP):

IktI)=g ei'™Ik„; mP) (40)

and

Ik„; mP) =
2

e ik™ikP) .
~ If

The wave vector k is supposed to have the compo-
nents k= k, a~+ kgb*+ kc . Because of the transla-
tion symmetry of Ko, the matrix elements of
(E —Ko) in the I kP) ba' '&~ have the form

(41)

( k 'p
I (E —X'o)~k n ) = (2v)' 5'(k —k) I E 1 —X(")lg (42)

where X(k) is the v-dimensional matrix defined in
Eq. (6), and 1 is the v-dimensional unit matrix:
( 1)ii =6ii . Equation (42) was implicitly used in
transforming the bulk eigenvalue equation (2) to
the form (5). Now the inverse of (E -Xo) has
matrix elements of analogous form

F. Matrix Element of Resolvent

It remains only to describe how to obtain explic-
itly the required matrix elements of (R(E). These
are expressed below in the integral .'orm, Eq. (47),
which is used together with Eq. (44) or Eq. (45).

As the inverse of (E —Xo), 6t(E) has essentially all
the symmetry properties of Xo itself: It is Hermi-
tian, invariant under "time reversal" and under
the space group of the crystal. In particular, we
shall exploit its invariance under the translation
group of the crystal, which implies that this opera-
tor is essentially diagonal in a plane-wave repre-
sentation. Specifically, let us define a basis of
plane-wave states IkP):

The eigenvectors e(k, p) were introduced in Eqs.
(4) and (5); they are orthonormal and complete in
the v-dimensional space of states having fixed k.
These forms are, of course, well known, and both
have been used elsewhere to calculate this inverse
matrix. '" The form (44) is ordinarily the more
convenient for calculation.

We need to find the matrix elements in the layer
orbital basis of that factored form of 6t(E) which is
appropriate to the effective one-dimensional prob-
lem. That is, we want iR(E; k„), which bears the
same relation to (R(E) tha. t Ko(k~~) does to Ko:

(k~~ & mP I6t(E) Ik~~ ~ ln ) = (2v) 5(k~~ k~~)

~( k)[ ~ mP I 6t(Ey k(() I k(( y ln ) (46)

Using the relation and the expression for $(E),
Eq. (48), we obtain

(k„;mP I(R(E; k„)Ik„; ln)

n(m I, & E~l —X k»

J -ff
(47)

R„*, ii(E; k„)=R „,ii (E;k„) (46)

and time reversal invariance

Either of the two forms, Eqs. (44) and (45),
can be used in Eq. (47) to complete the evaluation
of the integrand.

Thanks to the translation invariance of 6l(E), the
matrix element evaluated in Eq. (47) depends only
on the difference, m —l; this feature is explicitly
displayed by the integral expression on the right.
We shall denote this matrix elementby(R i ii (E' k„).
It is useful to consider the implications for this
quantity of the symmetry properties of (R(E) enum-
erated previously. Hermiticity now takes the form

(k P I (E —X )
' I kn) = (2v) 5 (k —k)

R+ &ii(Ey kp ) Rg ~ii(E j k~~ ) (4o)

&f[E 1 —X(k)] }ii~ . (42)

The last term on the right is just the J3z matrix
element of the v-dimensional matrix inverse of
[E 1 —X (k)]. There are standard methods by
which this inverse matrix can be found. For in-
stance, we can write

([E 1 -X(k)]-'} =
~(k; E)

Those operations of the factor group of the crystal's
space group which carry the surface plane into
itself will give further relations; examples of such
will be given in Sec. III.

It is usually possible to perform the integral in
Eq. (47) by regarding 0, the variable of integration,
as a complex variable and deforming the contour of
integration. From Eq. (6) we see that the matrix
elements Xz„(k) are all analytic functions of k
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throughout the finite k plane. Hence, h(k, E) and its
minors also have this property. Now it suffices to
consider positive values of n, since R „can be ob-
tained from R„with the aid of Eq. (48). For large
enough positive values of n, the factor e""causes
the integrand of R„,~,(E; k„) to become exponentially
small as the imaginary part of k approaches + ~.
We deform the contour to run from (- v, 0) to (- v, a)
along the line ReA. = —v then to (v, &) along the line
Imk=~&0, and finally to (v, 0) along Rek=w. No
contribution to the integral is obtained from the
sum of the line segments along Rek= —w and Rek
=+ m because these segments are transversed in op-
posite directions, and the integrand is periodic in
Rek with period 27). Letting ~ approach+ ~, we see
that the value of the integral is just 2@i times the
sum of the residues of the integrand at its poles in
the upper half k plane. These poles are just the
zeros of &(k, E) regarded now as a function of the
complex variable, k. For small values of n «0,
there may be an additional contribution to R„ from
the integral along t.he line segment, Imk= ~, in the
limit K + ~. This contribution, as well as those
stemming from the zeros of the denominator, can
be more easily studied if the variable of integration
is changed to p —=e'". From Eq. (6), we see that
X~,(k) is a polynomial of finite order in positive and
negative powers of this new variable. This is
therefore true of &(k, E) and its minors as well.
Equation (47) now becomes

&(y)= p "p(g), (52)

2K'E p d(ILj )

The function d(p) is just a(k, E) expressed in terms
of p, and with the parameters E and k„no longer dis-
played explicitly. Similarly, d ~(ll) is &,~(k, E).
The integral in Eq. (50) is over the unit circle in the
counter-cloclovise sense. The upper half k plane
has become the inter ior of the unit circle, and for
n «0, we shall shrink the contour to zero, picking
up the various residues at the poles of the integrand
within the unit circle. Note that the point dL(,

= 0 now
corresponds to the limit Imk -+ ~, so that what was
previously the limiting contribution on the contour,
Imk = ~, has now become simply the contribution
from a pole of finite order at p. = 0.

Now for real k, h(k, E) is real since X(k) is
Hermitian. This means that d(p) is real for p. on
the unit circle, or, more generally,

d(P, )*=d(1/lL*) .
Let A be an integer representing the degree of the
highest power of p. in d(p. ). From the reality of d(e'")
for real k, this must also be the degree of the high-
est power of p ', so that d(p) can be written

y(ppgp)=Z e' '~y," (54)

where the roots of P(p) are written p~= e"&, j= 1,
. . . , A, as discussed above, and P~"' is the Pth com-
ponent of a v-dimensional polarization vector P"'.
Of course, P ~" depends on the components of 4' in

where p(p, ) is a polynomial in p of degree 2A. The
roots of P(p) locate the poles of the integrand in

Eq. (50). From its definition as the determinant of
[E 1 —X (k)], it is obvious that the zeros of &(k, E)
for real 0 give the bulk band energies E= X,(k),
p = I, . . . , v. Since we have stipulated that 8 lies
outside the range of all the bands X,(k) for given
k„, d(p, ) cannot vanish for p, on the unit circle.
Moreover, given any root of d(p) at p, „say, Eq.
(51) implies that there must be another at p, ,'= 1/p. ,".
If one of these is inside the unit circle, the other
must be outside. Thus p(p) must have exactly A

roots within the unit circle: p, &, j= 1, . . . , A. The
jth root contributes the residue

n i dua(4') (53)d'(p. ,)

to the integral (50), where d (p) stands for the de-
rivative of d(p} with respect to p. Note the nature
of the dependence on n: writing p. ,=e"~ with Imq&
& 0, the contribution (53), to R„.z is proportional
to e'"'~; that is, it goes exponentially to zero with
increasing n, the decay constant being just the
imaginary part of q, . We now return to considering
the IL(, = 0 contribution. Let B be the degree of the
highest power of p,

' appearing in any of the minors,
d,8(p, ). Then as p, tends to zero, the most singular
term in any of the integrands for given n behaves as
p,
" '" . If A&B, then this is a positive power of

jL(, for all n «0, and there is no contribution to any
R„.z from the origin. If B «A, the most singular
term is a pole of order B-A+ 1 -n. The integrand
will ordinarily include a first-order pole at p, =0 if
this exponent is greater than or equal to one. Thus
for all n, 0 «n «no —= (8 —A), there will be an addi-
tional term in R„.z for at least some subscripts
Pn, representing the residue at this pole at the
origin. Commonly, we find no ~0, so that only Ro
has an extra. contribution. ' Below we shall set
no= —1 in case A &B.

Having determined the form of R„, it is now pos-
sible to describe the nature of a surface-state wave
function. From the fundamental equation (16), we
see that g@, which is nonzero only in the surface
region, acts as a "source" for the wave function
throughout the crystal. Let l, define the region in
which 'U4 is nonzero: ('VC'), =0 except for —1,+1
«l «l, . (The number of surface orbitals, N, con-
sidered above is just vl„recall Ref. 14. } Then for
ng&E, +no, a surface state 4 has the form
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the surface region:

y(1) p Q -1-l e8 +4
(goal)

~8 v d ( )

t=~-+1 a=i d (P.z)
(55)

The point worth noting is that Eq. (54}expresses 4 in-
terior to the surface region as a sum ofA linearly inde-
pendent solutions of the bulk equations of motion.
That is, each term in the sum can be obtained by
analytically continuing an ordinary band state to the
energy of the surface state. Qf course, the number
of such linearly independent states A is not simply
related to the number of bands, v. Having obtained
the asymptotic form, Eq. (54), which is a sum of
A decaying exponentials, and knowing its region of
validity m & l, + no. we nom have the assurance that
it we make the ansgtz that the wave function has this
form and treat E, p, , P"', and 0 for 1 &m &l, +no
as parameters to be determined, in the usual fash-
ion, then a solution of this form can indeed be found
and the surface-state energy determined thereby.
(If n, = 1 and I,= 1,—there is no surface region in
which @ takes an exceptional form and the asymp-
totic form is valid everywhere. ) No simpler ansatz
mill suffice. To carry out this program, which is
based on knowing in advance the correct form of
the surface-state wave function, only the exponents
A and I3 are required. These ean be easily deter-
mined from the matrix X (k) describing the bulk
band structure. For nontrivial examples, this an-
satz method is more difficult to carry through than
straightforward application of the resolvent tech-
nique. Nonetheless, for high symmetry points in
the two-dimensional zone of the surface states, the
ansatz approach can be useful, especially in deriving
threshold conditions. In obtaining such conditions
otherwise, the energy is fixed at a band edge value
and the determinantal bound-state condition, (18),
(20), or (26), is regarded as a function of the pa.—

rameters characterizing the surface perturbation.
As a final note, it is worth mentioning that includ-

ing overlaps in treating the surface states causes
little or no increase in computational difficulty. If
the local atomic basis states are not taken to be
orthogonal, then the transfer integrals appearing
parametrically in X(k) are effectively replaced by
linear functions of E:y -y - Eo, say, where. o. rep-
resents the overlap integral between the pair of
orbitals whose transfer integral is y. Since in either
the ansatz or the resolvent method, me use the bulk
dispersion condition, det[E 1 -X(k) ]=0, to solve
for p=-e'~ as a function of E rather than vice
versa, it suffices to consider the solutions g&(E)
already found. These depend parametrically on
the transfer integrals y, for which me now simply
substitute the expressions y- Eo. In the ansatz
scheme, this suffices, and we proceed as before;

In this section, the formalism derived above will
be applied to a physically interesting system. The
surface electronic states associated with a (110)
face of a crystal having the zinc-blende structure
will be considered. The Bravais lattice for this
crystal is face-centered cubic; the basis may be
taken to consist of a cation at the origin and an anion
displaced by one quarter of a cube diagonal along
one of the [ill] directions parallel to the surface
(110)plane. The appearance of a (110) plane is
shown in Fig. l. %e shall make use of the right-
handed Cartesian coordinate system depicted there
having x axis along a [110]direction in the surface
plane, y axis along the [001]direction is this plane,
and z axis pointing along [110]into the crystal. Unit
vectors in these directions are written i, j, and k,
respectively. Basis vectors for the Bravais lattice

L
w r

0
J L J L

4 L J L J L
3 r

FIG. l. The shaded circles represent atoms in the
surface plane, the cation being depicted as the smaller
of the two. The open circles are the projected images
of the next layer of ions, displaced into the paper, which
is the +z direction, by a j2. The edge of the cubic unit
cell is a~2.

otherwise, it remains only to make a similar sub-
stitution wherever y appears in the expressions for
8 and p& or for 8 . Grdinarily we will wish to
modify the surface perturbation 'U~ as mell, in so
far as it represents changes in the bonds in the sur-
face region. As an example, if y is replaced by
y- Eo in Eqs. (62) and (86) below, then 6I given in
Eq. (86) correctly represents the resolvent for the
presevered crystal including overlaps. Correspond-
ing modifications in the off-diagonal terms propor-
tional to 6» 6» and 6, mould be appropriate in
Eg. (72).

III. APPLICATION
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may be chosen: a = ai, b = aV 2 j, and c = ,'g—(i

+ v2 j+5). Here a is the nearest like neighbor dis-
tance so that the length of the cube edge is m 2.
With the origin located at a cation site in the surface
layer of the left half-crystal, the half-crystal of
interest will consist of all sites having m «1. Of
course, both halves have identical properties since
there is a glide plane parallel to (110) which inter-
changes them. As discussed in Ref. 11, it will be
convenient to write k= (1 /a)(k, i +k2j/v2+ 2k') rather
than using the actual reciprocal-lattice vectors:
a.*= (i —0)/a and b~= (j/W2 —k)/a. This amounts to
making a canonical transformation, changing the
relative phases of the layer orbitals Ik„;mP). The
wave-vector components, k, and kz, are nontheless
conserved. The basis states included in each unit
cell represent an s-like state on the cation, P = 0,
and three P-like states on the anion, P = I, 2, and
3, labeled in the order P„, P„and P,. These sub-
scripts refer to our Cartesian coordinate system.
Writing rows and columns in order of increasing P
from p= 0 to p = 3, X(k), the submatrix of the Ham-
iltonian for states of wave vector k, takes the form

Ref. 1. The determinant of [E 1 — X (k)] has the
value (E+H)2[E —X,(k) ]. From Eq. (58), we see
that this quantity is quadratic in cosh, so A = 2 in
the notation of the previous section. From Eq. (56),
it is clear that these quadratic terms arise from
contributions to the determinant proportional to
D(k)D(- k) and F(k)F{-k). These products also ap-
pear in some of the minors; hence B= 2 as well.
Thus we ean say at once that R„ is in general the
sum of two contributions, each of which decays ex-
ponentially with increasing ln ~. In addition, there
will be an extra contribution for n = 0. The integral
indicated in Eq. (4V) was performed using in turn
each of the methods of evaluating [E 1 —X (k)] ',
Eqs. (44) and (45). When the sum over eigenvectors,
Eq. (45), was employed, the integration was per-
formed before summing except that the two flat
bands were lumped together. The expressions for
R„obtained by these two methods agreed, of course.
The result for n «0 may be expressed succinctly

fl ff K.

R„(Ek )= U .I5„,7"'—g Z ' [vsv[Islnh /c[

(59)
H

X (k)
C(k)
D(k)
F(k)

C(-k) D(-k) F( k)
—H Q 0
0 -H 0

0 -H

Here the left-hand side symbolizes the 4 &4 matrix
with matrix elements R„.~ . The matrix U is just

000

C(k) = iVS y sin(f, /2)e-"~",

D(k) = 2y[- cos(k, /2)e "2 '+ cos(k)8' 2 '],
F(k)= ivS y sin(k)e "&"

(57)

The transformation from position to wave-vector
representation has been based on the convention
discussed in Ref. 11, taking uo = 0 and u& ——~ a, + ~ b
for P= I, 2, and 3. The zero of energy has been
taken at the midpoint of the zone-center bandgap-
The magnitude of this gap is 2H. The parameter y
describes the magnitude of the nearest-neighbor
s-p transfer integral; transfer integrals to more
distant neighbors are neglected. This form of the
Hamiltonian is discussed more fully in the companion
paper. ' Note that C(-k)= C{k)", etc. , for real j'p.

The bulk bands resulting from Eq. (56) include
two flat bands with energy E= —H. The conduction
band and the remaining, light hole valence band are
symmetrical about zero energy: E= +X,(k), where

0 1 0 0
(60)0010

! 0 0 0-1I
multiplying by U on the left, as in Eq. (59), simply
reverses the sign of the last row (P= 3). The first
term inside the curly brackets on the right-hand
side in Eq. (59) represents the extra contribution
in the i = 0 case. The matrix 8 +~ is defined

(61)

The remaining two terms arise from the zeros of

det[E 1 X(k)]—in the upper half 0 plane. Specifi-
cally, the two zeros are written qj

——iz, and q& = m+ jz&

and are determined from the relation

Xq(k) = (H + 4y [4 —cos (ky/2) sin (kp/2)]

(ss)
—4y [cosh+ cos(k, /2) cos(y~/2)]~/~2

At zone center, the three valence bands are tangent
at E= —H, and the conduction band has its minimum

8=+H. This bulk band structure is illustrated in

cosq;+ cos(k, /2)cos(k, /2) = (5,. J[H~+4y

&& [4 —cos (0, /2) sin (k2/2)]] —E2)'~

(62)
Here and in Eq. (59), o; =+ 1 for i = 1, and —1 for

»om Eq. (62), it is clear that
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cosh~a —cosh', = 2cos(k, /2)cos(k2/2)

The factor g before the sum in Eq. (59) stands for

1/(4y'[cosh~, + cosh', ](Z+fI)); (64)

the sum cosh', + cosh' is just twice the magnitude
of the right-hand side of Eq. (62). Finally, the
matrix in square brackets represents the outer pro-
duct of the four-dlmenslonal vector V~ with itself.
These matrix elements are, specifically,

[v,. Srrt],.= v, ,v,*,.
The vectors V, , j= 1 and 2, are defined

(65)

f &8y sin(k, /2)e '"2~'

iI 42y[- cos(kg/2)e 2 + o( cosh(K )e 2 j
~ v8 yo,. sinh(x, )e"2"

the p= 1, 2, and 8 elements here are just C(k),
D(k), and —F(k) evaluated for k= q, . Aside from
normalization, both vectors, UV, and UV~, can be
obtained by analytic continuation of the eigenvector
associated with the conduction band. The former
arises in continuing to complex k from the minimum
of theone-dimensional band at k=0 (k, and kz fixed),
the latter in continuing from the relative minimum
present for nonzero k, or k at k = m.

The bulk crystal is symmetric under reflection in
a (110)plane passing through a layer of ion sites.
[As usual, the Miller indices here refer to a cube
edge basis. In our surface adapted coordinate
basis, this would be a (001) plane. I Under this op-
eration k„ is unchanged and n goes into —n. The
orbitals labeled by P=0, 1, and 2 are unchanged,
while that labeled by P= 3 is multiplied by —1 under
this operation. Thus a four-dimensional vector
whose components refer to these basis elements,
P=0, 1, 2, and 3, is multiplied by U, definedin
Eq. (60). Under this reflection, the 4&&4 matrix
R (E kg) is transformed into U R „(E;k~~) U

Since the crystal is invariant under this symmetry
operation,

R„(E;k„)=U. R „(E;k„) U

0 ye-fk)j4 Q2 -i%2/4

Vio= Vo, ——— 0 0

0 0

(69)
The reflection symmetry employed above implies
that

Vos = U '
Vso

' U (70)

%e assume that the surface layer, in addition to not
being reconstructed, is not distorted in such a way
as to sacrifice the reflection plane which passes
through each ion site normal to the vector a. In
that case, the most general form of surface pertur-
bation —given that it affects only the surface layer
itself —has the form

«„;mpI1l, (k„)Ik„;fo)=&».,8. for m=1 and f=l
= ~oo;graf for m = 0 and l= 0

= 0, otherwise

This provides the simplest means of obtaining R„
f'or negative n. For Ro, this relation implies that
the off-diagonal elements in the last row and column
vanish identically. This can be verified using Eq.
(59). We also find that the general relations, Eqs.
(48) and (49), hold. All these identities provide
further tests of the correctness of the expression
(59) for R„.

The decoupling potential g~ has the following
form in our present example:

(kllf mPI &s(ko) Ikni fo& = ~io;oe for m = l. and f = 0
= ~o~;al for m=0 and /=1
= 0, otherwise

—2i6, sin(k, /2)e-"2~'

25, cos(k, /2)e-"2'4

25, cos(k, /2)e-"2i4

2i5, sin(k, /2)e "2~' 252cos(k, /2)e "~ 25, cos(k, /2)e "a '

(72)

This expression will be employed in Ref. (1). The
nature of Voo has no effect on the surface states of

the right half-crystal, which we are studying here.
It is convenient, however, to define it according to
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Voo= U

With this definition, the left and right half-crystals
are interchanged by a glide plane midway between
the m= 0 and m= 1 planes of ions. The complete
system, composed of the two half-crystals, is in-
variant under this operation.

The surface-state energies are determined by the
fundamental equation (18). The surface set 8 onto
which P projects here comprises all four basis
states, P = 0, 1, 2, and 3, of each of the two surface
layers, m=0 and m= I. The roms and columns of
the determinant &(E) will be written with I= 1 fol-
lowing I= 0 so that Eq. (18) now takes the form

~(Z) = det
1 R-1 V1o Ro Voo —Ro Vo1—

=0
Ro V11

(V4)

~I
1 —Roo Voo 0

0~g
0

(V8)

Here an 8 &8 matrix has been specified in terms of
4 ~4 submatrices whose positions in the 2x2
array indicate the layers they connect. In Sec. II,
two methods were developed for factoring this de-
terminantal equation into portions referring individ-

ually to the two, disjoint half-crystals: The deter-
minant can simply be truncated to one of the 4 &4

submatrices located on the diagonal of the above
array. This may be called the truncation method
and corresponds to Eqs. (20L) and (20R) above.
Otherwise, the surface-state condition can be re-
expressed in terms of 6t'(E), the resolvent for the
already served crystal. This is the approach of
Eq. (26) above and will be referred to as the pre-
severed technique. It is this latter method which
will be principally employed in the present work.
We have used the former only to check certain key
results. The prescription derived in Sec. II for the
rearrangement of Eq. (V4) requires that the 8 & 8
matrix appearing there be multiplied on the left by
the inverse of the 8 & 8 matrix S, defined

R-1 V1o Ro V01

Ro V1o 1 —R1 Vo1

[Z is just PAP, where I) was defined in Eq. (2V). ]
This procedure amounts to dividing 4(E) by &z(E)
= det. ~~, and converts Eq. (V4) to the form

(V8)

which clearly factors into the product of the deter-
minants of the 4 &4 matrices on the diagonal. These
refer to the individual han-crystals, and when Voo
is defined by Eq, (VS), are actually identical. The
8 &8 matrix of S.'(E) restricted to the surface set is
obtained in the form

9V = Roo = 5) ~ 9g (VV)~f0 R11

where Sl stands for the matrix of (R(E) restricted to
this set.

0 -1

Qrdinarily obtaining the inverse of the 8 &8 matrix
S would be a very tiresome task. Here it is greatly
simplified by the existance of the reflection sym-
metry discussed above. The properties of the two
half-crystals must be identical. Every energy
eigenvalue of the joint system is doubly degenerate
with one eigenvector belonging to each si.de, the two
being interchanged under the reflection. Now we
can describe these eigenstates equivalently in terms
of linear combinations even and odd under this re-
flection. All operators, K» U» and ~ are sepa-
rately invariant under this reflection. Therefore,
when a unitary transformation is applied to N and
g1. to convert them to this new basis, they immed-
iately become block diagonal, the even and odd parts
completely decoupled. Specifically, R transforms:

n- 6 'us= 1 —(Ro+ U Rg) U Vgo

0

where the unitary transformation 6 is defined

(80)

The inverse matrices of the 4 ~4 submatrices ap-
pearing in (VQ) can be constructed relatively easily.
These are now multiplied into the corresponding
submatrices, Ro + U R1, of the transformed ver-
sion of 9& and the result converted back to the orig-
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The vanishing of the off-diagonal matrix entries in

Eq. (81) requires that R&',
&

and R& &
be identical.

This just reflects the fact that the even and odd
states must be pairwise degenerate with essentially
identical wave functions if, by taking linear com-
binations of them in turn, we are to produce states
localized on each of the two sides.

We have performed the calculation indicated in

Eq. (82). The + sign was carried along throughout
the calculation, and it could thus be explicitly ver-
ified that all terms depending on this sign drop out
of the final result. This gives us a powerful check
of the correctness of the algebraic manipulations
as well as of the form, Eq. (59), of R„ itself. An

additional check of the former aspect of the deriva-
tion was provided by a computer program which
calculated numerically the various matrices and

performed the indicated operations to obtain R&, &

end thence Roo and R„. The numerical values of
the matrix elements so obtained could then be com.—

pared to the corresponding values assumed by the
expressions presented in Eq. (86) below.

Logically, as well as chronologically, the first
interesting result obtained is &~(E)=detu. The
zeros of this quantity determine the Shockley states,
which give rise to poles in the matrix elements of
8 and, of course, have an intrinsic interest as
well. The determinant of S is secured as the pro-
duct of the determinants of the even and odd sub-
matrices in Eq. (V9), These latter are found to be

det[ 1 v (R)) + u R1)u V10]= (I'0 + T1)—
( )

(83)
from which we find that

(C+ S)(as - 6 P
4s&s,&-''(& —S )

Here and subsequently we use the following abbre-
viations:

c;=coshK; and s;=sinhz;, i=1 or 2;
6 =1"1+63 and $=Sl+Sp y

g
TQ

S1Sg
and T', = —L —~C

Sl S3
(s5)

inal basis by the unitary transformation inverse to
that in (V9). Equation (VV) now takes the form

(R&'.) —R&' &) u

(81)
where

R&', &= [ I +(R, + u R, ) u v„]- (R, + u R, ) . (82)

I X+II & —I
ll goo 2 2 23 g P

~~»ol), I))e"" e-m)11 '1Q r 28 —g

@+i%~/4 g g
~11;).o =

28 q- (2(s& —82)+ cos(k, /2)

&& [2 cos(k, /2) —i sin(k, /2)]),

&ae "~" &: -I
~ll 30 P Sl —SP

+ cos(k, /2)cos(k, /2)],

ft&1;11= (E+ ff) 1 —4 sin
I -1 . 3 k 6-3-

2 2$ —6

i)) 8 sin(k, /2)e "3~' &'. —S

(E+ If) as —&.

+ cos(k, /2)[2 cos(k, /2) —i sin(k2/2)]],

~11;31=—

4i sin(k, /2)e "a~' &.'—8
11)$1 (E~ If) &P 81 —8p

+ cos(k, /2)cos(k, /2)],

-as(23-s) 2(s - s)
&."(z+H) &-''(E+ If)(a - &) ~

x [-,'(8, —s,)'+ —,'(c, —c,)'+ 2 —c&c, —as&s, ]

—&.
"[+cos (k,/2) —c,c, —as, s,]

—(~ —s)'-.'(8, —.,)2},

The even and odd linear combinations of Shockley
states arise from the zeros of the quantities in Eq.
(83) when one takes, respectively, the upper or
lower sign. Though these expressions are not iden-
tical, their zeros in the region between the bands
are so since they arise solely from the factor
(as —&:). This is clear from their product, Eq. (84).
The Shockley states will be discussed further below.
Before leaving the subject of detS, however, it is
worth noting that one may here verify the correct-
ness of an identity stated in Sec. II. Because of the
reflection symmetry, the truncated forms of the
determinant of S, detPO[1 —&R(E)U z] and detP, [1
—&R(E)U 8], are real and, hence, equal to each other
and to detQ itself. The 4& 4 determinant of one
such projected form det( 1 —R, Vo, ) which is
trivially equal to the other projected quantity, was
directly calculated. It was found to be indeed iden-
tical to Eq. (84). This represents one more check
on the correctness of our results.

We now list the matrix elements of R„:
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&2(e —s)(2s —e) W2(e —s)'
e'(z a) e'(z e)(2s - e)

ally expressed in the form

s = [(-,'e+ ()'-1]"'+[(-,'e —~)'-1]'" (oo)

& f- fe(l —sz)cos(kl/2) sin{kz/2)

+ S[-,'(s, —sp)'+ —.'(c, —cz)'

+ 2 —clcz —2slsp]+ (S e)z(sl sp) ]
(2e - s){2s- e) (e s)z
e (z+ H) ez(z+ II)(2s —e)

x[-,(s, -s,) +4(c, -cz)'+2- ,c,c2,-ss] .

The remaining off-diagonal elements may be obtained
by using the fRct thRt Rgl 18 Hermitian: Rlg ~ ~p= Alp. a~.
Now in the form (82), the hermiticity of R„ is not

trivially apparent. Therefore, both 8». & and

R».~ mere calculated. The hermiticity was thus

verified and a further check on the algebra achieved.
The surface perturbation (72) can now be com-

bined with R,', (Z) to yield the surface-state condition

det[1 —R,', (Z) V„]=0 . (87)

wllel'8 s alld 'e wel 8 Clef llled ln Eq. (85). It should

be noted that the zeros of Eq. (84) are double. This

is because they represent the Shockley states of

both half-crystals. Since the two sides have iden-

tical properties, all the Shockley states have two-

fold degeQer Bey The quantities I and p jQ Eq
(89) must be expressed in terms of the energy, as
mell as of the components k, and k2 of the bvo-

dimensional wave vector Writing $ .for cos(k, /2)
&icos(kz/2), the required relations are most natur-

In most cases of physical interest, the expression
on the left is so complicated that it can only be dealt
with numerically. There are, however, a few ana-

lytically obtainable results which are worth deriving
here. Of course, the surface states belong to tmo-

dimensional bands characterized by the wave vector
(k„kz). The energy function of such a band g(k„kz)
must be periodic in both k& and k2 with periods of

2m. As discussed in Ref. 1, the first Brillouin zone

of the bvo-dimensional reciprocal lattice is just the

region —v«k„kz «v. It is worth noting that $(k„kz)
ls Rn even function both of Ql and of Qp'.

&(k„k,)= 4'(-k„k,)= h(-k„-k, ) .
The former equality follows from the reflection
symmetry of the lattice in a plane perpendicular to
the lattice vector a and passing through a lattice
point. The second equality is a consequence of
time reversal symmetry.

As mentioned above, the Shockley states are de-
termined by the condition

Z'+ yze'= H'+ 4y'[4 —cos'(k, /2)sin'(k, /2)] . (91)

The values of 8 and 8 increase as the energy F. re-
cedes from the edge of the conduction or valence

band into the forbidden gap. They are uncB.anged

when the sign of E is reversed. Their minima Rt

the conduction-band edge are, respectively, 2(l+ $)

and 2[/(l+ ()]'~ . We can eliminate S between (89)
and (90) to obtain a relation between e and $. By

then requiring that the value of @ for the surface

state exceed the band edge value, me find that

Shockley states are present only near the edges of

the tmo-dimensional zone, in particular, only for

t —=cos(k, /2)cos(kz/2) « —,
'

Vfhen present, these states appear symmetrically

below the conduction band and above the light hole

valence band. Because of the form of Eq. (91),
the simplest way to express the binding energy of

the Shockley state is in terms of the difference in

the values of E for band edge and surface state:

(z')„-(z').,= -,'&'(8& —1)' . (98)

Some simple properties of the Tamm states can

be investigated by permitting only 8o in Eq. (72) to

be nonzero. This quantity represents the change

in the value of the Coulomb integral for the surface
cation. As discussed in Ref, 1, it is expected to

be negative and rather smaller in magnitude than

H. %hen only eo is nonzero, only the first column

of the 4 &&4 matrix product in Eq. (87) has nonzero

entries. Thus this determinantal equation reduces to

1 &z All. oz(z) = 0

%hen the expression for R'„. is substituted from
(86), this condition can be rewritten in a form
closely analogous to the Shockley state condition,
Eq. (ao):

(2+ cp)s= (1+cp)e

where Q ls defined

(96)

For negative eo, n is positive for energies above
the flat bands at E= —H and negative below them.
Once again S can be eliminated between Eqs. (95)
and (90). Now, however, the relation between e
and $ involves e as mell. The threshold condition

may nonetheless be easily evaluated in closed form.
The surface states are present only for

( «(1+ o. )z/(3+ 2cp)

where cp ls evaluatecl fl'om Eq. (96) uslllg 'tile ex-



SURFACE STATES FOR A MOLECULAR ORBITAL MODEL 3287

pression for the band edge energy. Where Eq. (97)
holds as an equality, the surface-state band meets
the edge of the bulk continuum. Equation (97) can
be used to study the qualitative behavior of the
Tamm state bands. As the magnitude of eo increases
from zero, the binding energy of the erstwhile
Shockley state below the conduction band increases,
and its region of existence expands to larger values
of $ in accordance with Eq. (97). The I' point is
the last point in the two-dimensional zone to be in-
cluded in the domain of this band of surface states.
The threshold value of cy for a surface state at this
last point is v2, which corresponds to

0)Threshold V2 y'/H (98)

In the meantime, since n is negative below the flat
band where the lower Shockley state was found, the
binding energy of this state now diminishes and its
region of existence shrinks toward the zone edge.
Since ]=0 defines the zone edge, this state finally
disappears at a given point on the zone boundary
when o = —1 there or e0= —y /(l Eaa I

—H) The st.ate
persists longest at that point at the zone edge where
the magnitude of the band edge energy is smallest.
This is the X point, (k„kh)= (0, ll), for which

Eaa = —(H'+12y')' '. As a matter of interest, if e0
is positive, the domain of the upper surface state
shrinks, vanishing for cy = —1 while that of the lower
state grows. However, the surface state associated
with the lower valence band is constrained to lie
below the flat bands; hence, though its domain of
existence expands towards zone center as e, in-
creases, it never actually arrives there.

The relation between t'- and ( for the Tamm state
found from Eqs. (95) and (90) is

&'= 4(2+ a)'[h'/(1+ n)'+ 1/(8+ 2n)j, (99)

valid in the region defined by Eq. (97). This rela-
tion can be used to find the binding energy of the
surface state by substituting in Eq. (91) and solving
the resulting equation simultaneously with Eq. (96),
defining n. Two useful results can be extracted
without numerical computation: (i) The dependence
of 6 on ( alone insures that the resulting surface
state band has the proper repeat period, 2m, in k,
and kh; (ii) just at threshold, when the surface-
state band is tangent to the edge of the conduction
band at zone center, the masses of thesurface-state
band and of the bulk conduction band at zone center
are equal. '

For a final analytic result, we observe that all
the off-diagonal matrix elements R,', .0 in Eq. (86)
which have e = 1 or P = 1 are proportional to
sin(k, /2) and thus vanish for k, =o. The same is
true for the corresponding elements of V» given
in Eq. (72). Thus along the line k, = 0 the deter-
minant in Eq. (87) factors into the product of the

(1, 1) element and its minor. The former factor
has the form

[1 —e, (E+H) 'I (loo)

Within the context of a MQ description of the elec-
tronic states of a semiconductor, we have discussed

Since E, is expected to be positive, there will surely
be a band of surface states which is flat along this
line in the two-dimensional zone with energy
E= —II+ c~. By specializing yet further to the center
of the two-dimensional zone k~= 0 and setting E
equal to H the energy at the edge of the conduction
band, one may readily derive a threshold condition
from Eq. (87). That is, one finds the zeros of the
determinant considered now as a function of the pa-
rameters appearing in V». At such a zero, there
is a surface state just at the edge of the continuum.
Since the energy of a surface state will, for the
most part, be a continuous function of the param-
eters of the perturbation, and since such a state can
appear or disappear only through the band edge, this
threshold condition and the corresponding one for
the lower band edge can be used to characterize the
maximum possible number of surface states present
at zone center for any given set of parameter values.
We shall not do this here since such threshold con-
ditions will be thoroughly discussed in Ref. 1.

The analytic results in these few special cases
exemplify many of the expected features of the sur-
face-state bands. Obviously, however, we cannot
extract by these means the physically interesting,
quantitative consequences of a realistic model of
the surface perturbation. For this reason, a com-
puter program was written to evaluate the deter-
minant in Eq. (87) numerically and find its roots.
A number of checks on the correctness of the alge-
bra. ic procedures culminating in Eq. (86) have al-
ready been mentioned. In debugging the computer
program, further tests were carried out with the
primary goal of verifying that the program correctly
evaluated the determinant in Eq. (87) using Eqs.
(86) and (72) and accurately found its roots, but
which also served to test yet further the correctness
of Eq. (86) itself. Most notably the ansatz method
of solving the surface-state problem was adapted
to verify the correctness of the threshold condition
obtained via the resolvent scheme, and its predic-
tions were then tested against the computer pro-
gram. Furthermore this ansatz technique was used
to calculate zone center binding energies for selected
parameter values. The binding energies directly
and stringently tested both Eq. (86) and the com-
puter program. The ansatz method employed and
the nature of the tests based on it are described in
detail in Ref. 1.

IV. CONCLUSION



3288 SMITH F RE E MAN

three general techniques of solving the equations of
motion for the surface states without introducing
additional approximations. Two are based on the
resolvent or Koster-Slater method and simply rep-
resent different techniques for taking advantage of
a symmetry peculiar to the surface problem to re-
duce the dimensionality of the Koster-Slater deter-
minant by half. The truncation scheme has been the
more commonly employed of the two. It will ordi-
narily be the more convenient, especially for nu-
merical calculations carried out via computer. We
found that this approach can lead to spurious solu-
tions. Fortunately, these can be readily recognized.
The energies of the spurious solutions were shown
to coincide with those of the Shockley states for
the wrong half-crystal. The alternative, pre-
severed method lacks spurious solutions but requires
more algebraic manipulations. The characteristic
determinant in this case also has poles at the
Shockley states of the right half-crystal. These can
be inconvenient in a computer calculation. However,
the pre-severed technique can be very helpful in
obtaining analytical results, especially if the sur-
face perturbation involves fewer surface orbitals
than are affected by the severing per se. The third
method studied was the familiar ansatz approach,
in which one guesses the general form of the sur-
face-state wave function and substitutes it in the
Schrodinger equation. Using the integral represen-
tation of the resolvent, the correct general form
of the trial wave function was determined. It turned
out that this form could be predicted from simple
properties of the Mo representation of the bulk
band structure, and for.this purpose the explicit
computation of the resolvent was unnecessary. The
ansatz technique, which is now of general applic-
bility, will ordinarily be less useful than the re-
solvent methods, but it always provides a powerful
check on the correctness of results otherwise ob-
tained.

These general methods were applied to the study
of the surface states associated with a. (110) face of
a partially ionic semiconductor having the zinc-
blende structure. The resolvent was constructed
for a particular representation of the valence and
conduction bands using a basis adapted to a (110)
face. The pre-severed resolvent technique was
mainly employed, but both of the other methods
were used to check the algebraic correctness of the
results. The necessary steps were carried through
to set up a program for the subsequent numerical
calculation of the properties of the surface states
using a computer. ' In addition, a number of ana-
lytical results were obtained, based on highly over-
simplified representations of the surface perturba-
tion. These illustrate features of the surface-state
bands to be expected also for the more sophisticated
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APPENDIX A

The object of this Appendix is to prove Eg. (23)
together with some interesting related identities.
The proof proceeds in several steps, of which the
first is to establish the relation

detPO(1 —6t'U)detP, (1 —(R'U) = detP(1 —6t'U)

detP N detP, N.
X

detPS

The reasoning involved is essentially the same as
that used in Sec. II to prove Egs. (32) and (34). We
now define

and

6t"(E)= (Z-X, -&,-u, )
'

u'(E)=1-41(E)(u, +~,) .

(A2)

(As)

It is then possible to show, just as before, that

P6t "(Z)P = P[Pn'(E)P] 'P61(Z)P .

After rearranging Eq. (A4) to read

(A4)

models of the surface perturbation. Salient prop-
erties include (i) an acceptorlike surface-state band
relatively close below the conduction band, which
is present in the forbidden gap only if a threshold
condition is satisfied. This threshold condition re-
quires a sufficiently large decrease of the Coulomb
integral for the surface cations. The zone center
mass of this surface-state band approximates that
of the conduction band. (ii) A light donorlike sur-
face-state band would lie compressed beneath the
heavy hole band and would probably be unobservable
by the experimental techniques usually employed.
(iii) Heavy donorlike surface-states bands are to be
expected in the forbidden gap when the Coulomb
integrals for the surface anions are increased. The
mass of such a band should be comparable to that
of a heavy hole band. Its binding energy re1.ative
to thevalence-band edge should exceed that of the
light, acceptorlike band minimum relative to the
conduction-band edge.
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PS'(E)P = P(R(E)P[P6t (E)P] 'P (A5)

we can make use of the fact that, in turn, BCp+'U,

8 (E), PtR (E)P, and the last fa,ctor on the right
in Eq. (A5) have no matrix elements connecting the
two half-crystals. Thus, we see that

P;S (E)P( P;6t(——E)P~[P)$ (E)P)] P), (A6)

where i and j run over the indices 0 and 1 denoting
the surface sets on the two sides. On taking deter-
minants, we find from Eq. (A5) that

detP(1 —8'0) = detPS
(A 7)

and from Eq. (A6) that

detP;(1 —6tz}=
d tP gri
detP;8

detP;S (A8)

Equation (Al) follows immediately from Eqs. (AV)

and (AS).
It is worth noting that there is a good deal of free-

dom in the choice of Pp and P, in these equations.
Suppose we write P('U) for the projection operator
onto the sma/lest possible surface set S consistent
with the defining requirements: 'UP='U. Similarly,
Po('0) and P, ('0) resolve P('U) into portions referring
to the left and right half-crystals, as usual. Now
our proof of Eq. (Al) requires only that P, be at
least as large as Po(0), that is, Po Po(V} = Po(V)
and the same for P, and P = P, + P, . Note, however,
that each of the two factors on the left in Eq. (Al)
as well as the first factor on the right are individ-
ually independent of the choice of Pp and P, . For
example, in the case of detP(l —O'0), all columns
except those projected on by P('0) contain only a
single unit entry on the diagonal. Expanding in
minors of each extra column in turn, one reduces
this determinant to detP('U}(l —(O'0). Consequently,
the factor in square brackets on the right side of
Eq. (Al) must also be independent of the choice of
Pp and P, even though its numerator and denominator
individually may be expected to depend on this choice.

With the aid of Eqs. (AV) and (AS), it is possible
to proceed some distance in characterizing the zeros
and poles of the various determinants appearing in
Eq. (Al). The strongest results are obtained when
the original, unsevered crystal characterized by

Xp is already finite though large, so that a/l its
eigenvalues are discrete. Note that no periodic
boundary conditions are employed. %e shall assume
the crystal to be finite in this Appendix except when
it is explicitly stated otherwise. From the defini-
tion of 8, (E), Eq. (A2), it is clear that detPOS. (E)
has poles precisely at the eigenvalues of the left
half-crystal. Similarly, detP, S, (E) has poles at
the eigenvalues of the right half-crystal and now-

where else. Now in Eq. (AV), we know that the zeros

fdetP[1 —(P061P, )(Pi 0sPO)] j*

= detP[1 —(P,(RP )(P 0 .P,)] (A9)

which is established by taking the Hermitian con-
jugate of the matrix in square brackets on the left
and then using the lemma of Ref. 15 to reverse the
order of the operators. Equation (24) is now ob-
tained when one eliminates the extra columns on
each side in the fashion discussed in the previous
paragraph. From Eq. (24) alone it follows that
detP;(1 —6t'Uz) has zeros corresponding in energy
and multiplicity to the Shockley states of both sides.
(This can be made completely unequivocal by in-
cluding in 3Cp an infinitesimal perturbation to lift
any possible degeneracy between Shockley states
of left and right half-crystals. ) When 'Ur is set to
zero in Eq. (A8), the poles of detP;(R' account only

for the zeros corresponding to the Shockley states
of the i side; the additional zeros of detP;(1 —6t'Uz),

which correspond in location and order to the
Shockley states of the other side, ' must arise as
zeros of detP, S. These spurious zeros at the
Shockley states of the wrong side obviously persist

of detP(1 —8'0) correspond in location and order to
the eigenvalues of the system described by Kp+Q.
In view of the possibility of shifting any eigenvalue
of this final system by modifying 'U~, it is clear
that the orders of the poles of detP;61 (E) must cor-
respond to the multiplicities of the corresponding
eigenvalues. Thus the zeros of the left-hand side
of Eq. (AV) match up with the poles of the denom-
inator of the right-hand side: Any zeros of detP61(E)
must be cancelled by corresponding zeros in
detP06t (E) or detP, 6i (E). Now the poles of the
left-hand side of Eq. (AV) are located at the eigen-
values of Kp. In view of possibility of including in

Xp a perturbation which affects only one side of the

crystal, it is clear that these poles must be. matched
as to order as well as location by the poles of
detP61(E), so that there are no zeros of detP, N. (E)
excePt those which correspond to the zeros of
detPS(E). By, exactly the same argument, the poles
of detP;(1 —(O'0) on the left side of Eq. (A8) are
matched by the poles of detP;(R. Thus the zeros of
detP, (R must be cancelled by zeros in detP;S. The
zeros of detP;(1 —8'0} include zeros at the poles of
detP;N. '. These latter correspond in location and

order to the true eigenstates of the corresponding
half-crystal. This is not new information though

it has been obtained in a new fashion. However,
detP;(1 —(R'0} may have additional zeros if detP;6i
has more zeros than detP;(R . These will not cor-
respond to eigenstates of the corresponding half-
crystal. That such extra zeros do indeed exist can
be shown with the aid of Eq. (24) of the text. This
relation follows from the identity
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in detP;6I and thus in detP;(1 —(RU) whatever the po-
tential 'U~ may be.

It remains to prove that

detPOS, detP, 6I
( )detPR (Alo)

detPO(R detP, S
detP(R

etP(I - dt~, )

is an entire analytic function of complex E. Since
its limit as IEI -~ is unity, Eq. (A10) follows
from Liouville's theorem. Having proved Eq.
(A10), we could now complete the characterization
of the zeros of detPS and detP, g using arguments
similar to those employed above. It turns out that
detP;(R has a zero for each eigenvalue of either of
the half-crystals which one obtains on ~emoting
from the original crystal all the ions corresponding
to the surface set 8, . Note that in the case of
detPoS, when one removes So, the half-crystal to
the right is just our usual right half-crystal, but
that to the left does not coincide with the left half-
crystal which we have studied previously. A more
general version of this theorem will be proved be-
low by another method.

There is another method of proving Eq. (A10)
which is rather indirect, but is more physical and
requires less deviousness than that sketched in the
preceding paragraph. This alternate method makes
use of the possibility, discussed in Sec. II, of using
a potential barrier 'U~ to decouple the crystal,
rather than breaking the bonds connecting the two
halves via 'U ~. If 'U~ is defined as in Eq. (9) of the
text, then the eigenvalues and eigenfunctions of the
states belonging to the right half-crystal in the
limit e -0+ will be the same as those obtained when

The results of the previous paragraph suffice to
show that the quantity on the left has a zero wherever
detP(1 —6I'U~) does. Since we have stipulated that
the original crystal is finite though very large,
these zeros give the eigenvalues of all the eigen-
states of the severed system. It is important to
note that under these circumstances detP(1 —6I'Uz)
is analytic except for a finite number of poles at the
eigenvalues of K,. Obviously the same is true of
the left-hand side of Eq. (A10). By making use of
(i) the characterization of the poles of detP;6I in
relation to those of detP;(1 —(RU~) and of those of
detP6t in relation to those detP(1 —dI Ug) which was
carried out in the last paragraph, (ii) the freedom
to redefine P; as larger than P;('0~) discussed in
the paragraph before, and (iii) the possibility of
considering in turn the consequences of severing
the crystal to the right of S, or to the left of S„ it
is possible to prove that the orders of the poles of
the quantities on the two sides of Eq. (A10) are iden-

tical. It follows that

the crystal is broken by 'U ~. To avoid questions of
convergence, it will be assumed here that the crys-
tal is finite in the dimension normal to the surface.
After Eq. (A10) has been proved for this case, we
can let this dimension become infinite again. The
invariance of the eigenvalues E, and corresponding
eigenvector components y, (mP) under this change of
Hamiltonian suffice to establish this same property
for the matrix elements of the resolvent for the
severed crystal 6I (E), since these matrix elements
can be represented in the form

( i,( )i ) ~ 0'p(mP)@p(fo)*

The basis elements mP and Ee here refer to the
right half-crystal. (As usual, the transverse wave
vector k„ is suppressed and a one-dimensional ter-
minology employed. ) In short, we can equate those
matrix elements of (8""(E)= (E —Ã0 —'U z)

' and of
6I"' (E)= (E-Ko —'0~) ' which refer exclusively to
the right half-crystal. As we shall see below this
identification implies the relation (A10) directly

To relate the matrix elements of these operators,
we shall need to consider further the inverse of op-
erators of the form Q"'-1 —O'U where the es-
sential property of 'U

z is that 'U ~(1 —P) = 0. As
shown in Sec. IJ, the inverse of such an operator
characteristically satisfies identities of the form
given in Eqs. (30) and (31) of the text. It remains
to determine (1 —P)&"' 'P: Multiply the defining
relation 8"' '&"'= 1 through by (1 —P) on the left
and by P OD the right, Then lt follows that

[(I-P)~'"-'Pj(P~"'P)+ (I -P)n" &-'P = 0, (A13)

where Eq. (30) has been employed. Substituting
'=1 —'U~, this becomes

(1 —P)&"'(E)-'P= (1 —J )6I(E)~,P[P&"'(E)Pj-'P .

(A14)

This is the required relation. The analogously de-
fined quantity 5)' '(E) = 1 —6I(E)'Os satisfies relations
having the forms of Eqs. (30), (31), and (A14) with
P replaced by Po and 'U

~ by 'U~.
We can now construct the relevant matrix elements

of 6I""(E). We find that

PP&"'(E)-'P, = P, (~[P,6t(E)P, j 'jP, ,

(I —P,)~"'(E)-'P, = —(I —P,)6I(E)P,[P,6I(E)P,j 'P, ,

(A15)

~"'(E)-'(1 —P, ) = (1 —P,),
of which the first two lines are correct only to low-
est order in e. Forming 6I""(E)=n"'(E)'6t(E),
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we obtain

(1 —P0)6t""= (1 —P0)8[1 —P0(P061P0) 'P0N], (A16)

wh1ch 1s exact in the limit e ~0+. In particular,
we shall use

(R11 = 6i11 —$10(4100) 6101 (AIV)

)11 P1 (A20)

the unit matrix within the 8, subspace. From Eq.
(A18) it now follows

)10 ~10 +00) (A21)

Since S"' treats the So and 8, subspaces on a sym-
metrical footing, it is clear that

+~(i )-1+ O

—iR10(iR00)
'

01 11 (A22)
Pj

Taking the determinants of both sides, we obtain

[detP(1 —~RU, )]-'

which is just Eq. (A10).
There are a number of corollaries which are

worth mentioning. Equation (AlV) and (A22) are of
interest in their own right as explicit expressions
for @1/ and ~"g of the text. They were given
there in Eqs. (36) and (35), respectively. Another
expression for (R,', can be obtained from Eq. (A6)
by setting 'U~ to zero and rearranging:

+11 ( 11) 6tl1 (A24)

Note that (S») ' and (8 ')„are quite different quan-
tltles. An explle1t exp1'esslon for the former ean
be obtained by combining (A24) with (AlV). Ob-
viously an expression for 8,,"„ in ease *U ~ is not
zero, can be obtained from (A6) in the same manner,
It differs from (A24) only in having & replaced by

defined in Eq. (A3).
When the perturbation 'U~ is introduced into the

original (finite) crystal described by 3C0, the eigen-
values of the resulting Hamiltonian X~+'U~ are de-
termined by the resolvent technique to be the roots
of the determinant, detP0[1 —$.(Z)P01/e]. Those
roots which approach finite limits as e 0+ become

where matrix subscripts are written in place of
projection operators Po and P, .

In the case of S. "'(E), we can use the relation

6110 '= 0=(S1 ' '}„6I,+ (&' ' '), 6l, (A18)

to eliminate (S"' '),
1, from the expression for 61,'11".

We then find

+11 ( )11[@11 +10( 00) @01]

Comparing Eq. (AlV) with Eq. (A19), it is clear that

in this limit the zeros of detP0iR(E). As was shown
in Ref. 29, these eigenvalues correspond to eigen-
vectors having vanishing amplitude on the set So.
Thus the roots of detP06t(E) are just the eigenvalues
of the two disconnected half-crystals obtained by
removing the set So entirely. This theorem was
alluded to following Eq. (All) above. It can be
easily generalized and the proof sketched here made
quite rigorous. The general statement is that if Z
is any set of basis elements whatsoever and II pro-
jects on Z, then the zeros of detii(R(E) are just the
eigenvalues of the crystal described by $Co but with
the set Z removed, i. e. , all rows and columns of
Xo referring to this set are to be deleted.

The construction of the matrix elements of X) '
summarized in Eq. (A14) can be of considerable
utility when the surface set on which Ur acts, P('U),
is actually larger than that implicated in the de-
coupling of the two half-crystals P(U0). In this
case, the finite-dimensional matrix [P(U 0)&P('00)]
can first be constructed, and then the remaining
matrix elements required in the construction of
P, ('U)$ P, (U), say for use in Eq. (26), can be ob-
tained from (A14).

Finally, Eqs. (A16) and (A22) give rise to numer-
ous identities involving the matrix elements of the
resolvent. In the case of (A22), these are precisely
the identities required to prove directly that S is
block diagonal. These identities can be used to
check the correctness of the algebraic expressions
for the components of I, derived according to the
prescription presented at the end of See. II. Im-
plicitly, this was one of the checks performed in
the case of the example described in Sec. III.

APPENMX 8

In this Appendix, two useful extensions of the
methods developed in Sec. II will be presented: The
modifications required in order to treat recon-
structed surfaces will be described, and the method
used by BaMock to treat defects located on or near
a crystal's surface will be generalized. In addition,
the use of the resolvent to study virtual surface
states will be briefly discussed.

By definition, a reeonstrueted surface has a per-
iodicity lower than that of a parallel crystallographic
plane in the bulk. Instead of primitive. translations
a and b, the potential U ='U ~+'U~ which charac-
terizes the surface has periods p, ,a and LU.2b. Here
p, , and p,~ are positive integers, of which at least
one is greater than unity. We adopt a new descrip-
tion of the crystal lattice adapted to this lowered
symmetry. The basis state I le), where I = l,a
+ lab+ lc, is now described as ILno'1c'0).
L=I., (l1,a)+La(l10b)+lc with I&= i1 I +o, . for i= 1

and 2. The integer n, runs from 0 to JLt. , —1.
Clearly, the primitive cell has simply been expanded



SMITH FREEMAN

in t e a and b directions by factors p, and p,,„re-
spectively. The reciprocal lattice is now based on
the dual vectors ]U.,~a~ pz~b~ and c~ We write a
wave vector p in the primitive cell of the reciprocal
lattice in the form p= p, (il, 'a")+p~(il()'b")+ kc".
Here, p» pz, and A are chosen to run from 0 to 2m.

Each band X,(k) according to our old scheme now

goes over into il, pa bands, X,(y„yz, p). Here y; is
an integer between 0 and p ~

—1, and we identify
).p(y„y„p) with X,(k) for 0, = p, [p;+ 2wy;], i = 1 and
2. Layer orbitals are now defined in analogy with
Eq. (1o),

Ip„;In.ale, 2) = Z 8"') LI Lno. ,a,) (»)
Lj, L~

and the reduced matrix elements of 'U, in analogy

to Eq. (13), have the form

(p)' lpplp2I'o(p)lp '~~l~2)= ~ ' '" l

Nj, N

&Mpp, p, lvll.

(a2)
Here the matrix elements of 'U(p„) are independent
of I., and I.2 since those of V itself depend only
on the differences M& —I, and M& —I&,

' it was to
secure this property that our notation was modified
to presuppose only the lower symmetry. The re-
solvent is also reduced to the pi~ subspace in the
usual fashion, and the expression supplementing
Eq. (47) is

&tW (() —ag)) ~)((E;k„),
v2=0 p,p

deu, [1—61"(E)~,]= O, (a4)

where k, stands for il (p;+2mv;) inthelastfactor.
Note that no integration other than Eq. (47) need be
performed to treat reconstructed surfaces. The
reason is that (R is determined by the properties of
the bulk alone, which is unchanged. We have merely
reexpressed 8 in a slightly different basis. This
formalism will be applied in a future study.

aaldock 0 has applied the Koster-Slater method to
defects on a surface. The unperturbed Hamiltonian
then represents the crystal with surface, and the
perturbation is just the localized perturbation of the
defect. Baldock's method requires that the eigen-
values and eigenfunctions of theunperturbed, bounded
crystal be first obtained. He was able to do this
for simple examples by inspection, but this is not
possible in most cases of real physical interest.
Fortunately, the techniques developed in Sec. II
can be applied to the general treatment of this
problem.

As usual, $C0 represents the Hamiltonian of the
infinite, unsevered crystal and '0 ='0 ~+T ~ introduces
the surface with its accompanying perturbation of
the near surface orbitals. Now, however, the total
Hamiltonian is X=3C0+ *U+Q~, where '0

& is the lo-
calized defect potential. A bound electronic state
localized near the defect has an energy lying com-
pletely outside both bulk and surface bands. The
Koster-Slater determinantal equation determining
the energy of such a localized state has the form

where P~ is a projection operator such that UzPn
= ~n, and 6t' (E) is the resolvent for K, + 'U:

(E —go —z), as in Appendix A, The general ma-
trix element of dt "(E)can be expressed in terms of
the reduced form having diagonal k„, with which we
have been primarily concerned till now,

&mple. "(E)lio)=
( ),

" e'" ™llN.", , „(E;k„) .
(as)

In analogy with Eq. (47), we here use the symmetry
of X'0+ 'U under translations parallel to the surface
to express its resolvent in terms of an integral of
a more easily evaluated quantity. Now 61 (E;k„)
can be found by the method used in Appendix A,

st "(E;k„)= [&'(E;k„)]-'61(E;k„) . (as)
The problem of inverting n'(E; k(() = 1 $(E& k(() 0(k())
is no different in principle or in degree of difficulty
from that of inverting S. This latter task, of
course, has been extensively discussed in Sec. II
and Appendix A. If only the matrix elements of
St (E;k„)within the surface layer projected on by
I', are required, we can use the simpler formula
[see Eq. (A24) I

P, fbi (E;k„)P,= P,[P,&'(E;k„)P,]-'P,6t(E;k„)P, .
(a7)

This requires only the inversion of a finite-dimen-
sional matrix. In practice, it may not be possible
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to do the integral in (B5) in closed form; this was
true even for Baldock's relatively simple examples.
Thus numerical integration will ordinarily be re-
quired.

The resolvent 8"for the severed crystal with

physically perturbed surface is also relevant to the
question of the possible existence of virtual surface
states or resonances lying within the energy region
occupied by bulk states. In this regime, the eigen-
states of X = Xo+'U s+ g ~ are scattering states which
can be labeled by the wave vector and band index
of the incident plan~ wave. A scattering state of
energy E will be said to represent a virtual surface
state if an electron occupying such a state has an
especially large relative probability of being found

in the surface region, i.e. , in one or more surface
layer orbitals. More specifically we shall consider
the quantity,

q, (E;k„)=p ' —/@„(k„;mp)/'~IE —~.(k)1

(Bv)

This represents precisely such a relative probability
defined for the particular surface layer orbital
Ik„;mP). For convenience we have chosen to sum
over all scattering states of energy E and have
weighted the result by the density of states at E. In
this equation, k has its usual decomposition: k= k„
+ AF~. Within the subspace of states of definite k„,
the eigenstate +» represents that scattering state
whose incoming plane-wave part has the bulk quan-
tum numbers kp- 4 being negative for an incoming
wave in the right half-crystal. The a.mplitude of
this state on the layer orbital Ik„;mP) is written
4»(k„;mP). When mP is appropriately chosen, a
virtual surface state will be represented by a peak

in Q ~(E;k„) centered on the virtual state's energy
and having a width related to the reciprocal of the
lifetime of the virtual state in the usua1. fashion.

The quantity Q z can be expressed as a matrix
element of 8":

q.,(E;k„)=- (I/v) lm(6I". ..(E„,k ) (Ba)

where c is a positive infinitesimal. Using the meth-

od described above, the matrix elements of 8 may
be expressed in terms of those of (R, the resolvent
of the bulk crystal. These latter may be presumed
known outside the bulk energy bands and may be
found within them, as presently required, by ana-
lytic continuation. In particular, the integral per-
formed in Sec. II F gave us N. outside the bands as
a function of E and of certain functions of E,
the decaying exponentials p, (E) =e "y~'. Outside
the bands, the q&'s are complex with positive imag-
inary parts. At the band edge, at least one of these
imaginary parts goes 'to zero and that qg(E) has a
branch point there. The others may have branch
points there as well or elsewhere within the band.
In any case, the positive infinitesimal e in Eq. (B8)
specifies how these branch points are to be circum-
vented. For example, suppose we want to continue
from a band gap to a higher-lying conduction band,
and suppose Imq, (E)-0 as E -ED from below. Then
typically, for E & Eo, q, (E) =q&0+ positive imaginary
part, and for E &ED, q&(E) =q&0+ positive real part.
Here q,o is the real wave vector q, (EO) and the added
terms go to zero at Eo as the square root of ~E-EOI.
In any case, if the expressions q, (E) are known ex-
plicitly, the analytic continuation can be easily
carried out, and it will not be necessary to perform
anew integrals like those in Sec. IIF.

'J. D. Levine and S. Freeman, preceding paper,
Phys. Rev. 8 2, 3255 (197O).

J. D. Levine and S. G. Davison, Phys. Rev. 174, 911
(1968); this approach was used earlier in another context

by J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498
(1959).

3A comparative survey of a number of exact methods

has been given by J. D. Levine and P. Mark, Phys. Rev.
182, 926 (1969).

4The matrix elements of the MO model Hamiltonian are
determined so as to fit a portion of the observed band

structure, including its symmetry properties, as closely
as possible, rather than as the actual matrix elements
of a real one-electron Hamiltonian in a tight-binding

basis. One would thus expect that the MO representation
of the bulk band structure could be used in the study of
surface and defect electronic states even when an ab

initio tight-binding derivation of the band structure was

not feasible. Nonetheless, decisions as to how many

local basis states I mP) are to be included, which par-
ticular transfer integrals are to be nonzero, and how the

effect of the surface is to be represented are undoubtedly

made on the basis of a tight-binding analogy. How to go
beyond this analogy, and what may then be the nature of
the one-electron states to which the local basis elements
correspond are questions which seem not to have been
answered. For such reasons as these, it may be pre-
ferable for accurate calculations to use a model Hamil-
tonian based on a nonorthogonal set of local basis states.
Such an approach can represent the bulk band structure
economically and extremely accurately. fSee A. H. Kel-
lner, Acta Phys. Austrica 18, 48 (1964).] The basis
states in this case should be well localized, so that the
effects of the surface could be relatively easily introduced.
The generalization of the formalism presented here to
nonorthogonal basis states is straightforward. It is out-
lined at the very end of Sec. II.

5This point has been emphasized by Levine and Mark
in the paper cited in Ref. 3.

The origin and history of these terms is discussed in
S. G. Davison and J. D. Levine, Surface States in Solid
State Physics, edited by F. Seitz, D. Turnbull, and H.
Ehrenreich (Academic, New York, 1970), Vol. 25, p. 1.

J. Koutecky, Phys. Rev. 108, 13 (1957).
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E. Williams and S. Freeman (unpublished).
Otherwise one would simply redefine Sp and S& as

somewhat larger sets for which this property held.
~ The reduced HamiltonianX{kp) differs from a true

one-dimensional Hamiltonian in its behavior under time
reversal: X(k„)*=X( —kp). Here the matrix elements
of the operator on the left are complex conjugated with-
out transposition.

~~It is necessary at this point to mention two minor
modifications of the formalism which are almost invari-
ably made in practice. Indeed, we shall employ them
in Sec. III. First, we have described the location of a
unit cell by a vector, m= m&a+ m2b+msc, which repre-
sents the displacement required to bring the cell con-
taining the origin into coincidence with the cell labeled
by m. The origin is fixed at some convenient reference
point within the unit cell. We now imagine that the Pth
orbital is associated with an ion whose location relative
to the reference point is u~. It produces somewhat rriore
symmetrical expressions if the transformation from real
to k space is based on exp [ik'(m+u~)] rather than on
exp(ik'm) itself. This amounts to changing the phase of
the plane-wave basis vector l kP) by a factor exp{ik'ug).
[This basis vector is explicitly defined in Eq. (39).] The
various formulas presented in the text can be adapted to
this new convention by uniformly replacing 1, Th and n
when they appear in exponential expressions by 1 + uo
m+u~ and n+u& -u, respectively. Second, we have
chosen to describe a wave vector k in terms of its com-
ponents along the reciprocal-lattice vectors a*, b*, and
c*. Then, when the surface is introduced the components
along a* and b* are conserved, and each surface state is
characterized by a value of k[, =k~a*+k~b*. If we had not
started from the bulk but simply noted that the crystal
with surface has a translation group based on primitive
translations a and b, we would naturally have constructed
a two-dimensional reciprocal lattice based on a*' and b*',
which are dual to a and b within the a, b plane. Recall
that c~ is perpendicular to a and b; clearly, the vectors

fa*' and b*' differ from a* and b* simply by multiples of
c*. We may write k=k&a*+k2b*+k&c* =k& a*'+k21*'+03c*,
where k& = k&, k2 = k&, and k3 & k3. The linear relation be-
tween k3 and k&, k&, and 03 is easily found bg, say, taking
the scalar product of both expressions for k with c. The
primitive cell of the bulk reciprocal lattice can be taken
to be —7[ & k,' & ~ just as well as —m & k&

~ ~. This amounts
to replacing a parallelepiped with edges along a~, b*, and
c* by a right parallelepiped of equal volume with edges
along a*', b*', and c*. Note that when expressed in terms
of these new coordinates, the bulk bands X~{k) are not
periodic in k& and k2 with period 2m except when k3 is si-
multaneously displaced in an appropriate fashion. How-
ever, the surface-state bands are so periodic, as is the
bulk density of states. When k[[ is redefined as k&

a*'
+@2b*' only the phases of the layer orbitals, I k[[ mP),
are affected. In all the formulas of Sec. II, either con-
vention can be used so long as one is consistent.

~ G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167
(1954).

"J. Koutecky, in Advances in Chemical Physics, edited
by I. Prigogine (Interscience, New York, 1965), Vol. 9.

~4For formal and pedagogic purposes, it is convenient
to think of Sp and S& as including one or more complete
unit cells. This can always be arranged by increasing

the dimension of one or both sets, though to do so may
not be the most economical approach. If unnecessary
basis elements have been included in S through such a
procedure, the corresponding columns of the determinant
(18) will have only zeros except for 1 on the diagonal.

This follows from the Hermitibity of (R(E) = (E -Xp)
and'U, together with the lemma: det ( 1 —A ' B )= det ( 1
—B A). This hoMs for finite-dimensional determinants
even if neither A nor B has an inverse. It is easily
proved by replacing A by A(X) = A+A, 1. The lemma
must hold for all X for which A Q) has an inverse. Since
this excepts only isolated values of X, the equation
det [1-A (X) 'B ]=det[1 —B 'A (A)] must be an identity
in X. We can equate the coefficients of the various powers
of X on the two sides. The zeroth-order terms give the
required relation.

~6Let L be a projection operator for the left half-crystal,
then [I, X] =0 expresses the fact that X does not connect
the two half-crystals and implies that L and X can be si-
multaneously diagonalized. When this is done, an eigen-
state 4 of X satisfies either I4 = 0, in which case + refers
to the right half-crysta1, or L4 =+, in which case it refers
to the left.

~'J. Koutecky and S. G. Davison, Inter. J. Quantum
Chem. 2, 73 {1968).

J. Koutecky and M. Tomasek, Phys. Bev. 120, 1212
(1965).

'9It is worth noting that, in a number of interesting
cases, det Po[1 -dt(E)'0 z] and det P&[1 -6((E)'U sl are real
and consequently identical. These cases include all truly
one-dimensional problems, as well as those three-dimen-
sional cases for which the factor group contains a twofold
rotation, proper or improper, normal to the surface crys-
ta, llographic plane.

G. R. Baldock, Proc. Cambridge Phil. Soc, 48 457
(1952), This author used +'{E) to study bound states
associated with defects in a surface rather than surface
states per se. In this sense, his method is generalized
in Appendix B.

~~Recalling the redefinition of the phases of the plane-
wave basis states discussed in Ref. 11, it is worth point-
ing out that as far as the c components of the vectors u~
are concerned, either convention gives the identical in-
tegrand in Eq. (47). Complex-conjugate phase factors
are assigned to the two factors in the integrand and thus
cancel out. The same observation applies to the remain-
ing formulas in this subsection.

W. Kohn~Phys. Rev. 115, 809 (1959).
We use B„to represent the v & p matrix with matrix

elements R„,. ~~.
~4For the labeling of the symmetry points of the two-

dimensional zone, see R. O. Jones, Phys. Rev. Letters
20, 992 (1968) or Bef. 1.

This same model having only &p nonzero is used in
Ref. 1 to study the properties of resonant scattering
states within the continuum. An outline of how this is
done, in general, is given at the end of Appendix B.

This calculation using the ansatz method was carried
out by J. D. Levine, see Ref. 1.

Since we have not yet proved Eq. (23) of the text at
this point in the argument we are not yet able to conclude
that these are the only additional zeros. Note that Shock-
ley state here stands for any eigenstate of Kp+'U s since
they are all discrete.
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28E, T. Whittaker and G. N. Watson, A Com se of
Modern Analysis, 4th ed. (Cambridge U. P. , Cambridge,
England, 1958), p. 105.

~The identity of the eigenvaluea and eigenfunctiona ob-
tsined for the right half-crystal in the two cases can
easily be proved in perturbation theory. Consider as
unperturbed Hamiltonian No+ps++~. The presence of
'U~ has no effect on the solutions for the right half-crys-
tal, which thus represent the eigenstates of Xo+ Us. Now

impose the perturbation —&s, which converts the Hamil-
tonian to Xo+ Qp Represent by '// the typical nlagnltude
of one of the transfer integrals in Qs. Then according
0 pex'turbat1on theorys the lowest oxdex 1Tlodifleatlon

of enex'gy eigenvalues and wave-function axnplitudes are
of ordex' &p and &p, respectively. Obviously these go
to zex'o with ~. This argument ean be made rigorous
without much difficulty.
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Calculations by Mazur, Montroll, and Potts (MMP) have shown that local modes ab&ve the
optical branch of the host crystal are predicted by a linear diatomic-chain model for ala Ooai-
tive values of the mass-defect parameter &. Thx'ee-dimensional calculations show that local
modes exist only for values of & greater than some critical value. However, these three-
dimensional calculations require a knowledge of the eigenvalues and eigenvectors of all the
phonon states of the host lattice. %8 show that, the simplex MMP model ean be applied to
three-dimensional crystals by inclusion of the LO-phonon frequency. In a given system of
host crystal and impurity, the determinant parameters axe the mass defect of the impurity
and the width of the host-crystal reststrahlen band. Calculations on approximately 20 solid
solution systems of the form AB&„„C„have successfully pxedicted the existence or nonexis-
tence of a local mode when g is large and the mass of 8 ia less than the mass of C. The
modified one-dimensional model gives quantitative results for local-mode frequencies which
agxee with full three-dimensional calculations for local modes in NaI, CdS, and Si.

I. INTRODUCTION

It is well known that small concentrations of sub-
stitutional impurities in crystalline lattices can re-
sult in local, resonance, or gap vibrational modes. l

Experimentally these modes are observable by im-
purity-induced infrared absorption' or Raman
scattering. Recently, it has been pointed out that
certain aspects of the behavior of the long-wave-
length optical phonons in pseudobinary mixed crys-
tals could be predicted from the nature of the im-
pullty modes at the low composition llnllts of the
alloy system. 6 This paper xeports a one-dimen-
sional model calculation for the frequencies of local
modes. Our model gives results in good quantita-
tive agreement with the more complicated full
three-dimensional calculations, and also reasonably
accounts for the experimental obsex'vatlons ln many
cases where extensive three-dimensional calcula-
tions are not available. As developed below, the

model is applied to the simpler diatomic crystals.
Extension to other systems is straightfoxward but
not considered in detail here.

Calculations of local-mode frequencies' (as well
as gap- and resonance-mode frequencies) retiuire
a knowledge of the eigenfrequencies and eigenvec-
tore of the host-crystal vibrational modes as well
as the mass and force-constant changes introduced
by the impurity atom. Such calculations were first
performed~ for substitutional impurities in Si, using
a mass-defect formalism in which force-constant
changes were neglected. The 1ocal-mode frequen-
cies were calculated as a function of the mass-de-
fect parameter e~, where e~= i —M/M, . I is the
mass of the impurity atom and M~ the mass of the
host-crystal atom. These calculations were later
extended to include changes in the effective force
constant at the impuri. ty site. For the polax' dia-
tomic crystals, three-dimensional maes-defect cal-
culations have been performed for a limited number


