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Intrinsic surface-state band structure has been computed for zinc blende (110) from an adap-
tation of the Slater-Koster representation of the bulk electronic states. In particular, s orbi-
tals are assigned to the M ions, and p„, p~, p, orbitals to the Xions; the bulk conduction band
is then M-like and the valence band is X-like with the correct symmetry. Also, the zone cen-
ter bandgap and curvature are adjusted to fit experiment or other theory. In this scheme, it
has proved possible to explicitly include displacements of M and X surface ions from their ideal
positions, consistent with the low-energy electron-diffraction (LEED) result that no reduction
of the surface periodicity takes place (no new spots are observed). It was found that both M
(acceptor) -like and X (donor) -like surface-state bands appeared most easily when such ion
displacements were combined with the modification of the surface "Coulomb integrals" cus-
tomarily "onsidered. To a first approximation, both M- and X-like surface-state effective
masses are found equal to those of the adjoining bulk bands. An analysis such as this is shown
to interrelate surface ion geometry with surface electrical properties. In the present case,
we find indications that the X (M) ion is displaced into (out of) the nominal surface plane.

I. INTRODUCTION

The (110) surface of zinc blende seems to be an
excellent candidate for intrinsic surface-state in-
vestigation because (a) this face is the thermally
stable cleavage face, so that experimental data on
surface states can be readily obtained; (b) this face
seems to have no reconstruction' —there are no
new spots on the low-energy electron-diffraction
(LEED) pattern; and (c) the crystal face has equal
numbers of oppositely charged ions so that different
classes of surface states can, and do, simulta-
neously appear. From a theoretical point of view,
there are additional attractive features: (d) The
crystal is partly ionic (of the class MX) so that
Madelung energies can be used as guides for ob-
ta, ining surface perturbations'; (e) the bulk band

gaps are at zone center and direct" (this simplifies
the description of the relevant portion of the energy
bands); and (f) the surface atoms are loosely packed
and would be expected to rearrange themselves
somewhat. We have used a theoretical approach
which combines these features, and which can be
interrelated with recent experimental measurements
of band bending to predict surface atom configura-
tions. Thus, a new diagnostic method is developed.
It complements the LEED intensity-versus-energy
analysis which has, so far, yielded nonunique sur-
face atom geometries.

Extrinsic surface states can occur upon adsorp-
tion or upon deposition of a foreign oxide or metal;
they will not be considered here. The only inter-
face considered is crystal:vacuum.

Koutecky and Tomasek have computed surface-

state energy-band extrema for zinc blende, but they
considered only the polar (111) and (111)faces,
which are now known to be reconstructed. ' Their
tight -binding model incorporated tetrahedral sp
orbitals centered on each M and X site (a total of
eight orbitals was used). Only interactions between
orbitals on nearest-neighbor (nn) atoms were con-
sidered. The resolvent technique was used, as in
the present work. In that model, only one sP' bond
need be broken to terminate the (111)surfaces,
which they presume to be unreconstructed. Jonesv'
has computed surface-state bands for zinc blende
(110); his method involves a truncated pseudopoten-
tial, and he terminates the surface by a planar po-
tential-energy discontinuity, matching the wave
function only at a single point. His results cannot
really be evaluated on the basis of the very brief
notes ' published to date. In addition, it is not
clear how much relevance a calculation of this type
has to real semiconductor crystals, in view of the
highly idealized treatment of the surface itself.
What, after all, is the significance of this surface
discontinuity, and of matching the wave function at
a single point? Is this a minor approximation, or
does it dominate the results? A less fundamental
point of divergence is that Jones does not allow for
any sort of lattice distortion in the surface region.
Both from our results and from the LEED studies
of Si and Ge one would suspect this to be a very
serious omission.

The plan in this paper is to start out from a dif-
ferent point of view. That is, a crystal of the form
MX is considered to be a collection of M and X ions,
to a first approximation. Then only a few orbitals
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participate in forming the valence and conduction
bands. Thus, the many sophisticated problems of
surface termination can be more easily handled.
For example, the surface ions are allowed to be in
their "ideal" locations, as well as in "displaced"
locations, both normal and lateral to the surface
plane. The Slater-Koster type of tight-binding
quantum theory ' is used, where the bulk band
structure and its group symmetries are simulated
by having various orbitals located on various loca-
tions. A one-dimensional (1-0) treatment of this
3-D model has already been given. ' It has been
pointed out' that this type of tight-binding model
can better depict the 3-D configurations of the sur-
face region, than the idealization of a planar poten-
tial discontinuity at the surface.

Analysis of the above model has been carried out
using the resolvent method as well as the ansatz
method, both with the aid of a digital computer. A
thorough and pedagogically oriented exposition of
the resolvent method and its application to this prob-
lem is given elsewhere. " The resolvent method
was the primary method used in this work to achieve
numerical results. The ansatz approach was mainly
used to independently verify the accuracy of the
computational scheme.

The paper is arranged as follows. In Sec. II,
the simulated band structure of zinc blende is con-
structed. The nature of the surface-state wave
function is discussed in Sec. III. In Sec. IV, the
surface perturbation is defined and our analytic
techniques are summarized. The computed surface-
state bands are presented in Sec. V. Finally, in
Sec. VI, we compare theory with experiment and
close with a general discussion.

II. BULK BAND STRUCTURE

The arrangement of ions in the zinc-blende lattice
MX is similar to that in the diamond lattice, except
that M (cation) and X (anion) ions occupy alternate
sites. The crystal structure, as viewed along a
(110)direction, is shown in Fig. 1, both in plan
and elevation. The large dark circles are the X
ions; the small dark circles are the M ions. The
open circles correspond to the layer located behind
the first. A reference to M and X as "ions" is
convenient, even though the crystal is known to be
only partly ionic. Physically, the internuclear
spacing is nearly that of the sum of the ionic radii";
the (110) surface seems to be stabilized against
reconstruction by its lateral electrostatic forces
(which a,re absent in Si and Ge); and the photoelec-
tric threshold is dependent mainly upon the elec-
tronegativity of the anion' in agreement with simple
electrostatic theory. ' These features, in part,
motivated our representation of the zinc-blende band
structure which is adapted to the ionic, rather than
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FIG. 1. Plan and elevations of the zinc-blende (1101
undistorted atomic structure. Small and large circles
represent the M and X ions, respectively. Surface atoms
are shown as dark circles. The Bravais lattice of the
surface M (or X) sublattice is a rectangle with dimensions
1x-,'~2.

the covalent, limit.
In Fig. 1, a convenient Cartesian coordinate sys-

tem is introduced. The z direction ([110]on a cube
basis) is chosen to be normal to the surface, point-
ing into the crystal; the x direction points in the
direction parallel to the zigzag chains, and the y
direction points in the direction (along a, cube edge)
normal to the chains.

Crystals which have the zinc-blende lattice in-
clude ZnS, CdTe, ZnSe, ZnTe, GaAs, and AlSb.
The bulk band structure of ZnS (the others are sim-
ilar) is shown in Fig. 2. It has been theoretically
constructed by Walter and Cohen, who used a pseu-
dopotential method with six adjustable form factors
(three symmetric and three antisymmetric) and no
spin-orbital coupling. The main features of the
band structure near the valence-conduction-band
gap are (a) the gap occurs at the center I' of the
Brillouin zone (BZ); (b) the conduction-band edge
has symmetry I."„and the valence-band edge has a
triply degenerate symmetry I'», (c) away from
zone center, the I » level splits into two nearly flat
and nearly doubly degenerate heavy hole bands and
a light hole band; (d) the band edges are nearly
parabolic with values and effective masses (curva-
tures) which can be inferred from theory or experi-
ment.

All these geometrical (Fig. 1) and band-structure
(Fig. 2) features can, in principle, be simulated to
any degree of accuracy by assigning s, p, d, f, . . .
"orbitals, " as required, to the M and X sites, as
basis for a model Hamiltonian. The model Hamil-
tonian represents the interactions between those
localized basis states as transfer integrals between
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FIG. 2. Bulk band structure of ZnS (from Walter and
Cohen, Ref. 5). Simple chemical arguments give the
orbitals responsible for the bands, as shown.

orbitals on different neighboring sites. Since our
model is designed to simulate a known band struc-
ture, rather than to perform an ab initio tight-
binding calculation, me shall require the various
orbitals on different sites to be orthogonal. To
solve a complicated surface-state problem, hom-

ever, it is desirable to use as simple a model as
can adequately simulate the band diagram (energy
E versus wave vector k) near and within the band-

gap region. There is no immediate necessity to at-
tempt to simulate E versus A over the entire energy
range 0 &E &15 eV in which the bulk band struc-
ture' '0'6 is studied; the desired energy range
here is more modest, being of the order of the
bandgap (- 5 eV).

The smallest possible number of orbitals neces-
sary to simulate the above features (a)-(d) is four.
An s orbital can be placed on the M ion site, and

P„, P„P, orbitals can be placed on the X ion site,
in accordance with usual chemical arguments. The
set (p„, p„p,) constitutes a filled spherical sub-
shell; it can be rotated to suit any convenient set
of Cartesian coordinates. In the simplest ionic
model of ZnS, the Zn" ion has a vacant s orbital,
which gives rise to the conduction band, while the
S ion has its p orbitals filled to a subshell of six,
and constitutes the valence band. At still lower
energy lies the filled S s orbitals which complete
the outer closed shell of eight of the S orbltals.

A model Hamiltonian based on these s and p or-
bitals and including only nearest-neighbor interac-
tions in a tight-binding calculation yields the band
structure shown in Pig. 3. Comparison of the
idealized model in Fig. 3, and the more accurate

Fig. 2, shows that the above features (a)-(d) are
indeed satisfied, but it is lacking in a number of
respects, most significantly, (a) the model (Fig. 2)
does not provide the heavy hole valence bands with
any curvature —they are unphysically flat, as com-
pared to those in Fig. 2. (b) The covalent limit of
this family of compounds cannot be accommodated
without either increasing the number of orbitals or
their range of interaction. Also, (c) the actual con-
duction band has subsidiary minima at X, and I.,
which are absent in the model. All these defects
can be eliminated by adding extra orbitals or more-
distant-neighbor interactions, but this enormously
increases the labor involved in computing surface
states, and will not be attempted here. It is to be
emphasized that no attempt will be made to compute
the bulk bandgap or bulk bandwidth from first prin-
ciples; instead these will be taken phenomenologi-
cally '" from data or other theory.

The localized orbitals will be written in the Dirac
notation as I nv), where n is a. vector locating the
appropriate primitive cell and v runs from 0 to 3
enumerating the s and p orbitals in the order: 8, P„,
P„P,. The vector n can be written n=n, a+n2b
+ n, c, where a and b are the nearest like neighbor
displacements in the x and y directions, respec-
tively, and c extends to a nearest like neighbor dis-
placed in the +z direction (see Fig. 1). For defi-
niteness we choose that neighbor lying in the first
quadrant with respect to x and y. Throughout this
payer, we shall use the convention that ao, the cube
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FIG. 3. Bulk band structure of zinc blende a.s computed
by the simplified model used in this paper. This struc-
ture has certain features in common with the more ac-
curate structure of Fig. 2. The choice of the zero of
the energy scale is simply a matter of convenience. The
bandgap and conduction-band curvature can be adjusted to
simulate a variety of III-V and II-VI materials.
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~
k, v& =Z»„expik (n+u„)~ n, v& . (2a)

A complete set of states is obtained by letting v run
from 0 to 3 while k ranges over a primitive cell of
the reciprocal lattice, which may or may not be
chosen to coincide with the first Brillouin zone
(FBZ). A convenient choice of this primitive cell
will be discussed below.

An eigen state of Ho, the bulk Hami ltonian, cor-

edge, is of unit length. The locali zed state sym-
bolized I nv) is supposed to represent an orthogonal-
ized atomiclike orbital centered on an ion located
at the point n+u„. Here u„=0 for v=0 (s orbital on
ca,tion) and u„=-', (W, 1, 0) for v = 1, 2, and 3 (P

orbitals on anion).
Elements of the bulk Hamiltonian Ho are defined

to include only nearest -neighbor transfer integrals
(n'v I Hol nv). These elements are to be deter-
mined from known features of the observed band
structure such as the magnitude of the bandgap and
the curvature of the bands at the F point . Diagonal
elements (nvl Ho lnv& are commonly called Coulomb
integrals' n& for v = 0 and nx otherwise. The de-
generacy of the three p orbitals is dictated by sym-
metr y, which also implies that there is only one
linearly independent off -diagonal element between
nearest-neighbor s and P orbitals. This off-diagonal
matr ix element, or transfer integral, must have the
form WP cosQ. Here &3P is a resonance integral
(the factor v 3 is included for convenience, as will
appear below) and fl is the a.ngle between the line of
centers joining the M and X ions and a vector point-
ing along the positive lobe of the P orbital in question.
This vector has been chosen to point in the +x, +y,
or + z coordinate directions for our choice of basis
states, as discussed above, and is shown in Fig. 1.
For an undi stoHed zinc -blende lattice, the possible
values of &3p cosA are ap, av2p, and 0. More
specifically, the vectors which locate the nn X sites
from an M site centered at the origin are

n, = —,
' ~3 (W, V 3, 0), n, = -,' &3 (0, -V~3, V —, ),

(1)

;,=-;~3( P-;, P, , 0), n, =-;W3(0, --v —', , -7,") . -
Then the values of —cosQ for transfer from the s
orbital to the (P„, P„P,) orbitals on one of these
four neighboring X sites is just equal to the corre-
sponding triple of direction cosines in (1). Note
that u „ for v = 1, 2, and 3 is just n, according to our
choice of primitive cell. The four vectors which
join an X site to its nn M sites are just the negative
of those in Eq (1). Thu. s, for example, c, defined
above, is just n, -n4 ~

The bulk band states are characterized by a con-
served wave vector k. A basis for the states of
definite k can be defined:

responding to some particular k, can be written

~
t)I& = Z

~
k, v& y„. (2b)

It must satisfy the Schrodinger equation

(Ho E)i —
g& =0 . (3)

Inserting (2a), (2b), and the definition of H, into (3),
we arrive at the greatly simplified eigenvalue
equation:

n„-E A, (k) A, (k) A, (k) y,
A, (-k) nx —E 0 0 yq = 0,
A 2( —k) 0 nx —E 0 y2

A, (-k) 0 0 n, -E y,

(4)
where

A, (k)/P -v 2 v2 0 0
Aa( k)/p = —1 —1 1 I
A (k)/P 0 0 —v2 v2

expz n,
~ m

exp i na

exp i n3
~ ~

exp i n4

~ k
~ k
~ k
~ k

(5)

The columns of (5) will be recognized as essentia, lly
just the vectors (1). These relations (5) reduce to

A, (k)/P = —2v 2i sinu -', k„expi ,' k, ,
—

Aa(k)/P = —2 cos +k„expi ', k, -

+2cos~sk, exp( i ,'k, )—,
-

A. ,(k)/P= —2v2isinv8k, exp( —i,'k, ), -
(6)

and the solution of the secular determinant in (4)
yields four energies: the pair

E= +[& + 4 p'(2 sin'~8k„+ 2 sin'~8k, + cos'+k„
—2 cos, k, cosv —,k„cos v 8 k, + cos'V~8k, )]"'

(7)
and a doubly degenerate eigenvalue E = —~. Here
the following definitions have been used:

&v+&x=0 ~ &~ —&X=2~ (6)

k„= (k, +k~)/v 2, k, = k, , k, = (k, —k2)/~2, (9a)

the symmetry of the bands (7) becomes obvious:

E = + [& + 16p (sin —', k, + sin —' k2+ sin ~ k 3

In other words, the energy E will be measured from
midgap, and & is half the bandgap. The parameter
P is seen to be a measure of the bandwidth.

The wave vector, k, has been expressed in terms
of its components in the Cartesian system introduced
earlier. It is for this reason that the cubic sym-
metry of the energy bands is not evident ~ When the
components k„, k„and k, are reexpr essed in terms
of the components of k along the cube edges,
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—sin —,
' k, sin & k2 —sin 4 k, sin g k3

—sin —', k~ sin —,
' k, )]

Near zone center and other high symmetry points,
one can show that E(k&, ka, k, ) has the proper sym-
metry known to exist for zinc blende. "' However,
use of k„, k„and k, is more convenient in treating
the (110) surface states, since it turns out that k„
and k, are conserved. It remains to define an ap-
propriate and convenient primitive cell for the re-
ciprocal lattice so as to include all distinct states
exactly once. The reciprocal lattice consists of all
points m, a*+m2b +m, c*, where the starred vec-
tors are the reciprocal basis vectors relative to
a, b, and c in the usual fashion. In terms of the
Cartesian basis, they are

a*=(v2, 0, -v2), b*=(0, 1, -v~),
(lo)

c*=(o, o, l8) .

]u. i 0- x'(0,~)
ky

k„"X(Waar, 0)

A conventional choice for the primitive cell would
be a parallelepiped with edges 2~a*, 27tb*, and
2g c*. Note that one edge is already along the z
axis and the other two lie in the xz and yz planes,
respectively. Making use of the physical equiva-
lence of points displaced relative to one another by
2z c*, we may replace this parallelepiped by a
rectangular prism of equal volume having edges
parallel to the x, y, and z axes of lengths 2p&&v 2,
2v&& l, and 2v& I/v 8, respectively. This is the
primitive cell which we shall employ.

The bands derived in (7) are illustrated in Fig. 8
for the parameter values: & = 1 and P = 1. This
tight-binding band structure seems to be the simplest
possible linear combination of atomic orbitals
(LCAO) simulation of the actual band structure,
Fig. 2. Its main advantage is that it forms a
simple, yet somewhat realistic, basis for carrying
out the intricate surface state analysis discussed
in the next sections.

III. SURFACE-STATE PROPERTIES

Consider a crystal terminated by a (110) surface.
We shall eventually take into account displacements
of the surface atoms, but none which modify the
periodicity of the lattice parallel to the surface
plane. The surface is rearranged, but not "recon-
structed, " in LEED terminology. The lattice vec-
tors a and b were chosen to lie parallel to the crys-
tal face,' they continue to define repeat periods of
the crystal. A surface state will be characterized
by a two-dimensional (2-D) conserved wave vector
parallel to the surface plane. The 2-D reciprocal
lattice has basis vectors 2v(v 2, 0, 0) and 2v(0, 1, 0).
These are just the projections of 2g a * and 2mb *,
respectively, parallel to the surface (the xy plane).
The corresponding conserved wave-vector compo-
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FIG. 4. Analytic continuation according to our model,
and 2-D Brillouin zone for zinc blende (110). Each curve
is labeled by fixing the damping constant p, as indicated
in the insert. The grey area depicts the energy region
of the bulk quasicontinuum, and analytic continuation is
not shown above this grey area. The entire figure is
symmetrical about midgap, E=O.

nents are seen to be just those along the x and y
axes. The independent values of k„and k, now lie
within a 2-D FBZ. This zone is shown in Fig. 4
and is defined -m& (k„/v 2)& z, —v&k, & v. The
terminology I", X, X' has been used by Jonesv' to
depict a (110) face on an fcc lattice. In forming a
surface state of given k, and k„only those bulk
states corresponding to the same k„and k, can par-
ticipate. In general, all possible values of k, will
contribute.

Although a surface (bound) state is plane-wave-
like in the x and y directions, it is required to be
normalizable as far as its dependence on the per-
pendicular coordinate z is concerned. In order
that the wave function fall off away from the surface,
it is necessary that the surface-state energy lie
outside the energy ranges occupied by bulk states.
Here we refer only to bulk states of the same k,
and k„of course. On the other hand, in our tight-
binding scheme, the influence of the surface on the
Hamiltonian H extends only a few lattice planes into
the crystal. Expressing the wave function in a po-
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sition basis, it is clear that beyond these few lattice
planes the equation which the surface state must
satisfy is identical to that satisfied by a bulk state.
This means that except in the immediate vicinity
of the surface, the surface state is a linear com-
bination of bulk states associated with the same E,
as well as k„and k, . These bulk states behave as
damped exponentials as far as k, is concerned and
hence do not represent acceptable eigenstates in
the absence of the surface. All such bulk states
can be obtained by analytically continuing the rela-
tions (4) and (7) to the required E value; this re-
quires complex values of k, . Note that what is
required here is the collection of all possible values
of k, consistent with the given E value, that is,
k,(E, k„, k,). This is to be contrasted with the
usual end product of a band calculation: E(k„k„,k, ).

When k is complex it is no longer true that AJ(-k)
=A*, (k); thus the matrix in (4) is no longer Hermi-
tian. However, all the relations (1)-(7) retain the
same form, nonetheless.

In the present case we shall consider no surface
perturbation whose influence extends beyond the
first layer of atoms. Then in all subsequent layers
the wave function may be expressed as a linear
combination of two decaying exponentials. The cor-
responding complex k, values

k, =i p, , k, =~8p+ip,

are obtained from (7). These k, values represent
the only independent ways in which real E values
within the gap can be obtained. Here p, , and p, ~

are real positive numbers determined from

E = a [&'+ P4(2 sin'~8k„—2 si h'n~ pB+cos ~, 8k„

+ osh'~ p, +2 os-', k, os~k„sh~p)]"',
(

where the —and + values inside the square root of
(12) correspond to g, and p, ~, respectively. The
behavior of the analytically continued relation be-
tween k, and E can best be illustrated graphically,
as in Fig. 4. Here the sets E(k„, k„ ip, ) and

E(k„, k„ i p, 2+&8m) are plotted as 2-D bands, de-
pend]. ng on k~ and ky for a succession of fixed values
of p, , and p. 2. As in Fig. 3, ~=P= I. The curves
are labeled by p. , where p, = p. , or p, = p, ~ as appro-
priate. Note that these two families coincide at
the zone edge.

Figure 4 suggests rather strongly that the two
families of curves E(k„, k„ ip, ) and E(k„, k„ iy, +a 8m)

are related to each other by being somehow "folded"
at the edge of the 2-D zone. It is instructive to
understand the origin of this appearance. It arises
because the collection of distinct "bands" of E ver-
sus k„and k~ for fixed complex k, must be consis-
tent with the pexiodicity properties of the bulk band
structure in k space. The 2-D reciprocal lattice cosa —,'Q cosh~~ p, ,= —cos 4-,' k„cos-', k, . (i4)

has repeat periods in the k„and k, directions of
magnitude 2m&2 and 2v, respectively, as shown in
the insert of Fig. 4. On the other hand, the natural
periods of the bulk bands are 2'*, 2gb *, 2'*.
This remains true for complex k, . Thus writing
E(k„, k„k,) for the continued bulk energy function,
its periodicity properties may be expressed as

E(k„, k~, kg) =E(k, +2vv 2, k~, kg+ vv8)

=E(k„, k, +2v, k, +v&8)

=E(k„, k„k, +2~&8) .
Suppose E(k„k„ i p, ) is real for all k„and k» as
is the case for our surface-state problem of inter-
es't. Then the first line in (13) implies that a dis-
placement of k„by 2m v 2 in one 2-D "band"
E(k„, k„ i p)lea, ds to another "band" E(k„, k„ ip
+ vv 8). Within the 2-D zone these functions are
independent. A repetition of the displacement is
necessary to return to the original "band. " Un-
fortunately, in general, E(k„k„k,) need not be
real for fixed complex k„as k„and k„vary. In
such a more general case, the implications of (13)
are not particularly helpful; in particular, "folding"
need not take place [see, for example, Eq. (14)
below and the adjoining text].

Understanding the manner in which the bulk bands
are folded is helpful when one considers the nature
of the wave function arising in this surface-state
problem for energies lying in the bulk continuum.
As E approaches the conduction-band edge from
within the gap, p, , goes to zero and then becomes
pure imaginary, i.e. , the corresponding k, be-
comes real. The more slowly decaying exponential
is thus replaced by two linearly independent Bloch
waves —one incoming and the other outgoing. The
faster decaying exponential, having k, = i p, 2+&8v,
varies smoothly in the vicinity of the conduction-
band edge. Instead of finding only isolated surface-
state solutions for special values of E, Schrodinger's
equation can now be solved for arbitrary E by ad-
justing the relative amplitude of the two Bloeh
waves. As required by (13) the second decaying
exponential is associated with the folded extension
of the band edge depicted in Fig. 4. As E passes
the second "folded" edge, p, , goes to zero. Above
it, there are two independent states for each E, k„
and k, . Each is made up of a single incoming Bloch
wave and two outgoing Bloch waves. The new in-
coming Bloeh wave has -k, of the form q2+v 8g,
where q2 goes to zero on the folded extension of the
ba.nd edge. Finally, for E above the conduction
band the general solution is a sum of two damped
exponentials, with k, =+/+i', 3. Here, E is rea1,
only when P and p, satisfy



RELATIONSHIP OF SURFACE-STATE BAND 3261

The band of energies obtained by fixing p, , and de-
termining Q from (14) is already simply periodic
in the 2-D FBZ; relations (13) are irreleva. nt. We
shall not consider the surface states above the con-
duction band or below the valence band (sometimes
called 'outer" states"). The properties of the
bulk states in these regions have been discussed
here only for the sake of completeness.

IV. SURFACE-STATE ANALYSIS

Schrodinger's equation for a semi-infinite crys-
tal in the tight-binding approximation takes the form

W'-Er T, Go
T. W -EI T G

Tp W —EI Gq

Here H-E is expressed as a matrix array whose
entries themselves are 4&&4 matrices, dependent
on k„and k, . Rows and columns of these matri-
ces are labelled by v=0, 1, 2, 3, in order, and
the column eigenvector is given in a comparable
form. The nth four-dimensional column vector
G„describes a particular layer orbital built up
out of the four possible basis states having fixed
k„and k, and derived exclusively from the orbitals
in the nth layer of atoms. The crystal begins
with layer zero and is unbounded in the +z direc-
tion (increasing n); thus it is unnecessa. ry to con-
sider a second bounding surface. The matirces

T» and T& are characteristic of the bulk
crystal; they are readily obtained from (4) and (5):

A, (-k)

A, (k) —2P cos ~8k„e & 0

—2Pcos' 8k„e s'i

0 Pe &n /4 ~Pe&&~/4

0 0 0

Pefk /4 0
v 2Pe'"'4 0

and T2= Tg.
Here W represents interactions within a layer of

atoms parallel to the surface, while T, and T2 rep-
resent interactions between successive layers.

The infinite crystal is terminated by cutting the
surface bonds; thus T, is absent in the first row of
(15). If the surface region were not affected further,
then W' would be equal to W in (16). This condition
is sometimes called the "Shockley condition" be-
cause the surface is "unperturbed. "

Generally W'& 8' because of changes in the matrix
elements which refer exclusively to the terminal
layer; this is the case we shall consider.

In actuality, the surface region should affect other
diagonal matrix elements, due to variations in the
surface and subsurface electrostatic (Madelung)
energies and covalent bond energies, as well as
other off-diagonal matrix elements, due to the con-
sequences of the surface and subsurface atom dis-
placements. These will be neglected here, for
simplicity.

Suppose that the reflection symmetry possessed
by zinc blende (110), as shown in Fig. 1, is unal-
tered, even in a region of somewhat modified sur-
face atoms. Then the most general possible form
of W' is

2v 2fP'sin~8k„e"~~'

—2P" cos~&k„e "~/'

2p'" cos~u„e'" "

—2~2iP ' sin~8k„e "s —2P "cos~8k„e'"~/4 2p'" cos~k„e'~. /4

~ (17)
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For further simplicity, we shall always take

(is)

This corresponds to neglecting the changes in the
symmetry of the "crystal field" of the surface
atoms. Such changes would be expected to split the
three otherwise degenerate P orbitals on the surface
anion.

The diagonal elements a„' and a x are different
from the bulk values n„and nx, respectively, be-
cause the surface Madelung energy is different from
that in the bulk. From simple electrostatic argu-
ments, ' ~ „' & n„and a~ & n ~. Thus this surface
Coulomb perturbation acts in such a way as to at-
tract localized states with energies at the band
edges closer to midgap. The values P', P", P

"'
in (17) a,re generally different from P, because bond
angles and bond lengths will generally be different
for the terminal plane, due to displacements of the
atoms. Of course, this effect should also modify
the bonds connecting the n =0 layer to the next layer
n = 1. As mentioned above, we shall not attempt to
include these latter modifications.

Let us consider in detail how the transfer inte-
grals between the surface ions are modified when

the ions are displaced relative to one another. Be-
cause of our constraints —no reconstruction, retain
the reflection symmetry —the possible displace-
ments of the surface ions consist of a uniform dis-
placement of all X ions by a common amount in the
yz plane, plus a, (generally different) displacement
of all M ions in the same plane. Because of the
loosely packed structure of zinc blends (110), such
displacements seem very plausible.

Assume, for example, that the crystal is charac-
terized by nearest-neighbor bond lengths (links)
which are identical and rigid, even in the surface
region. Suppose, also, that the angles between the
links are relatively flexible. This model is based
on the fact that the bond energy varies exponentially
with the bond length, but only linearly or quadrati-
cally with the bond angle. Then the surface sublat-
tices might "rotate, " as shown in Fig. 5. Here the
zinc-blendeM ions are raised above and the X ions
are lowered below the nominal surface plane, keep-
ing all the links fixed in length. The figure is drawn
for a special rotation angle, co = up= 34.9'. This
interesting angle ~p is such that the 3 nn cations of
a surface anion are coplanar. The M-X-M angles
in this planar configuration are 109.5', 125.25',
125.25'; this is near to an sf~ coordination 120',
120', 120 . From covalency arguments alone this
may be an extra stabilizing feature.

In another example, consider all bond lengths to
be fixed (transfer integrals constant) except for
those bond lengths which couple one surface atom
to another surfa. ce atom. A compression (expan-

uP~41O ~ 34.9

FIG. 5. Geometry of a nonideal surface layer obtained
by a rotation of the surface bonds. The rotation is carried
out in such a way as to keep all nn bond lengths constant.
The angle ~0 ——34. 9' is such that the 4' ion is closest to
the sp2 planar coordination.

sion) of this bond causes an increa, se (decrease) in
the resonance integrals. In Fig. 6, such an expan-
sion of the surface atoms is shown. Suppose this
bond strength is increased by a factor (1+@)and
there is no rotation (&u =0). Upon compression, if
the bond strength is doubled, c = 1. Upon expansion,
if the bond strength is weakened to zero, & = —1.

To superpose and generalize these two effects,
recognize that the bond length will change only
slightly for relatively large bond energy charges.
Thus assume that the surface atoms are rotated as
in Fig. 5 (but for arbitra. ry ur) and that all bond
lengths are (effectively) constant. Then, for any
compression or expansion (any e) combined with
any rotation (and &u), one has the relations

p
'= (1+~)p, P

"= (1+e)P cos~,

p
"'= —(1+a)p sin&a .

In general, the appearance of an M-like surface
state below the conduction-band minimum requires
that n & v, where v' is the threshold value of a and
n = a~ —n&. The only combination for which w

vanishes is P
"=2P and P

'"= -2P; this will be called
the "zero threshold condition" for the rest of this
paper. Examination of (19) shows that this condition
is satisfied whenever ur = 54. 8' (half the tetradedral
angle) and e = (v 3 —2)/2= —0. 134 (slight expansion).
%e emphasize that neither the rotation nor the ex-
pansion changes the periodicity of the M or X sur-
face Bravais lattices, each with dimension 1&&-, ~2.
This means that the LEED pattern should show no
new spots, in agreement with experiment;.

It remains to solve the eigenvalue problem, de-
fined by (15)—(18), for the surface-state energies.
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FIG. 6. Another type of nonideal surface obtained by
an expansion of the surface bonds. The nn bond lengths
between the surface layer and the subsurface layer are
kept constant.

The most powerful and general method of treating
this type of problem is the resolvent method. This
has been described in detail in Ref. 13, where it
was applied to the precise problem of interest here.
Certain analtyic results, which will be mentioned
later, were obtained, and all the necessary pre-
liminaries were carried through to unable us to
program a digital computer to obtain the surface-
state energies. This has been done, allowing for
arbitrary wave vectors k„and k„bulk parameters
P and ~, and surface parameters n &, n x, P ', P ",
and P

'". This program was the primary source of
the computed surface-state band structures E(k„,k~)
presented below.

Before such numerical results can be trusted
implicitly, it is necessary to verify the accuracy,
both of the algebraic manipulations of Ref. 13 and
of the computer program. A number of such checks
were mentioned in Ref. 13, but one, in particular-
the ansatz method —is properly a part of the pres-
ent work and will be described here. This method
is completely different from the others and was
used for spot checks. Agreement was exact. The
ansatz method consists in "guessing" the form of
the wave function [the column vector in (15)]in terms
of a small number of undetermined parameters. '
After substitution into (15), these parameters and
the energies are determined.

How is it possible to determine the right ansatz
for the general tight-binding case? The prescrip-
tion, derived from the resolvent method' makes
use only of the k-dependent matrix in (4). Let 2A
be the degree of the determinant of this matrix in
e' after all negative powers of this quantity have
been multiplied out. Here K is defined as K

WG;+T qG, ,)+T~G,. q
—0, (2O)

which is identical to (4) as seen most easily be set-
ting G

& ~, = G; e' " . Since there are known to be
two damped exponentials, one can write, for all
j& 1,

1

yxyx
-( j-1)g ~/+8+ p b e -(s-»a) 2/~8~+~~j

,-G;= 1",
I

yp Y y
I (21)yg g ~

Parameters which are implicit functions of E and
which can be obtained by analytic continuation alone
are p, &, p, &, y„, y„y„y„', y,', and y,'. We are left
with seven disposable parameters: E, I„ l b, and
the four components of Go. Of these, one merely
is the normalizing constant of the resulting wave
function. There are eight linear equations yet to
be satisfied, which correspond to the first two rows
of (15). However, substitution of (21) in (15) shows
that only six of these are linearly independent.
This number now matches the number of disposable
parameters, and E can be determined. We are
assured that such a reduction must take place, in
general, since we have used the correct ansatz.

The six independent equations can be written in
a matrix equation

4 Eqs.

2 Eqs.

W' —EI B~ G 0

I;
r3

b

=0 . (22)

= (k ~ c *)/) c *
I
a and is equal to k, /v 8 in the pres-

ent case. (Recall that a and b lie in the surface
plane, so c* is just a unit vector in the normal di-
rection times the reciprocal of the spacing of suc-
cessive planes in the a direction. ) Similarly let 2B
be the highest degree of any of the minors of the
determinant. We assume B~ A as in the present
case. Suppose that only N surface layers are af-
fected by the surface perturbation [i.e. , N rows of
columns of (15) are changed from their bulk form].
Then on the first N+B -A layers the wave function
has an exceptional form, but otherwise it is a linear
combination of A different decaying exponentials,
which can be obtained from analytic continuation.
In the present case A = 2, B= 2, and N = 1. Thus
the general solution is a sum of two decaying ex-
ponentials in every layer except the first. The
utility of this result is that it reassures us that we
have indeed found all decaying exponentials needed
to make up the general solution, and that it tells us
how many "exceptional" surface layers to allow for.

Consider the multiplication of the matrix and
column vector in (15). For every layer (every row)
except the first two, the result is simply
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This is no longer an eigenvalue problem of the
usual sort for E, since the matrix elements of the
rectangular matrices B, and B„as well as the
square matrix B„ involve complicated functions of
E. Surface states are obtained by taking the de-
terminant of the 6&6 matrix in (22). By compari-
son, a 4&&4 matrix" is necessary in the resolvent
method, but the matrix elements in this case tend
to be rather more complicated functions of E. In
fact, it can be shown that if one method can be em-
ployed, so can the other, and, as we have seen,
even the amount of work is about the same.

It should be noted that the "general recipe" for
computation of surface states, as given by %allis,
Mills, and Maradudin" does not apply here because
our bulk 4&&4 matrix (4) only allows two energies
which depend on wave vector; the other two are
the flat bands.

A computed surface state band E(k„, k, ) is some-
times incomplete in that it exists only over a portion
of the 2-0 FBZ. At the non-zone-edge limits of
region, it encounters one of the bulk band extrema.
It is tempting to say that the surface state then
"enters" the bulk band and becomes there a virtual
state whose width increases as its energy recedes
from the bulk band edge. It turns out that this is,
in fact, the case in those instances for which we
have examined the question (see Fig. 7 and the
detailed discussion below).

All wave functions (but not the density of states)
of a semi-infinite crystal are affected by the surface,
and sometimes a virtual surface state appears.

Intuitively, a virtual surface state is an eigenstate
in the continuum having a very high relative proba-
bility of being found in the surface region. Specifi-
cally, we shall consider this probability evaluated
for some particular surface layer orbital, summed
over all states of energy E, and weighted by the
density of states at E. Call this quantity Q(E) A.

sharp peak in Q(E) will be considered to represent
a virtual surface state at that energy, and the life-
time of the resonant state is related in the usual
fashion to the reciprocal of the peak width. The
quantity Q(E) may be readily obtained from the
resolvent formalism (see especially Appendix A of
Ref. 13), since it is simply the imaginary part of
a matrix element of the resolvent of the interacting
system. To study M-like surface states, we define
Q(E) in terms of the occupation probability of the
surface s orbitals. For the Shockley termination,
Q(E) is then just Im[R [g.op(E)] as given in (86) of
Ref. 13. Note that the relation between E and the
erstwhile decaying exponentials takes a new form
above the band edge. In particular, ik& in this
formula is now real —no other change need to be
made below the "folded extension" of the band edge.
Although the methods described in Appendix A of
Ref. 13 would permit us to obtain Q(E) for an arbi-
trary surface perturbation, we have studied it in
detail only for an especially simple case: n~ & n&,
and n x, P ', P ", and P

"' all have their bulk values.
Defining n = n„—n„', one finds that Q =Im[R», 00/
(1 + QR ff Op)] . For n = —1, Q is plotted as the or-
dinate in Fig. 7, for various values of k„and for

FIG. 7. Plot indicating that
a surface-state band (curve BF)
is smoothly connected to a scat-
tering resonance (curve DE).
The conduction band edge is
.ABC. Q(E) is the weighted pro-
bability of finding a conduction
state of energy E on a surface
M site (see text).

O. I 0.2 0,3 0.4 0.5
+AVE VECTOR k)(/vr

0.6
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various energies. Surface state Q(E) functions are
5 functions, and are indicated by arrows &.

The main result obtained from examining this
figure is that the surface-state band (solid curve
for k„&0.26m) disappears into the continuum at
k„/v = 0.26 (large dot) to become what appears to
be a virtual state or scattering resonance (dashed
curve for k„/v & 0.26). As the dashed curve departs
further from the band edge, the maximum of Q(E)
decreases and the width increases. Eventually,
the width can become comparable to the bulk band-
width, in which case there is no longer any point
in speaking of a virtual state.

0-

g=O Q=l
4

I

E

Q=2
4

0—

V. RESULTS

Surface-state bands E(k„, k, ) in the rectangular
BZ of Fig. 4 are computed below for a selected
choice of illustrative cases, since there are far too
many parameters (o. , e, &u, 6, P) for a more com-
plete parametric analysis. Recall that n= (a„—n„'—)
= (n x —a„), and that the rotation angle ro and the
expansion parameter e are related to P', P", and
P"' by (19). Certain specia, l cases are shown in
Figs. 8-12. .Bulk bands are indicated by the
shading; these represent a quasicontinuum of states,
each with different k, in the range —2&v & k, & 2&v.
(k, is not a good quantum number for the surface
states. ) The doubly degenerate bulk flat bands at
E = —& are not drawn for clarity. If the surface-
state bands (solid curves) pass into the bulk quasi-
continuum, they may appear as the scattering res-

4

Pg

x r
(a)

FIG. 8. Effect of rotation of surface bonds through an

angle (d. (a) e=(do, (b) a=0, (c) (d=-uo. The M-like
surface-state band appears only in (a). In this figure,
the dashed curves (scattering resonances) are drawn

schematically (not computed). They are only shown close
to the band edge, where the resonance is sharp.

Ix r
(a)

x x r
(b}

x r

(c)

FIG. 9, Effects of Madelung energy difference e =—(e&
-ez). (a) zero, (b) intermediate, (c) large. ~=~0, ~=0,
and the bandgap is fixed.

onances (dashed curves) described earlier in Fig.
V. In Figs. S-12, the expected presence of such
resonances is indicated schematically by the dashed
curves. As found in the cases studied carefully,
these resonances become too broad to be meaning-
ful when they recede too far away from the band
edge. It is possible that both the surface states
and the surface scattering resonances can be ob-
served in certain electrical, optical, and LEED
measurements. It should be pointed out that the

bulk bands are parabolic at I'; this parabolic feature
is not evident if the W factor is omitted in a differ-
ent scale' of k„k,.

Two weaknesses of the simplified bulk model of
zinc blende have already been mentioned; they are
the flat heavy-hole valence bands, and the region
in E(k„, k, ) far from I' (zone center). Thus, the
surface states which arise either from the flat bands
or from the region far away from I" may be less
physically meaningful than those which arise from
the parabolic conduction-band minimum (M -like)
near 1. For this reason most emphasis will be
given to the M -like surface-state band. Also, there
is more data available on the M-like, rather than
the X-like, surface states. From the comparison
of Figs. 2 and 3, one sees that the ratio &/P = 1
gives a fair scale mapping of the band structure for
ZnS. It will be convenient to assign 4 = 1 and P = 1
for much of the results below. Effects of varying
& are considered separately. It will also be con-
venient to assign ~ = 1 for much of the results be-
low; this corresponds to the surface atom Coulomb
integrals having the energy corresponding to mid-

gap; separate variations in e are considered
afterwards.
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I

E

0

I

E

x' r( )
x x r(b) x (c)

FIG. 10. Effect of variation of the bandgap 24. (a)
small, (b) intermediate, (c) large. ~=~p &=0 and
&j~ is held fixed.

A. Rotation

Consider first the effects of a surface atom rota-
tion as indicated in the structural diagram of Fig.
5 and the E(k„, k, ) diagrams of Figs. 8(a)-8(c). The
parameters fixed here are &= 1, P = 1, n = 1, and
& =0. Figure 8(b) has + =0 (no movement of surface
atoms). Figure 8(a) has &u=ra0=34. 9' (X ions ro-
tated into sp location as in Fig. 5). Figure 8(c)
has m = —34.9' (M ions rotated into sP location).

The most significant result of comparing 8(a)-8(c)
is that the M-like surface-state band appears below
the conduction-band edge only for 8(a). It closely
resembles the conduction-band shape and has nearly
the same effective mass. (In ZnS at F, it is iso-
tropic and m,*/m, -0.2). This M-like surface-state
band in 8(a) disappears into the quasicontinuum in
8(b) and 8(c). Experimental evidence described
later shows that an M-like surface-state band is,
in fact, observed, so that case 8(a) seems more
probable than 8(b) or 8(c). This is the first known

example of a possible correlation between experi-
mental surface-state data, (electrical measurements),
surface structural data (I EED patterns and atomic
geometry), and surface-state theory (computed
here). It is evident that such an angular effect will
be absent in all one-dimensional treatments appro-
priate to an MX crystal such as zine blende,
and absent in the work of Jones. '

The next result obtainable from Figs. 8(a)-8(c)
is that three X-like surface-state bands appear;
these bands are not very sensitive to rotation. The
bands have nearly (or exactly) the same effective
mass as the flat valence bands from which the upper
two arose (m f /mo=~). Data described later indi-
cate that these X-like surface states are also ob-

I

E

I

E

I
X

Ir x x r x x r x
(a) (b) (c)

FIG. 11. Effect of variation of the surface bond length.
The resonance energy of the bond is multiplied by (1+&).
(a) expansion, represented by & = —0. 5; (b) no change,
=0; (c) compression, &=0.5. There is no rotation, m=0.

served. There appears to be no threshold required
for these states; the smallest Madelung energy
change (o. &0) causes them to appear. This feature
is certainly exaggerated by our use of perfectly flat
valence bands. A realistic picture of the properties
of these states clearly requires a more sophisticated
model of the bulk band structure. This completes
the discussion of how the energy bands vary with
surface atom rotation.

To determine, for fixed ~ = co„ the effect of a
change in the surface Madelung energies, a is
varied in Figs. 9(a)-9(c). In these figures, the
quantities kept constant are 4 = 1, P = 1, ~ = ~0, and
&=0. Figure 9(b) is identical to Fig. 8(a) with
a =1. This is supposed to correspond to a "moder-
ate" Madelung energy perturbation. Case 9(a) cor-
responds to zero perturbation n = 0; and case 9(c)
corresponds to a stronger perturbation n = 2. Com-
paring the results of 9(a)-9(c), one finds that the
M-like surface-state band is absent in 9(a) because
a is less than the threshold value. It is also absent
in 9(c) because certain of the X-like surface-state
bands have the same symmetry type and repel the
M-like state. Qf course, the M-like state would
appear in 9(c), if o.„»a„' and a r= o.„. Note that
in Fig. 9(a) the X-like surface states are triply
degenerate and coincide with the bulk flat bands;
hence they are shown as dashed lines in the figure.

Variations for fixed ~= ~0 of the bandgap 2& are
considered in Fig. 10(a,)-10(c). Parameters fixed
are P=1, n/&=I, &@=~0, &=0. Figure 10(b) cor-
responds to Figs. 8(a.) and 9(b), where 6=1. This
is supposed to be a "moderate" bandgap. A smaller
bandgap ~ =

& with smaller perturbation a =-,' and a
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FIG. 12. Combined effects of rotation and expansion.
Here 4=1. (a) Superposition of (d =no and e= —0.5 with
& =1. (b) Zero threshold case with ~=54. 8'=-half the
tetrahedral angle, and &= —0. 134 with n =l. (c) Zero
threshold case again, but e =1,75. Note crossing of
bands in (c).

larger bandgap 4 = 2 with a larger perturbation
n = 2 are indicated in Figs. 10(a) and 10(c), respec-
tively. In 10(a) the M-like surface state disappears
(as above) because of its proximity to (repulsion
by) one of the X-like surface states. In 10(c) it is
located proportionally closer to midgap.

At X and X', above the valence band edge, new
X-like surface states appear in Fig. 10(c). These
occur only under certain situations [see also Fig.
12(c)]. It is interesting to note that at X or X '

there are as many as six surface-state bands, al-
though only two "dangling bonds" are broken in
zinc blende (110).

B. Compression or Expansion

To determine the effects of a surface atom com-
pression and expansion (no rotation), consider the
following parameters to be fixed: ~ = 1, P = 1, v = 0,
and o. = 1'. Figure 11(b) has e = 0 (ideally terminated
lattice) and it is identical to Fig. 8(b). Figure
ll(a) has e = —0.5, corresponding to halving of the
resonance bond energy under expansion. Figure
ll(c) has e =0.5, corresponding to a strengthening
of the bond by 50/o under compression. The figure
shows that in this ease expansion makes it easier,
and compression makes it harder, to extract the
M -like surface-state band. Furthermore, its ef-
fective mass is increased (decreased) by the expan-
sion (compression), but it does not appear at I" for
all the eases considered.

C. Combined Rotation and Expansion

It has been shown above that the appearance of
M-like surface states is facilitated by a rotation in
the positive sense (~ &0) and an expansion (e & 0),
taken separately. To see if their combined effects
are additive, consider 4=1, P=1, and o. =1 to be
fixed. In principle, any combination of v, & will
give the desired effect.

As one example, combine the rotation ~ = mo used
in Fig. 8(a) and the expansion e = - 0. 5 used in Fig.
ll(a); the combination is shown in Fig. 12(a). Also,
consider the zero threshold condition where ~ = 54. 7
and e= —0. 184, as shown in Fig. 12(b). Figures
12(a) and 12(b) are similar in the sense that they
have the additive features of the rotation in Fig. 8(a)
(appearance of the M-like state) plus the expansion
in Fig. 11(a) (flattening of the M-like surface-state
band). No new types of states appear from the
combined effects of rotation and compression. A
third example, shown in Fig. 12(c) is chosen to de-
monstrate some M- and X-band crossings possible
for certain conditions; this figure is constructed
with &=1, P=1, @=1.75, & = —0. 134, and (d =54.7 .

Since the above studies in Figs. 8-12 were carried
out for bmited choices of 4 and e, a more complete
cross correlation of these variations is carried out
in Figs. 13, 14, and 15. This problem is made
tractable by considering the surface-state energies
only at zone center. Figure 13 shows how the M-
and X-like energies vary as n is increased. This
figure shows that as n increases, the M-like surface
state first appears below the conduction band after
a threshold (o, &0.25) is reached. Further increase
in e increases the trap energy, but a still further
increase (o. & 2), decreases it to zero. The repul-
sion by one of the X-like surface states is clearly
indicated in the figure. The upper state enters the
conduction band always at a =24; the middle state

,/////////////////////////////////////////////////
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FIG. 13. Surface-state levels at zone center for 4=1,
~=coo, &=0, p=l drawn as a smooth function of Made-
lung energy difference n.
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FIG. 14. Existence conditions for (a) the M-like and
(b) the second X-like surface state. Dimensionless
Madelung energy difference is plotted versus angle of
rotation with & = 0. The areas marked "yes" and "no"
indicate the existence or nonexistence, respectively, of
the surface states.

enters it at a greater value, but the lower state ap-
proaches the valence band —4 as an asymptote; this
last state turns into a subsurface Shockley state
in that limit.

That these three X-like surface-state bands really
arise from the P orbitals on the surface X ions can
be shown as follows. Let P(X) be the probability
that an electron occupying a particular surface state
will be found on the surface X ion. Similarly P(M)
is the probability for the surface M ion. Then from
Feynman's theorem and the definition of the sur-
face potential-energy perturbation e, it follows that

p„and p, orbitals.
To show the effects of changing v and a (fixing

& =0) it is necessary to further specialize; thus jn
Fig. 14 the ordinate is o./A. The value of this
quantity at threshold, where the M-like surface
state enters or leaves the conduction band, is writ-
ten r/6 = T. The abcissa is the angle —90
& 90'. Each ellipse-shaped curve in Fig. 14(a) has
a different bandgap 4=0. 5, 1.0, and 2.0. First,
suppose & is given. Then only if the point (n/b, &u)

lies swithin the appropriate ellipse will an M-like
surface state exist ("yes" in Fig. 14). Otherwise
it will be absent ("no" in Fig. 14). Ellipses (actu-
ally near ellipses) are centered about u& = 54. 7'.
Angles closest to this angle let M-like surface states
appear more easily, as shown. Note that none of
the ellipses are tangent to T = 0; there is always a
certain finite threshold T =0 if e is not allowed to
vary. It is also shown in Fig. 14(b) that the middle
X-like surface state enters the conduction band at
&& 2.

A master plot for fixed 4= 1 is shown in Fig. 15.
Here various contours of constant T(0.2, 0. 5, 1.0)
are plotted versus e and v. This diagram shows
that a fixed T defines a fixed closed curve. If the
point (e, ~) is such as to lie inside the curve, an
M-like surface state will exist ("yes" in Fig. 15).
The + sign is drawn at the zero threshold point
(d = 54.7', & = -0.134, T = 0, which is the center of
the near-circular curves. The main result easily
obtainable from this figure is that to get an M-like
surface state, various combinations and trade offs
of (a, ~) can be used. Even for ur &0, this state is
possible provided considerable expansions E = —1
are allowed. The limiting case is &= -1, when the
surface atoms are far enough expanded so that their
bond energy is zero. Alternately, Fig. 15 can be

= P(X) -P(m), (23)

where E(n) is the energy of the surface state as a
function of a, plotted in Fig. 13. From Fig. 13,
we see that in the limit o. -0, dE(n)/dn is +1,' +1,
+&, for the three X-like surface states. This means
that the first two correspond to surface states which
are located exclusively on the surface anion (the
corresponding surface-state wave functions have
no exponential tail), and the third has a probability
of being there of at least —,'. Since these three states
must be orthogonal, the 3 P orbitals involved in
these three states must be different. One of the
two states with unit probability is easily identified
with the P„orbital (see Fig. 1). The other is "a-
like" with respect to the coplanar configuration
(see Fig. 5), and it does not interact with the sp
planar bonding; it is a linear combination of the
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FIG. 15. Existence conditions in a cross-correlated
master plot. Contours of constant dimensionless Madelung
energy at threshold are plotted versus e and ~. The zero
threshold case is labeled by (+) in the figure. The + or
—rotations, and the expansions or compressions affect
the existence of a surface state in a complicated way, as
shown.
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thought of as a crude probability diagram. Suppose
it is found experimentally that an M-like surface
state exists; then it is more likely that it will lie
near the centers of the circles. This follows be-
cause it is easiest (i.e. , smallest T required) to
form surface states there.

Certain features of Figs. 8-15 can be summa-
rized as follows:

(i) There are as many as six surface-state bands
found. But more frequently, there are five or less,
and the ones missing may become scattering reso-
nances (dashed curves).

(ii) The M-like or X-like natures of the surface-
state bands can be determined from observing how
the bands move with the various perturbations.
Figure 13 shows that those nearly flat surface-state
bands which arise from the valence band are indeed
X-like, as we have frequently implied. For suffi-
ciently small surface perturbations one can argue,
from charge neutrality, that these states must be
occupied in a neutral crystal. That is, they are
normally occupied by electrons at low temperatures
and become positively charged when emptied of
electrons. Thus they are donorlike states. Alter-
nately they can be called hole traps, since they be-
come positively charged if holes are trapped there.

Similarly, the parabolic surface-state bancl which
arises from the conduction band is M-like. For
sufficiently small perturbations, these surface
states must be unoccupied in a neutral crystal.
They are acceptorlike states; alternately, they
can be called electron traps.

For larger perturbations, the origin of the surface
states is no longer necessarily correlated with its
M- or X-like character (see Fig. 13). Moreover,
if a surface-state band crosses another one, or
crosses a continuum band edge, its simple donor-
like or acceptorlike character may be complicated or
even reversed. This would be the case in Fig.
12(c).
(iii) The effective masses of the surface states

are similar to the bands from which they arise
[ag»n except fo»ig. 12(c)]. They are identical
in the case & = 0, & = 0, E = 4. 3

(iv) The upper X-like surface state is shown as a
horizontal line in all figures. Its energy is E = ex.
It is easy to prive analytically that it should be flat
along the line F to X ' where k„=0, because A, (k)
in (16) vanishes and the determinant in (15) has
(E —o.x) as a factor. But along the line I" -X when

k, =0, the flat band is merely a consequence of the
degeneracy a „'= n„'= n,' in (18). If this degeneracy
is broken, this part of the band is no longer flat.
Another type of degeneracy exists in Figs. 12(b)
and 12(c); because this is the zero threshold case,
all along 7 -X ', the two upper X-like surface-
state bands are doubly degenerate. This degeneracy

The intrinsic surface-state properties computed
above will now be compared with experiment. Only
those experiments will be considered which are
characteristic of clean zinc-blende surfaces; that
is, the surfaces must either be cleaved, or be given
the Farnsworth cleaning procedure, while in ultra-
high vacuum P «10~ Torr. Otherwise, the intrinsic
surface states can be masked by extrinsic surface
states due to adsorbates, oxide formation, etchant
residue, etc. , or can be chemically passivated.

Theory and experiment are connected through the
density of states of the surface-state band and the
Fermi statistics. For the M-like parabolic two-
dimensional band [e.g. , Fig. 12(a)], the density of
states is energy independent:

iv =2x2v~,*/pp . (24)

Here m,* is the effective mass of the surface-state
band. From examining Figs. 8-12, m,* is nearly
the same or somewhat greater than m * of the bulk
conduction band. If the Fermi level E~ lies a few
kT below the surface™state band minimum energy
Eo, Boltzmann statistics gives for an n-type
crystal:

q../c=Ãf T e~[-(Z, -E,)/I T],
where q„ is the negative charge (e/cm ) in this
acceptorlike surface-state band; this charge is
compensated by the positive charge in an adjacent
Schottky depletion layer From F. ig. 12(a), it is
seen that m,* &m* for the conduction-band edge.
Suppose m,*-2 m* = 2 x 0. 1 m 0, as in CdTe, and
suppose Eo-Ez = O. OVV eV at room temperature.
Then N =0.2&4. 2&&10'4 cm 'eV ', and Q„/e=8. 4
&& 10"&&0.025& exp( —3) =9 &&10'0 cm 3. This number
9~10' cm (3&&10 ' charges per surface cation) is
the observed number of charges present in the
states; it is certainly much less than the number

10's cm 2 (- 1 charge per surface atom) inferred
by others ~ as an a pti'o~i condition for the ob-
servation of intrinsic surface states [If the .M-like
surface-state band would lie entirely inside the
bandgap (not seen in Figs. 8-12) and if the Fermi
level would lie above this band, only then would a
number - 10" cm 3 be observed. ] It will now be
shown that Q„/e 9&&IOM cm ~ is the observed quan-
tity in a typical zinc-blends (110) ultrahigh vacuum
experiment, and thus the M-like surface-state para-
bolic band structure as shown, for example, in Fig.
12(a), 12(b) agrees in this respect with experiment.

The most evidence for intrinsic surface states on
zinc blends (110) has come from band-bending
studies on cleaved crystals in ultrahigh vacuum.

is split for (d and & different from those at the zero
threshold condition [i.e. , Fig. 12(a)].

7'I. COMPARISON WITH EXPERIMENT
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n = ze'(c, -c,)jr, (26)

where z is the ionic charge or "fractional valence, "
~ is the nn Cd-to-Te distance, e, is the bulk Made-
lung coefficient for zinc blende (c, =1.64), and c,
is the surface Madelung coefficient. Nosker ' has
calculated c, for zinc blende (110), terminated with-
out surface rearrangement, to be 1.49. For CdTe,
x=2. 78 A, and a very crude estimate of s i.s

A crude estimate of n is then computed from (26)
to be @=0.4 eV, whereas the half-bandgap is 4
= 0.75 eV, and the experimentally determined trap
depth is 0. 31 eV. All that can be safely concluded

(Lateral conductivity in the surface-state bands
has not been looked for on clean surfaces, and photo-
emission threshold experiments cannot probe the
M -like surface state. ) For those zinc-blende (and
wurtzite) crystals with partially ionic character
and bandgap E~& 1 eV (ZnS, ZnO, ZnSe, CdS, ZnTe,

CdSe, AlSb, CdTe, GaAs, Inp) it has been shown'0 "
that the n(p)-doped crystals have bands which bend
up (down) at the surface, in the absence of an ap-
plied external field. This is consistent with the
M(X)-like surface states being called acceptors
donors). Consider CdTe as one example. The
LEED pattern for CdTe (110) shows no new spots, '
in agreement with the surface models prepared in
Figs. 1, 6, and 7. Swank's photoemission threshold
(cube-law extrapolation) and work function mea-
surements' on 3 n-type samples, gives e V~ = 0.23
eV. By equating the surface-state charge to the
Schottky depletion layer charge, it ha, s been shown '
that the Fermi level is located at Eo-E~ =0.077 eV.
This allows one to compute that Q„je = 9&'10" cm ',
as was to be shown, and that E„=E,-EO=0. 31 eV
(E~=1.5 eV). It can be argued that the photoemis-
sion threshold determination can possibly be in er-
ror by an eV or so because the cube-law extrapola, -
tion may not apply. But a separate photovoltage
experiment, "carried out in situ on the same CdTe
crystals, showed that e Vc = 0.29 eV (differing from
0. 23 eV by only 0.06 eV, not - 1 eV). See Refs. 30
and 31 for analyses of other zinc blende (110) [and
wurtzite (1120)] surface-state energies; the results
arequalitatively simila, r to that of CdTe; E, is a
few tenths of an eV for n- and P -type crystals with
bandgaps greater than 1 eV.

Having shown that the general shape and the ac-
ceptor designation of the M -like parabolic bands
are in agreement with experiment, it is desirable
to proceed further and to determine E„, if possible
from theory. To do this, it is necessary to compute
the surface-to-bulk Coulomb energy difference
a = a„—a„'. Suppose that a arises solely from the
difference between the surfa, ce and bulk Madelung
energies. Then from classical electrostatics, one
has'

from the above analysis, at present, is that the
magnitude of a seems to be of the order of magni-
tude of &; this choice was used in constructing all
of Figs. 8-15. This value may be contrasted to
that inferred by Kurtin, McGill, and Mead who
concluded in a footnote that n was negligible.

The experimental observation of this M-like sur-
face state with a relatively large trap depth leads
one to believe that, most probably, the surface
bonds are rotated in the positive direction and ex-
panded, as in Figs. 12(a), 12(b), and the probability
chart of Fig. 15.

VII. DISCUSSION

Motivation for a detailed analysis of surface-state
bands and their dependences on surface atom geom-
etry has come from recent band-bending measure-
ments30'3'; these show that M-like intrinsic surface
states indeed exist in zinc blende (110), and that
they can be accounted for by a parabolic acceptor-
like band which has a similar effective mass to .

that of the bulk conduction band. By interleaving~.
theory and experiment it has been shown in this
paper that, most probably, the surface M -X bonds
are rotated out of the surface plane with near-
constant bond lengths (and perhaps some expansion)
to bring the X ion into the crystal and push the M
ion farther away.

Qn the basis of LEED spot asymmetries and spot
intensity measurements, MacRae and Gobeli' con-
clude that the surface atoms must be shifted with
respect to their ideal locations. Using the Gatos and
Lavine' dangling band idea, which holds that the M
atom (not the X atom as supposed above) prefers a
near-sP~ position, MacRae and Gobeli' infer a crude
comparison of theory and experiment; but they ar-
bitrarily include a phase factor of (0. 1) 2v, and no
attempt was made to include multiple scattering.
Also, they include vertical displacements of mag-
mtude + 0. 2jWBaa, but ignore lateral displace-
ments, which they concede may well exist.

Other three-dimensional theories of intrinsic
surface statesv'8' ' 7 involve wave-function matching
of a semi-infinite bulk to vacuum at a supposed
planar potential discontinuity. It is clear that this
approach does not include the possibilities of rota-
tions or expansions of surface bonds, or of changes
in the Coulomb energies or in the lateral interac-
tions between surface atoms.

Having shown the types of results obtainable by
the above method, it is desirable to point out its
main weaknesses; presumably these can be re-
moved in future work. First, the bulk heavy hole
valence bands are flat and degenerate as in Fig.
3; they should show dispersion and be nondegenerate
as in Fig. 2. In this regard, the theoretical tight-
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binding model of Koutecky and Tomasek is no im-
provement. Second, the transition between the ionic
limit and the covalent limit cannot be handled; this
can be done somewhat better in their model, and
an indirect bandgap can be obtained with appropriate
choices of parameters, but they cannot include
(without further modifications) the ideal covalent
limit of indirect bandgap with ellipsoidal effective
masses as in Si, Ge, and diamond. Possibly the
more complete and accurate fight-binding model of
Kellner' is most appropriate. One feature of his
model is its inclusion of overlays. ) Some extra
flexibility could be obtained in our own model if we

considered our orbitals to be true atomic or ionic
orbitals, not orthogonal on different sites. An

overlap integral 0' would then appear in our eigen-
value matrix (4): (P -oE) would 'replace P wherever
it appears. Moreover the same substitutions can

be made in the final determinantal equation —re-
solvent or ansatz —provided the E-versus-k relation
from which the exponents p., and LU, 3 are determined
is similarly modified. The qualitative consequences
of including ovex lap o are relatively minor, mainly

because thexe are still two decaying exponentials.
Including 0 would permit the electron and bght
hole-effechve masses to be diffexent, but it wouM

not rectify the more serious defects of the model
enumerated above.

In a larger context, calculation of the effects of

the surface should be self-consistent in the senses
that (1) the electrostatic effects represented by the
surface Madelung constants should be consistent
with the actual charge distribution. This latter is
affected by chaxge displacements resulting from
the changes in the wave functions in the surface
region. (2) The assumed positions of the ion cores
in the surface region should, in fact, minimize the
surface free energy. It is worth pointing out that
the present four-orbital scheme is inadequate for
either of these ends. An eight-orbital scheme like
that of Kellner or I.outecky and Tomasek is the
minimum necessary for either a realistic distribu-
tion of the electric charge, or for the inclusion of
the directional effects of covalent binding. These
latter are presemably dominant in determining the
geometry of the surface ion displacements.

In summary, this work represents a start in the
direction of correlating surface atom geometry
(including the periodicity properties as determined
by LEED), with surface electrical measurements
(band bending) via a computed surface-state band
structure. These correlations indicate that in zinc
blende (110) an ~-like acceptor surface-state band
exists a few tenths of an eV below the conduction
band; and the surface bonds are most probably
rotated and perhaps expanded. One-dimensional
models are inadequate to deal with these
aspects.
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A careful discussion is given of the application of the resolvent or Koster-Slater method to
a surface-state problem described by a model Hamiltonian of the tight-binding type. Because
of a special symmetry, peculiar to the surface-state problem, it is possible to reduce the de-
gree of the characteristic determinant by a factor of 2. The usual, "truncation" method of
doing this is shown to sometimes lead to spurious solutions. The origin and properties of these
are determined and a prescription for recognizing them presented. An alternative, "pre-se-
vered" approach to the reduction of the determinant is described. This latter is less useful for
numerical calculation, but has advantages in obtaining analytical results. The general form of
the surface-state wave function is derived from the integral representation of the resolvent. It
proves possible to characterize this form using only simple properties of the bulk band struc-
ture as represented by the model Hamiltonian. This then permits the popular "ansatz" method
of treating the surface states to be routinely used in problems having an arbitrary degree of
complexity. The results of the general discussion are applied to determine the surface states
associated with the (110) cleavage face of a semiconductor having the zinc-blende structure.
The "pre-severed" resolvent method is used to derive some preliminary analytical results,
and a program is set up for the numerical calculation of the surface-state properties for more
realistic models of the surface perturbation.

I. INTRODUCTION

The (110) face of a II-VI or III-V semiconductor
having the zinc-blende structure is an especially
interesting surface for theoretical study since it is
found experimentally not to be reconstructed, i. e. ,
the physical surface retains the full translation
symmetry of a parallel bulk plane. This paper,
together with its companion work, ' describes the
results of a theoretical investigation of the proper-
ties of the electronic surface states associated with
such a surface. We have used the molecular orbital
(MO) scheme to describe the one-electron states
of the crystal and have treated the effects of the
surface perturbation via the resolvent technique.
This present paper sets up the required formal
machinery and applies it to the system of interest.
The appropriate matrix elements of the resolvent
are here obtained; some results which can be ob-
tained analytically are derived, and the method used
in the remaining numerical calculation is outlined.
The subsequent paper' will display the surface bands

derived by numerical calculation for some physi-
cally interesting cases. Threshold conditions,
which can be obtained by several routes, will be
studied there. A discussion will be given there of
the physical justification for the particular MQ rep-
resentations chosen to describe the bulk band struc-
ture and the surface perturbation, and the results
will be compared to experiment.

Section II of the present paper contains a complete
and elementary description of the methods used.
Various somewhat i;='ricate points, as well as some
useful extensions of the basic method which are not
required in the present work, are pursued in the ap-
pendices. Section III then applies the method to the
system of interest. Portions of Sec. II describe
methods which are not new and have been used by
other authors. 2, 7, 13,17, 18, 20, 22 However, the central
technique used here to obtain the surface electronic
states has not been developed or employed before,
In addition, the various preliminaries and subordi-
nate techniques characteristic of the surface-state
problem, which are usually glossed over, are here


