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Collision integrals for various modes of lattice scattering for nonparabolic semiconductors
with an arbitrary degree of degeneracy of charge carriers have been derived, taking Pauli's
exclusion principle into account. These expressions are used to obtain the isotropic part of
the momentum distribution function of transport carriers subjected to a dc field for different
cases of interest. This formulation avoids the use of the concept of effective carrier tempera-
ture in the calculation of transport and other properties of arbitrarily degenerate semiconduc-
tors. It is pointed out that the assumed form of the distribution function with effective carrier
temperature and drift velocity in the case of parabolic piezoelectric semiconductors, which is
used to investigate acoustic-wave amplification in the presence of high dc fields, is not justi-
fied for a wide upper range of applied dc fields. This is so because above a certain critical
value of the dc field the distribution function obtained by solving the Boltzmann transfer equa-
tion is not normalizable. Lt is shown that the distribution function corresponding to the piezo-
electric mode of lattice scattering can be normalized for any finite value of the applied dc field
if the nonparabolicity of energy bands is taken into account (apart from the influence of non-
equilibrium phonons on the normalization of the carrier distribution function).

I. INTRODUCTION

In an earlier communication (which will be re-
ferred to as I) it is emphasized that the knowledge
of the collision term in the Boltzmann transfer
equation is essential for an adequate analytical
investigation of transport phenomena and other
properties of semiconductors, particularly in the
presence of high dc fields. In the absence of the
knowledge of this collision term, the hot-carrier
phenomena in degenerate semiconductors have
been analyzed by using the concept of effective
carrier temperature. ' This approach has led
to many interesting results, but suffers from the
weakness of the basic assumption that the form of
the isotropic part of the distribution function re-
mains unchanged on the application of an electric
field. In the case of nondegenerate simple-model
semiconductors, the results obtained on the as-
sumption of effective carrier temperature are at
considerable variance with those obtained by
solving the Boltzmann transfer equation with the
corresponding collision term. In I the authors
have presented a derivation of collision integrals
for different modes of lattice scattering for semi-
conductors with parabolic energy bands, taking
into account Pauli's exclusion principle and hence,
degeneracy.

It is well known that the conduction bands of
many semiconductors of immense practical utility
(e. g. , III-V '~ ' and II-VI ' compounds) are non-
parabolic. Nonparabolic energy-momentum re-
lationships are shown to have a very significant
influence on the magnitude, & ~" and in some

cases, even on the sign of the transport coeffi-
cients. ' Hence, in this paper the authors have
derived the collision operators and isotropic parts
of the carrier energy distribution function corres-
ponding to various modes of lattice scattering,
taking into account Pauli's exclusion principle
(i. e. , degeneracy) and the realistic nonparabolic
energy-band structure.

The Maxwell-Boltzmann (MB) distribution func-
tion is obtained from the Fermi-Dirac (FD) dis-
tribution function by making use of the fact that
the Fermi level lies much below (&4KDT) the bot-
tom of the conduction band in nondegenerate semi-
conductors, and hence many of the properties of
nondegenerate semiconductors are independent of
carrier concentration. In fact, the effectiveness
of the approximation for applicability of MB dis-
tribution to fermions (charge carriers) is also
determined by the energy dependence of the quan-

tity for which we need an average over the distri-
bution function. The considerations of nonparabol-
icity introduce additional energy dependances. It
is therefore desirable that Pauli's exclusion prin-
ciple be included in the derivation of distribution
function in the case of nonparabolic semiconduc-
tors, even for the cases where the Fermi level
lies 4KOT or more below the bottom of the con-
duction band.

Laikhtman" has investigated the distribution
function of carrier energy in the nondegenerate
simple -model semiconductors. He has concluded
that the distribution function can not be normalized
for dc fields higher than some critical value de-
termined by the parameters of the medium which
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is about 1 V/cm, at 4 'K and about 50 V/cm at
room temperatures for a typical piezoelectric
semiconductor. It is experimentally well estab-
lished that the carriers do not escape out of the
sample when dc fields exceeding the above men-
tioned fields are applied to piezoelectric semi-
conductors to impart supersonic velocities to the
carriers for obtaining amplification of the acous-
tic w'aves. The theoretical analyses of acoustic
wave amplification in piezoelectric semiconduc-
tors due to carrier drift are based on either the
elementary approach ~

' or on an assumed form
of the isotropic part of distribution function. '
The isotropic part of the carrier distribution func-
tion has not been obtained by solving equations for
electrons and phonons for the hot-electron case.
The assumed form of the distribution function is
not at all justified in the range of fields where the
distribution function can not be normalized even
if we allow for the use of the concept of effective
carrier temperature and drift velocity. It is
shown in the present paper that the carrier mo-
mentum distribution function in a piezoelectric
semiconductor can be normalized for all finite
values of the externally applied dc field if the non-

parabolicity of energy b3ndse'M'~ is taken into
account, irrespective of the extent of degeneracy
of the charge carriers. Similar results for non-
degenerate semiconductors have been obtained for
the polar optical mode of the lattice scattering by
Matz and Dykmann and Tomchuk.

We present in Sec. II the general derivation of
the collision operator taking into account Pauli's
exclusion principle and nonparabolicity of the en-
ergy bands. The inelasticity of the carrier lattice
interaction is explicitly taken into account. To
facilitiate the derivation of the collision operator,
the high-temperature approximation has been used.
In Sec. III we obtain the collision integrals and the
distribution function (in the presence of a dc field)
corresponding to various modes of the lattice scat-
tering. In Sec. IV we briefly summarize the con-
clusions drawn in this paper.

II. COLLISION OPERATOR

The general expression for the rate of change of
the distribution function ff due to the interaction
between carriers and the lattice given by Con-
well may be modified so as to include Pauli's
exclusion principles; thus following I one obtains

Bt 5 «
= —Q [I (k, iv«+1I ff'I k+q, iv«) I

'5(z« zf„+a~«)f(k+-q&] ~ [1-f(k)]

+
I (» iv«-1

I
If'

I
k q»«) -I'5(zf zf « -@"«-&f(-"-q& ' [1-f("&]

- I(k-q, ~«+1Iz'Ik, iv«)I'5(z„- «-z&+a~«) f(k) [1-f(k-q)]

—I(k+q, N« —1IH'Ik, z«)I 5(zf, « zf —ygcd«)f(k) -~ [1-f(k q)] (1)

where k and q are the electron and phonon wave vectors, respectively, and the quantity (2w/8) l(k'1If' Ik) I

x 5(Z, -Z, ) gives the probability per unit time that a carrier is scattered in the state k from its initial
state k. Thus the four terms on the right-hand side of Eq. (1) correspond, respectively, to the following:
(i) The carrier may be scattered into the state k from a state k+q by the emission of a phonon. (ii) The
carrier may be scattered into the state k from a state f —q by absorption of a phonon. (iii) The carrier
may be scattered out of the state k into a state k —q by emission of a phonon. (iv) The carrier may be
scattered out of the state k into a state k+ q by absorption of a phonon. N,"is the equilibrium phonon dis-
tribution. We convert the summation over q to an integration over q, 8, and Q in Eq. (1) and obtain

dP sin8d8
(

sf 2m' 2V
st 8' (2v)'

«t max

C(q)iV-[f(k+ q) ~ (1 -f(k)) exp'«-f(k)(1 —f(k+ q))]5(Z„",«)tf'd8
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sin8d8 C(q)|V«[f(k —q) ~ (1-f(k)) -f(k)(1 -f(k —q)) exp&(«] —5(yf «) q'dq

where C~ describes the transition probability due
to the electron-phonon interaction and depends
upon the lattice mode, X«= h~«/kpT pj «=Zf
-Et"„~+Ag, and V is the crystal volume. The
limits of integration q",'„',„over q are obtained
by considering the fact that the argument of the

I

~ function should vanish in the entire range of in-
tegration. The integration over 8 in Eq. (2) is re-
placed by an integration over the energy. For
further analysis, we consider the spherical energy
sur faces and the following relationship between
wave vector and ener gy of the car rier due to
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y„-= kk'/2m =E,(1+E„/E,) (3)

m Clyde pa (5)

As discussed by Kolodziejaczak, ' the integration
over 8 in Eq. (2) can be replaced by an integration
over Ep, ~ with the new limits of integration a L
where l. = k kq/m. Because of the properties of
the 5 function these limits can be replaced by+~.

where m is the band-edge mass, and E~ is the en-
ergy gap. For parabolic energy bands ye=Et (ob-
tained by letting E,-~). According to Eq. (3) we
have

yz, (t
= y;+yta(k'/m) kq cos8

and on differentiating Eq. (4) we obtain

We consider the case of externally applied dc
fields for which the drift velocity of carriers is
much smaller than their thermal velocity, and
hence we make the following expansion of the dis-
tribution function:

f(k) =fo(Ez)+kJ,g(Ez) (6)

where k~ is the carrier wave vector in the direction
of the dc field and fo and keg are the isotropic
andanisotropicparts of the distribution function,
respectively. We substitue Eqs. (5) and (6) into
Eq. (2) and make use of the high-temperature ap-
proximation, i.e. , A&;«kQT and also h&~«Eg,
since at high temperatures very slow electrons
for which E, & S&g make a negligible contribution
to the transport processes; thus we may expand
fp(km q), g(k+ q), and exp'; in the power series of
h&~. We finally obtain the following collision
term:
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(7b)

where the primes denote differentiation with respect the primes denote differentiation with respect to
to energy E. the dimensionless energy x.

III. DISTRIBUTION FUNCTION

The Boltzmann transfer equation for the carrier
momentum distribution function is

(6)

A. Acoustic-Mode Scattering

In the case of acoustic modes we have '

o)z(= u, q and '
C(q) = E', flop(t/2pVu, (10a)

where (Sf/St)«„o is written as usual as

(
Sf eE k k„, z gyz d, z(z)
Sf =ky' mkrfo ' ~x

field 0

(9)
where —e is the charge of electron, E is the ex-
ternally applied dc field, x= /kEpT y =y/k, T, and

where u, is the velocity of sound, E, is the band-
edge shift per unit dilation, and p is the density of
the crystal.

The limits of integration in the Eqs. (7a) and

(7b) are obtained in Ref. 25 as follows:
I 11

9 min ~min

2
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where

1/2
~oa3' X &yg' r

C.= 2&2 Z', mo"(a oT)"'/~P 8'

Substituting Eqs. (loa) and (lob) into Eqs. (7a)
and (7b), we obtain the following collision opera-
tor:

where &, is the dielectric constant and P is the
piezoelectric constant assumed to be isotropic for
simplicity. Because of the q dependence of &~ as
in the case of an acoustic mode, the limits of in-
tegration in Eqs. (7a) and (7b) are given by Eq.
(lob). Substituting Eqs. (15) and (lob) into Eqs.
(7a) and (7b), we obtain the following collision op-
erator:

=Cpe3' X 3' o +f0 1 0

C

vo, = v'2 E'm' '0'o T)' '/mph'u'
where

1/2
&Opef J ~S'8 r (16)

It is seen from Eq. (11) that the collision operation
corresponding to the isotropic part of the distribu-
tion function vanishes if we substitute the equilib-
rium distribution function fo= 1/(1+e" ") (as ex-
pected), where q is the dimensionless Fermi en-
ergy Ez/koT.

We substitute Eqs. (11) and (9) into Eq. (8) and
obtain the following two equations after separating
isotropic and anisotropic parts:

C, (y'y "[f,'+f, (1 f,)]'I+ ,'(eF/@)-y"'g =-O (12a)

and

C„= 16/2 vm"'u', e'p'/pe, '@'(&oT)"'

vs, —- 8/2 vm ~ e P (koT) /P&, 5

We substitute Eqs. (16) and (9) into Eq. (8) and
obtain two equations after separating isotropic and
anisotropic parts of the resulting equation. After
eliminating g between these two equations we ob-
tain

y" [ fo'+fo(1-fo)]+p.yfo'= o,
with the solution

vo, y'~ y'g=eErf/mlo Ty' fo' (12b) f =o(1+e' o") ' (18)
After eliminating g between Eqs. (12a) and (12b)
we obtain where

yy' [fo'+fo(I fo)l+P fo'= 0

with the solution

f,=(1+e" " 'i)-',

(13)
and

I, = f t
y"/(y" +p, y)]dx

p, = ', e'F'/v„, C„-m(fooT)

where

I, = p. f dx/(1+ e' " '&),

p, = ', e'F /v„c,m—IooT
(14)

f, = (x+1/P, )-'" . (19)

For the case of nondegenerate parabolic semi-
conductors, fo given by Eq. (18) reduces to that
given by Laikhtman' and is as follows:

and p is the dimensionless Fermi energy when

P, =O. For the nondegenerate case we may let g
In addition, for the parabolic nondegenerate

case we may put y =x. It is then seen that for a
simple-model nondegenerate semiconductor the
expression for fo, given by Eq. (14), reduces to
f, = (x +p, ) ' e ", given by Yam ashita and Watanabe '
and with the same substitution, Eq. (11) reduces to
the corresponding equation given by those authors.

8. Piezoe1ectric-Mode Scattering

In the case of the piezoelectric mode of lattice
scattering we have '

oi," =u, q and C(q) =8m'he p u, /pV&', , o,i(15)

As discussed by Laikhtman, "fo given by Eq.
(19) cannot be normalized for fields given by

p, & I/(960vB), (2o)

where 8 -1. For a typical piezoelectric semicon-
ductor the critical value of field strength is about
1 V/cm at 4 'K and 50 V/cm at 300'K.

From Eqs. (18) and (18a) it is seen that jo x ~
fo

xdx is finite for any value of P, and g. Thus, for
the case of nonparabolic energy bands expressed
by Eq. (3) the carrier momentum distribution
function for piezoelectric semiconductors can be
normalized for any finite value of the externally
applied dc fields and for arbitrary degeneracy of
charge carriers. The effectiveness of the piezo-
electric mode of lattice scattering is determined
by the average energy of charge carriers through
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energy dependence of the corresponding collision
frequency at any value of the externally applied
dc field.

The normalizability of the distribution function
because of the band nonparabolicity may be inter-
preted as follows. The effective mass of the car-
rier increases with its energy; effective mass be-
comes infinite for infinite energy of the carrier.
An increase in the effective mass implies corres-
ponding decrease in the effective velocity o of the
carrier with a particular energy. Ne expect the
distribution function to have maxima at some par-
ticular effective velocity of carriers and then it
goes on decreasing with further increase in the ef-
fective velocity. By normalizability of the distri-
bution function we mean that there are no carriers
with infinite effective velocities. The influence of
the band nonparabolicity is to enforce an effective
velocity distribution which is normalizable —the
area under the curve of the distribution function
versus the effective carrier velocity is finite.

In the present investigation the phonon distribu-
tion function is assumed to be in thermal equilibri-
um. Under the conditions of acoustic-wave ampli-
fication, an appreciable phonon flux is generated.
The considerations of phonon flux generation may
also lead to normalization of the carrier velocity
distribution function apart from the consideration
of band nonparabolicity undertaken here.

C(4p= ezox~(2mkoT) ' (e —1) '

(fopo = 4/2ezo(mkoT) (e —1)

IO=V&p V xp = k((f (/kp T,

and 8 is the Debye temperature.

From the Eqs. (22), (9), and (8) we obtain the
following equation:

v" 1 (4')[fo+fo(1 fo)]+-ff oy'fo'= o

with the solution

(1 + eIP n)-(-

(23)

(24)

where

'
J 1+-'.(F/E, )'v /[y" ln(4F, )]

and

p ——',(F/E )P

For the nondegenerate nonparabolic semiconductors,

fo given by Eq. (24) reduces to that given by Matzoo

and Dykman and Tomchuk

D. Nonpolar Optical-Mode Scattering

In the case of nonpolar optical mode of lattice
scattering we have

C. Polar Optical-Mode Scattering (f—p(4(p and C(q) = E(pp k(4(p/2Vpu, , (25)

In the case of the polar mode of lattice scatter-
ing' we have

(p; = of ( and C (q) = 2((ff'ezo/Vm q', (21a)

where

ez(, = (me'kof(/k')[(1/e. ) —(1/eo)];

v, is the longitudinal optical-mode frequency, and

and ep are high-frequency and static dielectric
constants of the medium. The limits of integration
in the Eqs. (7a) and (7b) are obtained in Ref. 25 as
follows:

q';„= q",„= (v '/2)(Rp(k/y)

where ~p is the frequency of the nonpolar optical
mode of lattice vibration. The limits of integra-
tion in the Eqs. (Va) and (Vb) for this case are
those given by Eq. (21b) if (d ( is replaced by (po.

Substituting these limits and Eq. (25) in the Eqs.
(7a) and (Vb) we obtain the following collision op-
erator:

-'—
4)

=C'~4 '"4' '4 (44 '(f 'f (4-f )0I 1 2 I-1

OP

1 /2
~OP~ ~ ~Fg I

provide xp«1 and where

and
(21b)

I I II II
~max ~+ ~min & ~max ~m$n ~

(22)

provided xp«1 (high-temperature approximation),
and where

Substituting Eqs. (21a) and (21b) into Eqs. (Va) and

(7b), we obtain the following collision operator:

44)=c44'"4''4 (4 "(fl f( fJ( (44 )&44
-1 /2

t PPP
'7 V &Zg'I

(d'/2v'2((ff 'pu'(k T)' "
(f,'~ = m' "(koT)' 'E'„,//2((k'pu'

E(o(=D(K u(/(c(o 4

2 = 2 22 2
Xp = ff(4(p/kpT,

K is the first reciprocal vector of lattice, and D,
is the coupling constant between electrons and

nonpolar optical mode of lattice vibration. From
the Eqs. (26), (9), and (8) we obtain the following
equation:
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y 'tfo+fo(l -fo~~+ &ufo= o

with solution

fo= (i+e 4 ") ',
where

f, = J'dx/(y "+p„)

Poo= 2e E /Svoq Coo moT
I I

The distribution function corresponding to any
case of mixed scattering can be obtained by using
the above derived collision integrals and following
the standard techniques. ' A derivation of Brooks-
Herring formula o for ionized impurity scattering
including explicitly the nonparabolicity of energy
bands will be presented separately.

IV. CONCLUSIONS

We have derived the expressions for collision
integrals corresponding to various modes of the
lattice scattering taking into account Pauli's ex-
clusion principle and the realistic nonparabolic
energy-band structure particularly appropriate to
III- V semiconductors. The energy surfaces are
assumed to be spherical. These expressions are
used to obtain the carrier momentum distribution
function in the presence of a dc fieM for the case
of arbitrary degeneracy of charge carriers.

This formulation avoids the use of the concept of
effective carrier temperature in the calculation of
transport properties of semiconductors with arbi-
trary degeneracy of the charge carriers and non-
parabolic energy bands.

It may be pointed out that the usually assumed
form of the electron velocity distribution function
(i. e. , a Fermi-Dirac distribution with an effective
carrier temperature), which is employed in many
investigations, is not justified. It is because of
this fact that the distribution function of carrier
velocities in simple-model piezoelectric semi-
conductors obtained by solving the Boltzmann
transfer equation in the presence of dc fields with

appropriate collision term can not be normalized
for fields greater than some critical value. It is
shown that for the above case the distribution
function can be normalized for any finite value of
applied dc fields if the nonparabolicity of energy
bands ls taken 1nto accouQt apart fl om the 1nflu-
ence of nonequilibrium phonons.

ACKNOWLEDGMENTS

The authors are sincerely thankful to Dr. 8. K.
Sharma for helpful discussions during the course
of the investigation. One of the authors (B.M. G. )
gratefully acknowledges the financial support from
the Council of Scientific and Industrial Research,
India.

«M. S. Sodha and B. M. Gupta, Phys. Rev. (to be
published).

R. F. Green, J. Electron. Control ~3 387 (1957).
3A. Zylbersztejn, Proceedings of the Seventh Inter-

national Conference on the Physics of Semiconductors,
(Academic, New York, 1965), p. 505.

4L. E. Gurevich and I. Ya. Korenblit, Zh. Eksperim.
i Teor. Fiz. ~44 2150 (1963) [Soviet Phys. JETP 17,
1444 (1963)].

5J. Kamal, Phys. Status Solidi, ~35 801 (1969).
6E. M. Conwell, High Eield Transport in Semieondue-

tors, (Academic, New York, 1967}, p. 11-4.
~O. E. Kane, J. Phys. Chem. Solids ~1 249 {1957).
8L. Sosnowski, Proceedings of the International Con-

ference on the Physics of Semiconductors, Paris, 1964
(Dunod, Paris, 1964), p. 341.

9J. O. Dimmock, Proceedings of the International
Conference on II-VI Semiconducting Compounds, Provi-
dence, 1967, edited by D. G. Thomas (Benjamin, New
York, 1967), p. 277,

"N. N. Grigorev, I. M. Dykman, and P. M. Tomchuk,
Soviet Phys. Semicond. ~1 101 (1967},

~~T. S. Statvitskaya, L. V. Prokofe'va, Yu. I. Ravich,
and B. A. Efimova, Soviet Phys. Semicond. ~1 952
(1967).

~2J. Kolodziejczak and L. Sosnowski, Acta Phys.
Iolon. 21, 399 (j.962).

~3B. D. Laikhtman, Fiz. Tverd. Tela 6, 3217 (1964)
fSoviet Phys. Solid State 6, 2573 (1965)].

'4A. -R. Hutson, J. H. McFee, and D. L. White, Phys.

Rev, Letters 7 237 (1961).
~5P. K. Tien, Phys. Rev. 171, 970 (1968).
~6D. L. White, J. Appl. Phys. ~33 2547 (1962).

H. Spector, Phys. Hev. 127, 1084 (1962).
~SJ. Yamashita and K. Nakamura, J. Phys. Soc. Japan.

Suppl. ~21 455 {1966).
E. %. Prohofsky, Phys. Rev. 134, A1302 (1964}.

2~J. Yamashita, and K. Nakamura, Proceedings of the
International Conference on Semiconductors Moscow,
1968, Vol. II, p. 942 (unpublished).

2~R. C. Casella, Phys. Rev. Letters ~5 371 (1960};
Phys. Rev. 114, 1574 (1959); J. J. Hopfield, J. App]. .
Phys. Suppl. ~32 2277 (1961),

D. Matz, J. Phys. Chem. Solids 28 373 (1967).
~3I. M. Dykman and P. M. Tomchuk, Fiz. Tverd. Tela

8, 1343 (1966} [Soviet Phys. Solid State 8, 1075 (1967)].
4Reference 6, p. 219.
J. Kolodzie~aczak, Phys. Status Solidi 19, 231(1967).
Reference 6, p. 108.

~VJ. Yamashita and N. Watanabe, Progr. Theoret.
Phys. (Kyoto) ~12 443 (1954).

28H. J. G. Meijer and D. Polder, Physica 19, 255
(1953).

SBy effective velocity we do not mean the average
velocity over the distribution function. Instead, it im-
plies the velocity of a single carrier obeying nonpara-
bolic energy-momentum relationship.

30H. Brooks, Advan. Electron. Electron Phys. ~7 85
(1955).


