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The temperature dependence of the integrated intensity of the forbidden (222) reflection in
silicon has been measured from 4 to 900'K. The results indicate that the (222) intensity at
room temperature is due almost entirely to charge asymmetries introduced by the covalent
bonds. However, the temperature dependence may be due to a combination of bond vibrations
and anharmonicity in the atom motions. From estimates of the anharmonic contribution, and
the observed temperature dependence, there is evidence that the thermal motion of the co-
valent bond may be different from that of the core electrons. The absolute intensity of the
(222) was also measured and is consistent with E(222) = l.46 +0.04.

I. INTRODUCTION

In Bragg diffraction, a reflection with zero struc-
ture factor for the unit cell is termed forbidden.
In the diamond structure, reflections with A,, 4,
f mixed or pi, g & an odd multiple of 2 should be

forbidden from a lattice point consideration. Nev-
ertheless, in 1921 Bragg' found a weak x-ray re-

flection at the forbidden (222) position in diamond.
Silicon crystallizes in the diamond structure,

and a similar anomalous reflection appears at the
(222). Since spherical atoms at the lattice sites
yield a zero structure factor, this forbidden inten-
sity must be due to some perturbation on the spher-
ical atoms. Further, since the x rays interact only
with the electron charge distribution of an atom,
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Ji~= (2m') (hkl) 8fe ",

FIG. 1. Diamond structure: The shaded atoms rep-
resent one fcc lattice. The inversion of bond orienta-
tions in the two fcc sublattices is illustrated in the two
smaller cubes.

this perturbation must show up as an asymmetry in
the charge cloud. Silicon and diamond are covalent
crystals, and some portion of this asymmetry might
be expected in bonding effects.

Another possible asymmetry can arise even from
spherically symmetrical atomic electrons. In the
diamond structure (Fig. 1), each atom ha, s a tetra-
hedral environment. Because of this, each atom
sees a bond (and nearest neighbor) in one direction
and a "hole" in the opposite direction along any
(ill) axis. It is rea, sonable to assume, particularly
at higher temperatures, that an atom would spend
more of its time toward the hole than toward the
bond. This anharmonicity in atom motions would
create a time-averaged asymmetry and produce a
core contribution to the (222) reflection. In three
dimensions, this introduces a tetrahedral symmetry
to the spherical atoms. One can approximate this
anharmonic motion by replacing the lattice sites
with four atoms, each with —,

' the scattering power
of the original atom and each displaced from the
lattice sites in tetrahedral fashion by an anharmonic
displacement 5 along the appropriate (111) direc-
tion. A calculation for this new "quarter-ion"
lattice yields an anharmonic structure factor for the
forbidden reflections of the type 8+k+i =4n+2,

where (kkf) is the product of the Miller indices, f
the atomic scattering factor, and e "the Debye-Wai-
ler factor. The (222) reflection in neutron diffrac-
tion should be sensitive only to the core motion of
the atom. This follows because the scattering will
only be from an effective point nucleus and any
asphericity in the electron cloud would not be de-
tected. Recent neutron measurements have failed
to detect any (222) reflection due to anharmonic
motion.

Tetrahedral symmetry in the charge cloud may
be introduced into the atom by considering the co-
valent bond to consist of small lobes of charge ex-
tending in the bond direction. Locating point
charges of scattering factor f, a distance 8 in the
bond directions reminds us of the quarter-ion mod-
el, and yields a structure factor similar to Eq. (1)
but with opposite sign to that due to anharmonic
displacements.

The core and bonding contributions are quite
similar, each arising from a tetrahedral deforma-
tion of spherical atoms by anharmonic motion or
bonds. The forbidden reflections occur not because
of this deformation alone, but because of the par-
ticular orientation of the tetrahedra with respect
to each other. Referring again to Fig. 1, it can
be seen that the tetrahedral deformations invert
with each successive atomic plane in a (111)direc-
tion. It is this inversion which creates the neces-
sary charge asymmetry for the forbidden reflections
to appear.

When considered together, the core and bonding
effects tend to work against each other. At a par-
ticular atom, the orientations of the anharmonic and
bonding tetrahedra are opposite. Hence, the nec-
essary inversion from plane to plane of one contrib-
ution is reduced by the opposite inversion of the
other. Another way of putting this is that the two
effects acting simultaneously tend to make the time-
averaged charge distribution more spherical. If
both the effects of anharmonicity and bonding are
present in the (222), it might be expected tha. t the
bonds would dominate at lower temperatures and
the anharmonic or core contribution would become
more prevalent as increased temperature allows
more thermal motion.

The existence of the (222) has been known for al-
most 50 years, and experimental values for the
structure factor of the forbidden reflection in silicon
have varied from less than 1.0 to almost 2. More-
over, no conclusive data on the relative importance
of bonding and core contributions to the (222) has
been forwarded. In fact, it is only recently that
anharmonic effects have even been considered.
From the negative neutron diffraction experiments,
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it is to be expected that the forbidden reflection is
due mainly to the bonding electrons, and that the
absolute intensity of the (222) can be used as a check
on the accuracy of electronic band-structure calcu-
lations which predict outer-electron wave func-
tions. ' ~ The (222) offers a special advantage here
over allowed reflections since the bonding contribu-
tion is not masked by the very nearly spherical core
electron distribution.

In this experiment, it is undertaken to sort out
the bonding and core contributions to the (222). A
temperature approach was chosen for this objective.
While one can only speculate on the temperature
dependence of a covalent bond, it is clear that the
anharmonicity necessary for the core contribution
would be strongly temperature dependent. As an
experimental by-product of the temperature work,
the absolute intensity of the forbidden reflection
was also measured.

II. EXPERIMENTAL

The (222) is two orders of magnitude weaker than
allowed reflections in silicon, and care must be
exercised to insure an accurate measurement. A

large source of possible experimental error is
multiple reflections. In 1937, Renninger noticed
that the intensity of the forbidden reflection changed
as the crystal was rotated in azimuth about the
normal to the diffracting planes. This "umwegan-
regung" effect occurs when conditions for simultan-
eous or multiple reflection are satisfied. The
azimuthal position of multiple-reflection contribu-
tions to the (222) intensity can be readily ascertained
by comparing an experimental azimuthal scan with
a computer-predicted umweganregung pattern (Cole
etal). ' Figure 2(a) shows an azimuthal scan with
the diffraction vector close to the (222) reciprocal-
lattice point. The pattern repeats every 30 . The
indices shown for peaks 1-5 represent the reflec-

Azimuth (Degrees)
30

A B

0 30

FIG. 2. (a) Experimental umwe-

ganregung pattern. The diffraction
vector corresponds to the (222) re-
flection and the crystal is rotated
about this vector. The variation in
background or "true" (222) intensity
is due to slight wobble in the azimu-
thal rotation. Regions of umwegan-
regung-free (222) used in the inten-
sity measurements are denoted by A,
B, and C. (b) (222) rocking curve
showing && and 0.

& peaks taken at azi-
muthal position A in Fig. 2(a). n&

peak intensity is about 200 cps.

65 sec
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tion other than the (222) which lies on the Ewald
sphere of the primary beam. A, B, and C are the re-
gions free of multiple reflections used in the pres-
ent measurements. The background is the "true"
(222) intensity, the variation of which is due to
wobble in the azimuthal rotation axis.

Another consideration is the possible introduction
of strains and imperfections in the crysta, ls during
heating and cooling. Perfect single crystals of
silicon (Lopex) with dislocation densities & 100 cm 2

were used in the measurement primarily because
they concentrate more reflecting power in a nar-
rower angular range than mosaic crystals and hence
lead to greater peak intensities.

Thermal strain could easily alter the integrated
intensities by making the diffraction process more
kinematic. Intensity ratios of a fa,ctor of 5 are not
uncommon between ideally perfect and mosaic crys-
tals. This effect however is important only for
strong reflections. The difference in integrated in-
tensity between ideally perfect and imperfect is less
than 2%%uo for the weak (222), and thermal strains
should not be important.

The integrated intensities were measured on a
double crystal spectrometer of Bond design. A
perfect (220) silicon first crystal was chosen to
provide a strong primary beam and sufficient dis-
perion for reasonably attainable umweganregung
patterns. The Cu En radiation yielded the best
combination of intensity and umweganregung-free
regions. Slits were fairly open, allowing a beam
approximately 1 mm in width (allowing the entire
x-ray focal spot to be used) and 3 mm in height
to fall upon the second crystal. Peak intensities
of the order of 200 counts/sec with an n, @, -
separation of 65 sec of arc were observed for the
true (222). A characteristic (222) rocking curve is
shown in Fig. 2(b).

A scintillation counter was used for most of the
measurements although similar results were also
obtained with proportional counters. A single-
channel analyzer was set for the Kn peak and ex-
cluded short-wavelength harmonics.

The absolute intensity of the (222) was measured
relative to the (111)and (333). Well-established
structure factors are available for the (111)and
(333) so the problem of measuring the direct beam
was avoided. Direct-beam measurement would be
very difficult because of the wide-open slit system
used. Calibrated foils which attenuated the reflected
beam by factors of approximately 32 and 8 were
used to bring the intensities of the allowed reflec-
tions into countable regions.

The angular range used for determining integrated
intensities was of three n, -n~ spacings: from one
Qy Q2 separation before the n, peak to one beyond
the a2 peak. Background levels were taken at both

extremities of the rocking curve and subtracted from
the total intensity. By comparison with rocking
curves covering a much wider angular range, it was
determined that approximately 3%%uo of the integrated
intensity was left uncounted in the tails of the peaks
because of the relatively short (3 n, nz -spacings)
scan and the correction was taken into account in
the final result. Rocking curves. for the (111)and
(333) covered similar angular ranges based on
their n, -a, separation, insuring an accurate rela-
tive measurement. Integrated intensities were
taken at three different umweganregung-free azi-
muths [A, B, and C in Fig. 2(a)] in 180' pairs to
compensate for any crystal miscut. In all, more
than 400000 counts of (222) were measured in
about 30 scans. These data were compared with
approximately 20 rocking curves at the (111)and
8 at the (333).

All temperature runs were made relative to the
room-temperature (222), a number of rocking
curves at a given temperature were followed by the
same number at room temperature. Three differ-
ent crystals were used and at least three different
umweganregung-free azimuths measured.

I ow temperature runs were made at liquid-helium
and liquid-nitrogen temperatures, with the crystal
mounted on a copper cold finger in an evacuated
cryostat similar to one previously described in
the literature. ' The high-temperature measure-
ment was made up to 600 'C in a helium-purged
baffle furnace. " Three Chromel-Alumel thermo-
couples were placed near or touching the back of
the crystal at various locations and consistently
read within 10' of each other.

Since the intensities always returned to the sa.me
room-temperature value after a high-temperature
run, it was concluded that the effects of any surface
contamination were negligible. Approximately
400000 counts were taken at ea.ch temperature
(both low and high) in about 40 rocking curves.

III. RESULTS

The data for absolute intensity measurements
consisted of ratios of the experimental integrated
intensities of the (111), (222), and (333) reflections.
Using previously determined values" for E(111)
= 82. 2 and E(333) = 33. 2, and the above measured
ratios, the (222) structure factor was determined.
A structure factor was computed for each indepen-
dently measured ratio, three (222) and (111)mea-
surements and three (222) and (333) measurements.
Each individual measurement consisted of the aver-
age of several rocking curves at three or more
different azimuths. These computed structure
factors then were averaged and to within one stan-
dard deviation yielded an E(222) for the unit cell of
1.46 + 0. 04. The dynamical Darwin-Prins equa-
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FIG. 3. Ratio of experimental integrated intensity at
temperature T to room temperature. The curves are
the ratios of the Debye-%aller factors 8 for different
Debye temperatures.

tion" was used for this calculation. The linear
absorption coefficient for Cu Kn in silicon was
taken as 144 cm '. ' This result compares well
with experimental room-temperature values for the
(222) of DeMarco and Weiss (1.44+0. 08),"of Colel-
la and Merlini (1.54), '6 and of Renninger (1.55)'
and is in fair agreement with that of %'olfel et at'.

(1.V8)."
The temperature results are represented by the

brackets in Fig. 3. Each measurement consisted
of approximately ten rocking curves at both room
and the given temperature for a particular azimuth.
Then the results for different azimuths and crystals
at a given temperature were combined. The quoted
precision represents fluctuations of approximately
one standard deviation.

IV. DISCUSSION

The temperature results in Fig. 3 indicate that
the intensity of the forbidden reflection decreases
as temperature is increased. This suggests that
the (222) is due primarily to bonding effects, since
the intensity due to anharmonicity alone would be
expected to increase with temperature.

Neglecting anharmonic motion, an x-ray beam
at the (222) does not diffract from the core electron
distribution. Instead, it sees only the bonds, an
array of charge lobes slightly displaced in tetra-
hedral fashion from the lattice points. The effect
of temperature would be to blur this array by sub-
jecting individual lobes to random displaeements.
These displacements tend to impair phase relation-
ships, and reduce the intensity of a reflection by
a factor e ", ' where M is the Debye-%aller factor.
For a Debye model,

M = Bv' ( u', ) [(sine)/&]', (2)

(a', ) = .' (f'T/mI e'w') [C(x)+-.'x], —
(3)

E = (AT)'(2'/a)'(P/n') (akf) 8fe ", (5)

where a is the dimension of the unit cell, f is the
atomic scattering factor, kT is the Boltzmann fac-
tor times absolute temperature, and the additional
symbols have been defined above. Comparing Eqs.
(5) and (1), 6 for the quarter-ion model can be ex-
pressed in terms of the potential-mell parameters
as 5'= (kT) P/(an) . The coefficient n can be de-
rived from the Debye-%aller factor~' which yields
the high-temperature result

n=k T/(u', ) =7.85x10 "erg/A',

using a Debye 6=543'K and Eq. (3).
Thus, to evaluate E~„we need an estimate of P,

the cubic term in the potential. An approximate
value is obtained from the linear expansion coeffi-
cient by a model in which a pair of silicon neighbors
is treated as an independent diatomic model and the
anisotropic term in the potential. changes the equi-
librium separation with tempexature. This simpli-
fied approach yields '

where (u, ) is the mean squared amplitude of vibra-
tion, h is Planck's constant, m is the atomic mass,
jg the Boltzmann constant, 9 the characteristic or
Debye temperature, x= 8/T, and [4(x) + —,'x] the
Debye function which takes into account the zero-
polnt motion.

In Fig. 3, the measured temperature dependence
of the forbidden reflection is compared with theoret-
ical e '" dependences for several Debye tempera-
tures. The data agree well with theory over the
entire temperature range for the experim, ental x-
ray Debye temperature of silicon, 9= 543 K. At
first glance then, it would appear that the entire
temperature behavior of the (222) can be described
ill a vel'y stl'alglltfol'wal'd way. Nalllely, tile (222)
is due to bond electrons which vibrate with the same
harmonic vibrational amplitude as the core electrons
and nucleus.

We will consider the effect of anharmonicity ac-
cording to the formalism developed by Dawson and
Willis. ' The complete temperature dependence of
the anharmonic contribution i.s calculated by as-
suming that each atom vibrates in an anharmonic
potential well of the form

V= Vo+ n(x +y + g )+Pxyg,

with n and P constants.
This well has the required symmetry (spherical

with tetrahedral lobes), and to third order repre-
sents the best approximation to the actual potential.
An ensemble average of the temperature factor"
using the above potential yields a high temperature
or classical anharmonic structure factor for the
A+ 0+ / = 4n+ 2 reflections
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~ P ~
/II = 3axn/4k = 1.03 A ',

where the only undefined symbol X is the linear
thermal-expansion coefficient. The total structure
factor incorporating both the bonding contribution
and the anharmonic effects now becomes

C3
+O. l-a

K

'U "O, l

O

OI

-0.2
C

l.05 —.

O
l.00

K

.95

.90

g .85

(

200

I.a
I 1

400 600
Temperature, K

800

FIG. 4. Temperature dependence of the I'222} for sev-
eral values of p/cr(A. I). In this case, the bonds are as-
sumed not to vibrate and the temperature effect is solely
due to anharmonicity. Brackets represent experimental
data.

Tile function [rfr(x) + ex] is lllclllded lII the second
(anharmonic term) to approximate the low-tempera-
ture behavior of o. . This follows from Eqs. (3) and

(6) by i~eluding the temperature-independent zero-
point vibrational amplitude. In this approximation,
n is considered a constant in Eq. (6) with the value
given by Eq. (6). Because of the origin of their
respective contributions, E~ and E~„will always
be of opposl'te slgll. Uslllg Eq. (6) fol' E~, Ee 18

determined so that E(222) is the experimental room-
ternperature value.

%e now assume that E~ is independent of tempera-
ture, i. e. , that the bonChng electrons have no ther-
mal nibmtions and calculate the temperature depen-
dence of [E(222)]s, which is proportional to the in-
tegrated intensity. In Fig. 4 we show the results of
this calculation for several values of P/OI in the
vicinity of the value of 1.03 A estimated in Eq. (7).
The curve for P/n = 1.0 is a reasonable fit to the
data from room temperature to about 800'K. This
ra, ther unexpected result says that experimental
data are reasonably consistent with a model in which
the valence electrons do not vibrate thermally but
that the temperature dependence of the (222) is due

almost entirely to anharmonic vibrations of the
core electrons. This of course is based upon a
very rough estimation of P, the anharmonic cubic

200 400 600 800
Reduced Temperature, T [C(X)+X] K

I'IG. 5. Three possible combinations of anharmonic
and bonding effects consistent with the observed temper-
ature dependence.

term in the potential. For P/n =1.0, the anhar-
monic contribution at room temperature is only
about 2% of E(222), so it is quite clear that the
(222) results primarily from the nonspherical dis-
tribution of bonding electrons about the atom.
However, the T' dependence of the anharmonic
term alone is strong enough to decrease the str uc-
ture factor with temperature to be consistent with
experimental results.

This argument is crucially dependent on the value
of P. Whjle Dawson and Willis's ' qualitative argu-
ments give P/n = 1.03, the experimental neutron
diffraction work by Nunes' suggests that P/n may
be less than half this value. The experiment failed
to find a neutron nuclear (222) reflection, which
from estimates of experimental accuracy would
require P/n $0. 6 A '.

It is clear from the above discussion that two

quite different explanations are consistent with
the observed temperature dependence of the forbid-
den (222) reflection. One which has the bonding
electrons vibrating harmonically with the core of
the atom and the other which postulates stationa, ry
valence electrons and an anharmonically vibrating
atom.

It is also evident that many combinations of the
two models can be made consistent with experiment.
In Fig. 5, we give as an illustration three combina-
tions. The log of the intensity versus T[C(x)+-,x]
makes the plots nearly linear. The solid line which
gives a good fit over the entire range has a P/n
= 0. 3 and has roughly a 25% reduction in the mean
square amplitude of the bonding electrons over
that of the core. The fit using P/n =0. 5 and a 50%
reduction is a good fit above room temperature.
The curves are not to be taken too seriously but
are included to show the range of models that could
be consistent with experiment.
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V. CONCLUSIONS

The experimental results indicate strongly that
the forbidden (222) reflection in silicon at room
temperature is due almost entirely to the aspheric-
ity of the bonding electrons. The anharmonic con-
tribution at this temperature is probably less than
5/g of the total integrated intensity. The results
are inconclusive as to the origin of the temperature
dependence of the (222). Several combinations of
bonding and anharmonic effects can be made con-
sistent with the observed temperature dependence.
Two extreme models would explain the data. In
one, the bonding electrons vibrate the same as the
core electrons. In the other, the tetrahedral bond-
ing charge does not vibrate at all and the entire
temperature dependence is due to anharmonic atom

vibrations of the silicon atoms.
It is therefore unwarranted at this time to say

anything definitive about the reasons for the tem-
perature dependence of the (222). The key to the
problem is the value of the anharmonicity param-
eter P. The method of estimating P for silicon is
similar to that used for ionic crystals which gave
results for the latter in reasonable agreement with
experiment. These P values for silicon provide
for a significant anharmonic contribution to the
(222) temperature dependence and would lead to the
conclusion that the vibrational amplitude of the
bonding electrons in silicon is less than that of core
electrons. An experimental measurement of the
anharmonic P parameter is essential to unraveling
the bond electron motion in silicon.
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