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The band structure of SiGe has been calculated using the coherent-potential approximation
in conjunction with a realistic but local pseudopotential model. The effects of alloy disorder
manifest themselves in complex band energies, each with an imaginary part inversely pro-
porhonal to the electron lifetime. Spectral functions and the alloy denisty of states are also
computed. The damping proves to be small, though it is not always given accurately by low-
order-perturbation theory about the virtual crystal. Moreover, within the present local
pseudopotential approximation, it affects only s electrons capable of penetrating the ionic
cores, since outside the core region the alloy pseudopotential is like that of either limiting
pure crystal. The effect of the damping on experimental quantities such as the optical ab-
sorption and electrical resistivity is very small.

I. INTRODUCTION

This paper describes a calculation of the band

structure of Sioe, in which we explicitly include the
effects of alloy disorder. These manifest themselves
in complex band energies with imaginary parts in-
versely proportional to the electron lifetime. Such

a calculation has been made feasible, and potential-

ly useful, by the development of the so-called co-
herent-potential approximation (CPA) by Soven, '

Taylor, Onodera and Toyozawa, ' and Velickf,

Kirkpatrick, and Ehrenreich. The CPA is a method
for treating the single-particle properties of sub-
stitutionally disordered binary alloys within the
framework of multiple-scattering theory. It consists
of approximating the configuration-averaged single-
particle alloy Green's function (6) by an operator
0 determined by the condition that an electron prop-
agating according to it should undergo, on the aver-
age, no scattering at each atomic site. The CPA
neglects effects due to the clustering of like atoms
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in the alloy. Such clustering, which will occur sta-
tistically even in alloys with no short-range order,
is likely to be significant whenever the constituent
atoms have very different scattering strengths. How-

ever, as has been shown by Velicky et al. , the CPA
should be an excellent approximation at all concen-
trations in alloys where the atomic characteristics
are not too different.

A natural starting point for applying the CPA to
a binary alloy is the one-electron Hamiltonian H in
Wannier representation. The general multiband sit-
uation is difficult to treat calculationally. A model
Hamiltonian with random diagonal and periodic off-
diagonal elements has, however, been used for
studying both the single-band" and degenerate tight-
binding cases. The latter model approximates NiCu
alloys, for which it gives good results. For such
calculations, the one-electron properties of the
alloy can be found without knowledge of any E(k) re-
lations. In the nondegenerate case, for example,
one requires as inputs only the relative concentra-
tions x and 1 —x of the two alloy constituents, the
difference 6 between the two atomic energy levels,
and the pure crystal density of states, which is re-
quired by the model to be of the same shape for the
two limiting pure crystals.

In order to utilize the CPA to obtain complex E(k)
curves for alloys, we require a more general model
Hamiltonian. Since orthogonalized-plane-wave (OPW)
and pseudopotential methods have been so useful in
band calculations for pure crystals, and since in
alloys they would be expected to be best for the same
weak-scattering systems for which the CPA itself
is most accurate, these techniques will be suitably
generalized in Sec. II to apply to binary alloys. Be-
cause of the multiple-scattering nature of the CPA,
the method is compatible with it only if the random
part of alloy Hamiltonian is composed of cell-local-
ized random contributions from each atom. Ideally,
one wants to deal with a binary alloy of isoelectronic
constituents whose potentials in the perfect crystal
differ only in the core regions. Then the alloy po-
tential outside the core region will be like that of
either limiting perfect crystal, and only electrons
able to penetrate core regions will experience al-
loying effects.

SiGe is an almost ideal example of the kind of
behavior just discussed and will be considered here
for that reason. A model Hamiltonian suitable for
that alloy is described in Sec. II. To exhibit its
features in the most transparent form, the deriva-
tion is then carried out for a Bravais lattice. The
necessary generalization to the diamond lattice is
made in Sec. IG. Since this is straightforward, the
discussion is mostly confined to a statement of for-
mal results.

After a brief description of calculational approx-

imations, and an outline of the numerical procedures
necessary to solve the equations, ~ the electronic
density of states, self-energy functions, spectral
densities, and complex E(k) curves for SiGe are
presented in Sec. IV. Since the present work sup-
ports the long-held view that the virtual-crystal
model should be very good for SiGe alloys, the re-
sults reveal relatively little that will be surprising
physically. However, the present work is believed
to represent the first approximate calculation of
the "complex band structure" of a semiconductor
alloy using a suitably generalized OP% method and,
as such, clearly exhibits the kind of detailed infor-
mation to be expected from such calculations, as
well as the problems involved. One such problem is
the necessity of calculating accurately certain ma-
trix elements of Green's functions which involve
sums over the Brillouin zone. This is likely to cause
considerable numerical difficulties in calculations
on systems where the virtual crystal no longer rep-
resents a good lowest approximation.

To illustrate the kinds of behavior to be expected
when the random alloy potentials are stronger than
in SiGe, and when in fact it is no longer desirable
to use the virtual crystal as a good lowest approx-
imation, some additional results are also exhibited
for hypothetical alloys having the same virtual crys-
tal potential as SiGe, but a greater difference be-
tween the atomic potentials.

II. FORMALISM

Consider a substitutional binary alloy AP~
whose constituent atoms are distributed at random
on N atomic sites, one per unit cell, and assume
that the one-electron Hamiltonian H can be expressed
as

H =p'/2m +Z, V,

where t/', = V, or V, is the random potential asso-
ciated with the lth site. It will be convenient to
write H in terms of the virtual-crystal Hamiltonian

H"=P'/2m+2, V", , V",'=x V", +(I —x) V,
' .

Then H is given by

H =H" +X, ( V, —V", ) =H"'+ U=H"'+X, U, . (2. 2)

U, thus represents the deviation of the random po-
tential associated with site l from the virtual-crys-
tal potential.

To treat H within the CPA, we introduce the prop-
agator

(2. 3)

for the random medium. The measurable single-
particle properties of H are then determined by the
average of G over all possible alloy configurations,
namely,
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G-=(G(z)) = ((. -H)-'&-=(.—H"- Z)-',

Z=&, (Z, ) . (2. 4)

T = U —Z+ t(U —Z)G T.

Expanding G about G then yields

G=G+GTG

(2. 8)

(2. 8)

and the exact condition

(T( ))=o, (2. 7)

Equation (2. 4) defines the self-energy Z of the alloy
with respect to the virtual crystal. Since G has the
full crystal symmetry, so has Z, whence Z can be
expressed as a sum of atomic contributions Z, from
each site. G and Z, like other Green's functions
and self-energy operators, are analytic in both
half-planes and satisfy the relation

G'(z)=G("), Z'(.)=Z(") .
In discussing the physical properties of alloys, we
generally shall make use only of the retarded oper-
ators G and Z, i.e. , those which are analytic in the
upper half-plane.

The scattering of an electron due to deviations of
the alloy from its averaged behavior is described
by the total T matrix

function A(k, E), representing the probability per
unit energy that an electron having Bloch wave num-
ber k has energy F., may be written as

A(k, E) = —a 'Z„(nk~ G(E+i 0) ~nk), (2. 11)

where
~
nk) denotes an eigenstate of H"' having wave

number k and band index n. In a pure crystal,
A(k, E) will consist of a series of 6-function spikes,
but in the alloy these will be broadened. The total
density of states per atom is

p(Z) = iV 'Z -A(k, E)

= —(Nm)-'1m' (nf~G(E+io) ~nk) . (2. 12)
nk

The "complex band structure" of the alloy may be
obtained by finding the poles of the (retarded) Green's
function G in the lower half-plane by analytic con-
tinuation, or equivalently, by diagonalizing the
"effective Hamiltonian" H, « = H" + Z. H,« is periodic
but non-Hermitian. Its eigenstates are therefore
Bloch waves but its eigenvalues are complex. If a
spectral peak is I orentzian, its half-width will be
given by twice the imaginary part of the correspond-
ing eigenvalue.

Ne wish to apply the CPA to an alloy described by
a pseudopotential model. To that end, we introduce
a pseudo-Hamiltonian of the form~

which defines G.
The CPA consists of replacing Eq. (2. 7) by the

approximate relation

(Tg(z)) =x T,"(z)+(1—x) T,'(z) =0 (2. 8)

Hq (1 —P) H——

where

P=r, Z, y„~cl)(cl~ =2, P,

(2. iS)

(2. 14)

where T", ' (z) is the atomic T matrix associated
with an A. or & atom at site l:

T»a- U& a Z y(U a Z )GT (2 9)

Substitution of (2. 9) into (2. 8) yields the operator
equation

Z, = (x &, —Z, ) G (y &, + Z, )

where y = 1 —x and 6, = U, —U", is the difference be-
tween the two random potentials at site l.

Equation (2. 10) is a self-consistency condition
which determines Z within the CPA. Together with

Eq. (2. 4), it may be solved to obtain the CPA for
Z and G. As is evident from (2. 8), an electron
propagating according to the G thus determined will

undergo, on the average, no further scattering at
each atomic site in the lattice. It may be shownthat
approximating the exact (G) by this G is in fact
equivalent to assuming that the T matrix associated
with a given atom is statistically uncorrelated with

an incident electron wave made up of contributions
previously scattered off all other atoms.

All the one-electron properties of the alloy can
be expressed in terms of G and Z. The spectral

projects out that portion of H which can be expanded
as a linear combination of core states ~cl) associated
with atomic orbitals c at site l. Since the core states
in general are different for the two types of atoms
in the alloy, the P, 's are random operators.

Just as in pure crystals, H~ gives the same spec-
trum of valence eigenvalues as H (though not the
same wave functions) for any alloy configuration,
and for arbitrary complex coefficients y„, which

may then be chosen so as to minimize the random
parts of H~. Thus, since the poles of G and G~
= (z —H~)

' are the same, so are those of (G) and

(Gg. Since the random pseudopotentials appearing
in H~ are smaller than those in H, the CPA will be
more accurate for the former, and the poles of G~
will more closely approximate those of (G) than
will the poles of G. In order to insure that G~ yields
the same density of states and spectral functions as
G, we shall assume' that H~ is energy independent.

To apply the CPA to H~, the random parts of H~

must be expressible as a sum of random parts from
each site, as in (2. 2). To see when this is possible,
we use the fact that the kinetic energy is not affect-
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ed by P, and write

Hp P /——2pn+ (1 -P ) P,)P, ,V, ~

Introducing the pseudo- Hamiltonians

HAI B P2/2m + (1 P PA, B)P VA, B

(2. iS)

(2. 16)
& ( =g(z) I wl ) (wl

I

Thus, Eq. (2. 10) becomes

(2. 23)

is not necessarily restricted to pseudopotential
applications.

If &, is given by (2. 22), Z, must be of the same
form:

Hp= Hp'+ (Hp —Hp' ) (2. 17)

of the two limiting pure crystals, we write Hp as
g(z) = [x5 g(z-)]F(z) [y6+g(z)]

where

(2. 24)

where

H"' = x H" + (1 —x) H (2. is)

where

The first term of (2. 17) is periodic. The second
term can be reduced, with the help of Eqs. (2. 15),
(2. 16), and (2. 18), to

Hp —Hp' —-$ UP, —$ Z P, ( V( ~ —Vg'), (2. 19)

F(z) =(wl IG(z) lwl & (2. 23)

Equation (2. 24) is an a,lgebraic equation. To solve
it, we need an expression for F(z). Because of the
weakness of the random scatterers in SiGe, it is
convenient to express this quantity in terms of
matrix elements of G"(z) = (z —H") ~. We therefore
introduce the operators

G2=~ lnk&(nkl(z-H"- E) 'I "k&("kl (2 2s)
U,
' = (1 —p, ) ( v, —v", ') p, v"'—

+ x P", V"+ (1 —x) P, V (2. 2o) and

nn'

with

VVC P Vvc . VA, B P VA, B
l l l

Thus, II& can be written in the desired form pro-
vided the double sum in (2. 19) is negligible. This
will be so if V, and V", are the same outside the
lth atomic cell, i.e. , if V, —V, is cell localized.
Such a condition is expected to be valid in an alloy
like SiGe of two isoelectronic elements, but is less
likely when the two constituents are of different va-
lence.

Upl would be difficult to calculate explicitly from
Eq. (2. 20). But when the double sum can be ne-
glected,

HA, B Hvc ~p ( Up)A, B
P

=
P l (2. 21)

(2. 22)

Here, Iwl) is a member of some complete set of
basis functions associated with site l. Iwl) is as-
sumed to be essentially localized within the atomic
cell but is not directly connected to any Wannier
function of the alloy Hamiltonian. This function is
introduced simply as a means of representing the
difference between the atomic pseudopotentials in
SiGe. It should be noted, however, that the model

and the U, 's may be obtained directly from the
pseudopotentials of the limiting pure crystals.

In order to make the solution of Eq. (2. 10) tracta-
ble in a multiband situation, where it would in
general be a matrix equation, we make the following
ansatz for the form of 4, :

G„-"' =P„(z-E„„-)'lnk&( kl

G =G"'+G"Z G

as the N equations

G-= G.'+G"' ZG-
k k

(2. 2s)

(2. 29)

Since Z can be expressed in terms of the basis
functions Iwl ) by means of (2. 23), Eq. (2. 29) is
readily solved. We find that

F(z) = N t P F (k, z) = N

(2. 3o)where

F(k, z) =N(wll Gfl wl) (2. 31)

Fc(k, z)=N(wll G"„-'I wl)=P, fc„"(z—8„„-)', (2. 32)

and

f.~=NI (wl I«) I'

Note that, since the alloy potential does not flip
spins, the sums in the expressions just given are
not to be taken over spin.

The physical significance of F(z) is that

—v 'imF(E') =p (Z) (2. 33)

is the density, of states for electrons whose eigen-

where E„k is the eigenvalue corresponding to vir-
tual-crystal state Ink). Equation (2. 26) recognizes
that in general H,« is not diagonal in n. Using the
fact that G, G"', and Z are all diagonal in k, we may
then write the Dyson equation
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J "p (E)dz =1 (2. 34)

To find the alloy density of states, we must
evaluate Eq. (2. 12). For this, and also to calculate
the self-energy Z„„- of an electron in virtual-crys-
tal state (nk&, an explicit expression for the diag-
onal matrix element (nk l G!nk& will be needed.
Using (2. 29), one obtains

(nkl G(z) ink) = (z -E„„-) '+g(z)f„g(z —E„„-) '

states are projected into orbital (ml), i. e. , in the
spatial region where random potential is apprecia-
ble. Since p" is like a spectral density, it satis-
fies the sum rule

det[z —H„,(z)]= 0. (2. 40)

III. GENERALIZATION TO THE DIAMOND LATTICE

The diamond lattice has two atoms per unit cell.
Without loss of generality, these may be chosen to
be located at R, + —,'b, where R, is the position vec-
tor for the lth unit cell. The formalism presented
in the previous section may be simply generalized.
While an equation of the form (2. 24) will still apply
in a, complex lattice, F(z) can no longer be written
in the simple form (2. 30). One obtains, instead,
matrix equations involving site indices p, , p,

' of
different atoms within the unit cell:

x [1-g(z)E0(k, z)] '

-=[z —E.~ —~.~(z)] ', (2. s5}

E„,,(k, z) =F0 „.(k, z) +n, ' g(z)

x Z, -F'„„„(k,z)F', „,,(k, z), (3. 1)

which defines Z„p(z). After some rearrangement,
Z„g is seen to be

&.g (z) =r(z)f. . (2. s6)

Equation (2. 36) corresponds to the self-consistent
CPA solution for the self-energy if g(z) is deter-
mined from (2. 24). This latter equation may be
solved in principle, because substitution of (2. 30)
into it yields a form involving g(z) as the only un-

known function.
Using (2. 35) and (2. 12), one finds that for the

density of states

p(E) = p,.(E) —(») '

x —Z-„arg[1 —gE()(k, E)]l~ g(z), (2. 3V)

A(k, E) =A„(k, E) —v

where p„ is the density of states in the virtual
crystal. Equation (2. 37) exhibits a strong formal
similarity to an expression derived by Izyumov
for the density of states of an alloy in the low-con-
centration limit. But the dependence of the strength

g of the effective random potential upon energy
makes the coherent-potential expression much
more difficult to use in numerical applications.

Similarly, the spectral function [Eq. (2. 11)] is

with

P(k+K) =Nii (k+Klgg0&

(s. 4)

For the properties of physical interest, we shall
need to know only F (k, z) =F (k, z), where + and
—refer, respectively, to the basic sites +-,'b and
——,'b, because

(3 5)

with nb the number of atoms per unit cell and

F»,(k, z)=N(mlylG-„lw. fp'& (3 2)

F'..(k z)=N(~fi
I

G„-" l~fi '& (3. 3)

replacing Eqs. (2. 31) and (2. 32). For the diamond
lattice, (3. 1) is a 2x 2 matrix equation which may
easily be solved.

Since pseudopotential coefficients in OPW schemes
for pure crystals are commonly specified by the
values of their Fourier components at reciprocal-
lattice vectors K, it is convenient to specify the
random deviations U, and solutions to (3.1) simi-
larly. The matrix elements of &, that will appear
in the CPA are diagonal in Bloch index k and off-
diagonal in K. According to (2. 22) they are given
by

(k+K
I
&ilk+K'& = «k+K

l
~f& (~f lk+K'&

=N '« " ''~'P(k+K) P(k+K')

»g[1-aFo(k E)]l.=.&» ~ (2. 36) Solving (3.1), one finds that

Equations (2. 35) and (2. 36) show that the poles
of G occur when

F„(k,z) = ——in[1 -gQ~(k, z) +g Qz(k, z)]

1-g(z)EO(k, z) = 0. (2. 39)

These determine the complex E(k) spectrum for the
alloy. Alternatively, one may obtain the poles by
solving the equation

with

Qg=F'. (k z) =Fcc+Fsz
o o o o

@a=&cc&ss &cs&sc,

(s.6)
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J'c c(k, e) = Z.f f (e —E.~)

F:,(k, )=Z.f.~( -E.;)-',

&cs(k, e)=Fsc(k, e)=Z.(f&.'~)"'(e-E.~) ',
f„cf =Zgy(k+ K) a„g(k) cos-', K

f„g =Zg rf&(k+K)a„x(%) sin-, K b .

Here a„g(k) =(k+ K Ink} is a coefficient in the ex-
pansion of jnk} in plane waves.

The electronic properties discussed in the pre-
ceding section are easily generalized to an alloy
having the diamond structure. The spectral func-
tion and density of states are, respectively,

A(k, E) =A„,(k, E) —v '

after. 5 will be chosen so that the average of the

difference between the three Brust coefficients is
reproduced for all 1k+Et and 1k+K'I &k~„. 0,„
should be between 2&(11)/a and 2v/(16)/a, where
a is the fcc cube edge; we choose it arbitrarily to
be 2m+12)/a. Then 4, is given by Eq. (3.4), with

y(k+K)=y„~k+K~ & (2v/a), K&2

= 0, otherwise (4.2)

go=0. 21 .
6 is given by

4

~0 & ( 111+VMO + V311 V111 V220 V311)

(4.3)

$0 is determined by the completeness condition

(f)(k+K} =
g $0 j

d q=N
RR am

1 ql &Pier(ca~/a

where 0 is the crystal volume, and turns out to be

8
2 +x,E arg[1-gq, (k, E")+g'q, (k, Z')]

g = g(&+)
=0.023 Ry . (4.4)

(s.3)

p(Z) =&V '& „-W(k,-Z) . (s.9)

The complex eigenvalues are determined by the
condition

1-g(e) q, (k, e)+g'(e)q, (k, e) =O . (s. lo)

IV. APPLICATION TO SiGe

The band structures of pure Si and Ge are well
calculated by a local and energy-independent pseu-
dopotential approximation originally proposed by
Brust, "according to which all yseudopotential
coefficients are neglected except those correspond-
ing to the [ill], [220], and [311]components. For
the diamond structure in general, one can write

(k+K~ V$'+K') =5„"ft Va „-. Cos-,'(K —K') ~ b . (4. 1)

In the Brust scheme V»~, V~2o, and V3» are given
for Si and Ge by -0.21, +0.04, +0.08 Ry, and
—0.23, +0.0i, +0.06 Ry, respectively.

The difference between the Si and Ge form fac-
tors, thus, is evidently almost a constant for all
three sets of reciprocal-lattice vectors. If this
constancy persisted to arbitrarily large I K —K'),
the spatial difference between the Si and Ge atomic
pseudopotentials would amount to a 5 function at the
nucleus, thus trivially satisfying the separability
condition (2.22). We shall, therefore, construct
a model potential for SiGe alloys which satisfies
(2. 22) and is such that the Fourier components
P(k+ K) =(k+ Kjzeo} are constant out to some max-
imum wave number lk+KI =k „, and zero there-

We complete the specification of the model
Hamiltonian by requiring that the virtual-crystal
pseudopotential (V} = xV '+ (1 -x)V ' equal that
derived from the Brust form factors at a concen-
tration of 37 at. % Si. This concentration is chosen
because concentrations very much nearer Sio,o

Geo, o appear to be rather difficult to work with
experimentally. ' The alloy Hamiltonian is then
specified by

H=p'/2m+~, V,„V,=vg' or V(' (4. 5)

mith

v,"=v +o.63~„V", =v -0.37~, , (4. 6)

and 4,. given by Eqs. (3.4) and (4. 2)-(4. 4).
Because of the sharp cutoff in their Fourier

components defined by (4.2), it will be observed
that the kets ltd} are not really completely cell
localized but instead exhibit oscillating behavior
at large r. This lack of localization has, however,
a negligible effect on the properties of SiGe within
the CPA, because according to Eq. (3.7), in
which all the parameters characterizing the band
structure are defined, the higher components
Q(k+ K) appear in the CPA only as factors of the
corresponding coefficients a„x(k) of the pseudo-
wave-functions, and these are small in SiGe for
Ik Kl--u'.

In principle, one could now proceed to solve
the CP equations for F(e) and g(e) and then com-
pute the various properties of the alloy directly.
However, the calculation of F(e) from (3.5) and
also p(E) from (3.9) would be a formidable task
involving sums over the Brillouin zone of partial
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derivatives of the rapidly varying function

Zr(g, z) = in[1 -gQ, (k, z)+g'Q, (k, z)] . (4.7)

are the virtual-crystal density of states and the
virtual-crystal density of states in orbital l ur0),
respectively, and

We have therefore simplified the calculation of
F and p in SiGe by applying to Zg two approxima-
tions, motivated purely by calculational conve-
nience. The first is to take

Zr, (g, z) = in[i gZ -f„;,/(z —E„r)

+g' pf„,„-/[(z -E.&)(z -E~f)]]
nn'

~ In[1 gfnf(z —-E.d '] (4. 8)

where f,f=f, t-, +f t", and

f..f =f.~e:;-[f$.;-f'e;~l"',
f„g and f„„"being defined by Eq. (3.7). This ap-
proximation amounts to a neglect of all factors
involving two or more different bands in an ex-
pansion of (4. 7) in a Taylor series. It tends to
be valid when the broadening of the various bands
is much smaller than their separation at any
given k, and thus amounts to a weak-scattering
approximation, which is, however, very well sat-
isfied in SiGe for all z and k.

The second approximation consists of the as-
sumption that

f.l =f(z.~) (4.9)

i.e. , that the weights f„g of all states having the
same energy are equal. This "isotropy" approx-
imation is good for SiGe over most of the valence
band, but probably less so for much of the con-
duction band. But, since E(z) turns out to be very
close to its virtual-crystal value anyway, the cal-
culated broadening of states in the conduction band
will probably still be quite accurate.

With assumptions (4.8) and (4.9), expressions
(3.5) and (3.9) can be converted into easily eval-
uated integral representations

= E..-+f.fg(z..-) (4. 14)

Equation (4.14) is an implicit equation for z ~.
Expanding g(z„r) in a Taylor series about E„f,
we get to lowest order

f(E') = p„.(E')/p. .(z')

is given by Eq. (4.9).
To find the properties of SiGe within the CPA,

Eqs. (4. 11) and (2. 24) have been solved iteratively
for E(E) and g(E), with the starting value g(E) = 0.
This required that p„(E) be computed with some
precision. In this calculation it has been obtained
as a histogram consisting of one bar for every
0.005 Ry of energy, with eigenvalues E„k and
weights f„f obtained by accurate diagonalization
of H"' on a cubic mesh of k points of density
I/(2o/8a)o, and interpolated by means of a variant
of k p perturbation theory on a mesh 1000 times
as dense. ~ The average histogram bar should em-
body statistical fluctuations of no more than 3%.
Such fluctuations have all been smoothed by hand
in the figures presented in this paper.

The iterative solution for F and g was complicated
to a minor degree by the fact that Eq. (2.24) is
nomina1. ly a quadratic equation in g. But since
g(z), being a matrix element of the self-energy
operator Z, is analytic in both half-planes, the
correct solution for g can always be picked out as
belonging to that branch which remains finite in
the limit lF. ) -.

Once g(E) was known, the alloy density of states
was calculated from Eq. (4.9). Spectral functions
were obtained directly from Eq. (3.8).

The complex E„(k) relations were found by first-
order perturbation theory, with the complex eigen-
value ~„k given by

z„„- -E„„-+(nk~[a.«(z„„-)-a"]~nk)

p,".(E')
z -Z'-g(z) f(Z') (4. 10)

E.r +f.~g(z.~)

or to second order

(4. 15)

p(E) = —v-' Im

where

4

p„(z')
E -E' g(z')f(E')-

(4.11)

E.r +f.~g(z.r)/[I f.rdg(z. t",)/«] -(4 18)

Expression (4. 14) is expected to be a good approx-
imation in SiGe, where the "scattering strength"

f„rg(Equi) f ~
5- 54o 0.02 Ry

p„,(E) =N ~~ 5(E —E„„")
nk

and

p,.(z)=N ' Zf.f5(z-z.r)
nk

(4. 12)

(4. 13)

is much less than the typical separation between
bands. The "complex bands" to be exhibited here
are based on Eq. (4. 15), for two reasons. First,
for most values of k, this simple approximation
yields about the same degree of accuracy as the
explicit diagonalization of H,«. Second, in those
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few cases where (4. 15) is inaccurate the corre-
sponding spectral line usually proves to be so
asymmetrical that no single complex pole can
properly represent it. Note, however, that (4. 15)
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FIG. 3. (a) Density of states per spin polarization of

Sio 37 Geo 63 virtual-crystal approximation; (b) the density
of states for electrons in orbital I &el}, virtual-crystal
approximation; (c) average weight per state [the ratio
of (b) to (a) j.
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FIG. 2. Virtual-crystal band gaps for SiGe. The
straight lines represent a linear interpolation between
the results obtained by Brust (Ref. 5) and Si and Ge on
the basis of local energy-independent pseudopotential
approximation. The dots are values calculated by the
authors for Sio 37 Ge() 63 ~ The radius of the circles is
the estimated error in the eigenvalue calculation.

is not simply perturbation theory about the virtual
crystal, because g(E) is obtained from the self-
consistency condition (2.24).

We turn now to a detailed presentation of the re-
sults. The band structure of Sip 376ep 63 in the
virtual-crystal approximation is shown in Fig. 1.
The bands, not surprisingly, correspond to almost
a linear interpolation of the pure Si and Ge bands
calculated on the basis of the Brust form factors.
This is shown more explicitly in Fig. 2, where
various virtual-crystal band gaps may be seen to
be nearly on a line between the pure crystal band
gaps. The principal exception to this rule is the
gap involving F2, which also turns out to be the
state most broadened by alloy scattering.

Additional properties of the virtual crystal are
shown in Fig. 3. The density of states p„,(E)
shown in Fig. 3(a) is notable for a sharp peak at
about —0.52 Ry, which arises from states on or
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or, to lowestorder in I GFO I,

g-x(1 —x) 8 E

1 e. )

Irrg nx(1 -x)5 p„. (4. 18)

just beneath the hexagonal faces of the Brillouin
zone. The other peaks do not originate from any
localized portion of the zone. The weighted den-
sity of states

p„(E)= —v-' Im(wo
I
(E' -&")-'I w0&

[Fig. 3(b)] retains qualitatively most of the fea, —

tures of Fig. 4(a), with the striking exception of
the broad peak at the top of the valence band, which
is almost entirely absent. Its absence is reflected
in Fig. 3(a.), where the function f(E) = p„,(E)/p„, (E)
is evidently much smaller near the top of the va-
lence band than elsewhere.

The behavior in Figs. 3(b) and 3(c) may be ex-
plained as follows. Because of assumption (4. 2),
the weight f„f= l(n]tlw0) l represents the overlap
of a Bloch state with a spherically symmetrical
orbital, and will be appreciable only for virtual-
crystal states with substantial s -like character.
The function

p„(E)= Z f„,8(E E„-„)-
nk

is thus a measure of that character in states of
energy E. Electrons near the top of the valence
band, being mostly p-like, will contribute very
little to this function in contrast to states else-
where in the valence band. This is particularly
clear at the point F, where the four valence states
consist of one pure s and three degenerate p
states, lying, respectively, at the bottom and the
top of the valence bands. Similarly, the existence
of many s-like states in the conduction band, es-
pecially near F~, , is reflected in a large peak in

f(E) near 0.2 Ry. Indeed, f„p for I'2. itself is
0.41, the largest of any state in either the valence
or the conduction band. Nevertheless, the mag-
nitude of the associated peak in p,",(E) is lessened
by the fact that such strongly s-like states coexist
with many others of similar energies which have
very little s character.

Figure 4 shows the matrix element g(E) of the
self-energy operator Z in Si, »GeQ 83 Img(E) re-
sembles in shape the curve for p„, (E) [Fig. 3(b)],
which acts somewhat like an effective density of
available states for scattering. The relation
img(E) ~ p„(E) which is qualitatively exhibited in

Figs. 3 and 4 is characteristic of the virtual-crys-
tal regime, where le l «I: Expanding Eq. (2. 24)
in powers of 5F yields

g(E) -x(1 -x) 8'F, (4. IV)
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FIG. 4. Real and imaginary parts of g(E+ io),
SiP 37 Ge() 63 ~

However, in Sio.,VGeo 6„ lmg (E) deviates from
(4. 18) by as much as 20k. The deviations are
largest where g is itself largest. This discrep-
ancy indicates that effects due to alloy scattering
are not always given accurately by low-order per-
turbation theory about the virtual crystal. [It
should be noted, however, that the deviation in
Fig. 4 may not have been accurately calculated in
the conduction band because of the isotropy ap-
proximation (4.9)].

The self-energy Z„f (E) of an electron in virtual-
crystal state ink) is not given bye(E), but instead
by a more complicated k-dependent expression
which we shall not give explicitly for the diamond
lattice. For the weak-scattering alloy SiGe, where
the broadening of the bands is much smaller than
their separation, Z„f (E) is accurately given by

~ -(E)-g(E)f.& . (4.19)

Thus, in addition to the effective energy-dependent
scattering potential g(E), there is a k-dependent
matrix element f„,", which determines to what extent
an electron in state ink) "feels" the potential, and

which, thus, helps determine the broadening of the
state.

Figure 5 presents the density of states of SiQ ~ 37
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FIG. 7. Spectral density &(k, E) [Zq. (2. 11)]for
three points of high symmetry in the Brillouin zone:
(a) 1 = 271/a (0, 0, 0); (b) X= 2r/a (1,0, 0); (c) L = 2r/a
(2, 2, 2). The numbers near several of the peaks denote
the maximum heights of the adjacent peaks; the heavy
vertical lines represent energies where the spectral
function is infinite.

ponentially diminishing tail in the density of states
and spectral functions at band edges. In SiGe this
would presumably reduce (though not eliminate) the
asymmetry of such spectral lines.

The complex band structure of the alloy is pre-
sented in Fig. 8. The states most significantly
broadened lie in the s-like conduction band near
I"&.. Note that the other states at approximately
the same energy are hardly broadened at all. The
reasons for this behavior may be understood from
Fig. 9 which shows the virtual-crystal bands and
their weights f„~, and from Fig. 4(b) which exhib-
its the imaginary part of the effective potential
g(E). The alloy bands of Fig. 8, which are derived
from Eg. (4. 15), have half-width given by

The broadenings of Fig. 8, small as they are,
deviate by as much as 20@o from the values pre-
dicted by low-order perturbation theory. These
latter, to lowest order in 6E, are given by

21m@„t", =2x(1-x)5'ImE(E„f)

upon using Eqs. (4. 15) and (4. 1V). The greatest
differences between the CPA and perturbation the-
ory occur at I'~, where the broadening is itself
greatest.

We do not expect that the departure of SiGe from
virtual-crystal behavior, as shown principally in
Figs. 5, V, and 8, will have substantial effect on
the interband optical properties or the electrical
properties of the alloy. Those states most sub-
stantially broadened —the ones in the s band near
I'2. —appear in the absorption spectrum superim-
posed upon other absorption peaks arising from
states near the bottom of the conduction band, and
are greatly masked. The shifts in the band en-
ergies due to disorder scattering —i.e. , the val-
ues of Re(z„f, -E„k) —are also very small, and the
generally linear behavior of the virtual-crystal
band gaps should persist in the alloy. Clustering-
induced tailing of the conduction-band edge does
not appear in the CPA, but neither is it visible on
any of the published experimental curves s,e, ts, ia, (9

The effect of disorder scattering on the static
electrical properties of SiGe, where the scattering
is weak and isotropic, can be well accounted for
by a single-particle relaxation-time approxima-
tion. We find that for n-type Sio,7Ge, 6, the Hall
mobility at room temperature should be )L(,

„"""
10"" cm /Vsec, about 50 times greater than the

observed value, which is thus determined at that
temperature principally by phonon or ionized im-
purity scattering. pH'"" varies with temperature
like T ~~ as is characteristic of neutral impurity
scattering. p.„"""for p-type SiGe turns out to be
infinite. The reason for this behavior is that the
holes at the top of the valence band are purely p-
like and never experience the lattice disorder,
which is concentrated in the ionic cores and affects
only s states.

The insensitivity of the experimental param-
eters in SiGe to alloy disorder is hardly surprising
in an alloy in which the strong random atomic po-
tentials can be replaced by weak random pseudo-
potentials, and in which, furthermore, the differ-
ence between the potentials is concentrated in the
ionic cores from which most of the valence elec-
trons are largely excluded. However, the calcu-
lations described here provide the most detailed
theoretical evidence presented thus far for the
validity of the virtual-crystal model for SiGe al-
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loys even though its correctness has been long
recognized on the basis of experimental informa-
tion. More importantly, the present work provides
a framework which may be useful for calculations
pertaining to other alloy systems in which the vir-
tual-crystal approximation is not as appropriate.

ACKNOWLEDGMENTS

We are grateful to B. Velicky for a number of
useful discussions. Helpful comments from S.
Kirkpatrick and L. Schwartz are also appreciated.

iiote added in proof. M. Cardona has kindly
called to our attention the results of electroreflec-
tance experiments carried out on disordered SiGe

al),oys [J. 8. Kline, F. H. Pollak, and M. Cardona,
Heiv. phys. Acta 41, 968 (1968)] of which we were
not previously aware. These experiments seem
to suggest that the width of the state l 2, is sub-
stantially smaller than that obtained in the present
calculations. We wish to point out two possible
reasons for this seeming discrepancy. First, the
calculated widths are extremely sensitive to the
exact choice of the Si and Ge model potentials. A

reduction of only 0. 01 Ry in the differences between
the Si and Ge form factors, for example, would
reduce the broadenings by a factor of 4 according
to second-order perturbation theory [Eq. (4. 21)],
and probably by a similar amount in the CPA.
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Second, the present work does not take account
of effects arising from the nonlocal character of
the pseudopotential. In the (nonlocal) Heine-Aba-
renkov approximation [V. Heine and I. Abarenkov,
Phil. Mag. 9, 451 (1964)], the Si and Ge pseudo-
potentials differ principally in their scattering of
d waves [A. 0, E. Animalu and V. Heine, Phil.
Mag. 12, 1249 (1965)], not s waves as in the pres-
ent model. This presumably reflects the fact that
the Ge ion has a filled d shell, which the Si ion
lacks. However, as in the present model, the
Heine-Abarenkov pseudopotential is the same for

Si and Ge ions outside a certain core radius.
Since it is not obvious how these various effects

would modify the observed broadenings in Si„
Ge& „, our numerical results should be considered
in the spirit of a pilot calculation. It should be
emphasized, however, that the present formalism
may readily be generalized to more realistic non-
local pseudopotential models from which band
broadenings could be more accurately calculated.

We are grateful to M. Cardona, J. C. Phillips,
and B. O. Seraphin for enlightening discussions
of these questions.
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Low-field galvanomagnetic coefficients have been measured on single crystals of Bi&Te3 and
Bi&Se3 at 76'K in fields to 9 kG. Using a six-valley ellipsoid model in the isotropic relaxation-
time approximation, the mass parameters of the ellipsoids are calculated for both compounds.
The discrepancy between previously reported galvanomagnetic data and de Haas-van Alphen data
for Bi2Te& can be minimized by recalculating the mass parameters from the galvanomagnetic
data and by not assuming complete degeneracy. The experimental data on Bi2Te3 are in agree-
ment with those reported earlier. There is also very good evidence of second-band effects at
high electron concentrations (& 10'9 cm 3), as has been previously suggested. The constant-
energy surfaces undergo an apparent change in shape between low- and high-concentration sam-
ples. Data on Bi~Se3 indicate that the constant-energy surfaces are more spherical than in the
case of Bi~Te3.

I. INTRODUCTION

Because of their possible application in efficient
thermoelectric devices, the intermetallic compounds

BiaTe3 and BizSe3 and their alloys have received a
great deal of attention in the last decade. An ex-
tensive literature is available and several review


