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(1950). Apparently, it is not obvious that the simple
scalar deformation potential model of Shockley and Bar-
deen is adequate. One should, in principle, formulate
V in terms of a deformation-potential tensor. However,
the effect of anisotropy is not large: - 1.5% (see e.g. ,
Ref. 14, p. 115). In any case, the value of E~ in our
case is determined by the zero magnetic field experimen-
tal results. [See text following Eq. (4. 18)).

~6R. Kubo et al. (Ref. 6) have given atreatmentof colli-
sion broadening and have compared this with the cutoff
due to inelasticity. From these calculations, it may be
verified that inelasticity of acoustic-phonon scattering
would be present at sufficiently low temperatures (- 15'K)
while collision broadening is ineffective, except at very
high temperatures (&100 K) and very high magnetic fields
(&300 kG). In the 30- 77 K, 0—200-kGregion of interest
to us, the cutoff factor found naturally in the theory should

be adequate for strong as well as weak magnetic fields.
The present theory can be extended to inelastic phonon
scattering as well.
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The effect of orbital quantization on microwave helicon dispersion in n. -type InSb and InAs
is investigated theoretically and experimentally. In the local limit, the leading term describ-
ing helicon dispersion is, unlike helicon damping, unaffected by orbital quantization. Quantum
effects enter through the scattering-dependent terms involved in the dispersive part of the heli-
con propagation constant. The main contribution is shown to be associated with the Shubnikov-
de Haas-like oscillations of the scattering correction to the dissipationless Hall conductivity.
Experimental measurements of the transmitted helicon phase observed at quantizing magnetic
fields in highly doped n-type InSb and InAs at 35 GHz and liquid-helium temperature are com-
pared with the theory. The magnetic field dependence of the observed oscillations in helicon
phase agrees reasonably well with the theoretical analysis. While little can be said analytically
about the amplitude of these oscillations (of the order of a few percent), our data does provide
an empirical measure of the limits within which the usual classical analysis of helicon disper-
sion is valid. Finally, the effect of quantum oscillations appears to be considerably stronger
in the helicon dispersion than in the related dc problem of the Hall coefficient.

INTRODUCTION

It is well known that in the quantum limit heli-
con-wave damping in semiconductors and semi-
metals displays strong Shubnikov-de Haas-like
oscillations. ' At the same time it is usually
assumed that helicon dispersion is free of the
effects of orbital quantization. Of course, this is
an approximation, since both damping and disper-
sion originate in the same conductivity tensor.
The behavior of helicon damping and dispersion is
similar, respectively, to the behavior of trans-
verse dc magnetoresistance and Hall effect. While
in magnetoresistance the Shubnikov-de Haas oscil-
lations are overwhelming, the Hall coefficient is
relatively independent of these contributions.
Nevertheless, weak quantum oscillations in the

Hall effect in semiconductors have been known
qualitatively for some 15 years and have more
recently been a subject of quantitative experimental
as well as theoretical study. "

In this paper we investigate the oscillatory mag-
netic field dependence of the local helicon-wave
dispersion in small-gap semiconductors in the
quantum limit. In order to determine the dominant
oscillatory contributions to the helicon dispersion,
we analyze the general expression for transmitted
helicon phase in the light of existing theoretical
formulations of the appropriate quantum conduc-

tivity tensor. Specifically, it is shown that, in the
parameter range of interest, oscillatory contribu-
tions to the helicon dispersion originate primarily
in the frequency-independent elements of the loca1
conductivity tensor and are dominated by the small
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collision-dependent term in the dissipationless Hall
conductivity. The main features of the effect are
discussed, by way of illustration, for the region of
high quantum numbers, for which a rigorous theory
exists. The discussion is then extended to low quan-
tum numbers corresponding to our experimental
conditions. The extension to low quantum numbers
is accomplished in part by semiquantitative plausi-
bility arguments, because a rigorous analytic ap-
proach is impractical in this range.

We then compare our conclusions with a detailed
analysis of experimental data obtained on doped
n-type InSb and InAs, which reveal oscillations in
the transmitted helicon phase of the order of a few
percent. The magnetic field dependence of the os-
cillations agrees reasonably well with the analysis,
and their amplitude provides an empirical measure
of the extent to which the conventional classical ex-
pression can be used in describing helicon disper-
sion in quantizing fields.

We finally contrast the dependence of helicon
phase on quantum contributions with the related dc
problem of the Hall coefficient and find that, within
the framework of our model, the neglect of oscilla-
tory terms in the helicon pxoblem is generally more
serious.

THEORETICAL DETAILS

In order to estimate the oscillatory contributions
to the transmitted helicon phase, we inspect the
analytic expressions describing wave propagation
in the helicon limit, i.e. , in the parameter range
defined by the inequality m2/&u»cu, »&u ~ . Here
&u2 = (ne /m" e, ) is the plasma frequency, e, is
the static permittivity of the lattice, u~, = eB/m* is
the cyclotron frequency, 7

' the phenomenological
collision frequency, and n and m~ are the electron
concentration and effective mass, respectively.
MES units mill be used in this paper. Under these con-
ditions, waves which are eireularly polarized in the
cyclotron-resonance-active (CRA) sense(i. e. , heli-
con waves) are described by the complex propagation
vector k =- n + i P, with n»P and a. »ko, where
ko is the propagation constant in free space. We
shall further restrict ourselves to the local limit,
appropriate for semiconductor phenomena in high
magnetic fields, and given by the inequality kvz/
~,«kv&w«1, where v~ is the Fermi velocity.

For slab samples thicker than the skin depth,
which correspond to our typical experimental con-
ditions, the transmitted signal for plane waves is
of the form

e'@2 L f e'&~ (4y /~)& Bs i(ns 2ia-I-
where the explicit time dependence has been sup-
pressed. Here A„and rp„are the transmitted heli-

con amplitude and phase, z is the sample thickness,
and t, and t2 are the transmission coefficients for
the two interfaces, given by

4n, u 4L, 4a, (o-iP}
(LI,+0)' L'2 t2 + P

-$ arct, an(g / e)
( 2+p 2)1i2 Q

Dispersion and damping coefficients are given in
terms of the complex permittivity c = e' + j e"
(wlllcll 111 tile llellcoll lim1t satlsf1es tile SIllall loss
tangent condition e «e ) by

II = Is (LI,/2)Ii2 ()el+ e )Ii2=(o {LI,e'[ i+-,'(e /e )'j)'",
(3a)

p = ~ (LI2/2)"'( l & l e')'-" = '~(LI2/-e')'" e"= 2 ci e"/e',

(3b)

where the lowest-order terms in &, of direct sign-
nificance in this discussion, have been retained.

For propagation of circularly polarized waves
along an external magnetic field, the effective per-
mittivities are conveniently expressed in terms of
the components of the complex conductivity tensor

II0'g:—0' ~ +s& g as

e,' = e I + (0„„+o„,}/~,

(4b)

where z is the direction of propagation and of the
external magnetic field B, and the + and —sub-
scripts refer to the two circularly polarized normal
modes.

We now examine the effect of orbital quantization
on e and e, and thus ultimately on the transmitted
helicon phase cp„, by studying 0;&. The parameter
range of interest here is kT «kw„f~, where g~
is the Fermi energy, as well as the condition

& already implicit in the helicon limit.
The literature concerned with static magnetocon-

ductivity of semiconductors and semimetals in the
quantum regime is vast. 7 By comparison, little
attention has been given to the problem of frequency-
dependent magnetoconductivity in quantum plasmas
incfuding effects of coLLisions (which is of paramount
importance in Shubnikov —de Haas oscillations).
While the results obtained by some of the authors
are physically quite unrevealing and not readily
tractable, we find the form of o, , (&u, v) obtained by
Wolman and Ron for degenerate quantum plasmas
ideally suited for the present discussion.

We first examine the dissipative term e, which
contributes a small correction to o in Eq. (3a).
This quantity, directly related to J8, is strongly
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oscillatory in the quantum regime, as can be seen
from the behavior of helicon damping, cf. , Fig. 1.

In the helicon limit it can be readily shown that
o„(&u) = 2(&o/cg, ) cr„„(&u) and that, to first order in
(o/( „o„'„((o)= o„„(O). Thus, for (u «(u„

i.e. , the leading term in e is determined by trans-
verse dc magnetoconductivity. This is clearly born
out by previous experiments, which indicate excel-
lent correlation between helicon damping and the dc
magnetoconductivity. '

In addition, there will be quantum contributions
to the dissipationless quantity e. This quantity is,
to first order in the expansion parameter
[(~,+~)z] ~, independent of orbital quantization
effects, and higher-order terms must be examined
for the oscillatory effects. We can write

x [i+0((~,~~) '~-')],

which in the helicon limit becomes

Note that e' & 0. This corresponds to the propagat-
ing CRA or hebcon polarization. Our attention will

henceforth be restricted to this mode, and the sub-

scripts on e will be dropped.
Thus, the problem of determining the leading

osciffatory term in e [ i.e. , the second-order cor-
rection in Eq. (7)] is also reduced to the dc case,
and use can be made of existing theoretical results
for the static Hall conductivity. ' The error implicit
in Eq. (V) amounts essentially to a negligible mono

tonic shift in 8, of the order of ur/~, .
Equations (5) and (7) could have been written im-

mediately on intuitive grounds for the leading terms
of e' andof e" if theinequality f~), »(d, ~ ' is satisfied
(as was done in Ref. l). However, since in e the

quantum-dependent contributions of interest to us

appear only in the second order of the expansion
parameter, ' it was necessary to demonstrate that
the effect of o„„in Eq. (6), which contributes to e

a frequency-dependent term of the order of &u/~,

relative to the contribution of a'„„ is nonoscillatory.
Even this can be done on semi-intuitive grounds by

n-InSb

n= l, l xl0ie

T=4,2 K

f =556Hz

d=4,0mm

FIG. 1, Experimental data sho%'-

ing Hayleigh interference patterns of
transmission through doped n-type
InSb obtained at 35 6Hz m.th two phase
settings 180' out of phase. Theoreti-
cal values of B corresponding to sin-
gularities in ~, calculated via Eq.
(14), are indicated.
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N(te) =&0(r.z) [1+f...(g~) ],
where

(8a)

A'o =4'(2m' )"'/(2vh)', .

f 0.(rZ)=(@0&/gZ)"'[-,'5 '"-(a+-.')"'],
(8b}

(8c)

& =(Kz/ho&, )- (1+ —,'). (8d)

Here I is the integer associated with the Landau lev-
el just below f~, thus 0& 6 & 1. The singularity in

Eq. (8c) at f& =0 can be removed by imposing a low-

er limit on 6 through broadening effects. ' Thus
for collisional broadening 6;„=h&. '/h&u, =(0&, & ) '.
In terms of the above, AH obtain for the diagonal
conductivity

arguing that since the mechanism of the Shubnikov-
de Haas oscillations is intimately associated with the
scattering process, those elements of the conductiv-
ity tensor which in the classical form (e. g. , the
Drude-model expression for o„„)are r-independent,
will be essentially unaffected by orbital quantization.
The elegant result of Wolman and Ron essentially
substantiates this convenient rule of thumb.

The oscillatory nature of magnetoconductivity
arises primarily because the singularities in the
density of states occurring at the Landau levels
lead to oscillations in the scattering rates as the
magnetic field is varied, i. e. , as the successive
Landau levels pass the Fermi energy. Following
Adams and Holstein" (AH), we express the density
of states N(fz) in terms of oscillatory and non-
oscillatory parts:

ductivity. We thus observe that the oscillatory cor-
rection to o„, is of the order of [ o„„/o„',&

] =(&u,& 0}
relative to the leading term.

We finally express the transmitted helicon phase
in terms of the above results, retaining the lowest-

I II
order oscillatory contributions of e and c to p&.

) 2 j)2

q „=o.z- &=z(0&p, 0o„,)"2 1+—
i

a &/~
(0) 1/2

= z o0 [ 1 —
2 &„,+ —,

' &„„(1- 2/pz ) ],

where o.0=$0uo'„0 ]~' = (nep0&u/B)' is the classical
(collisionless) helicon propagation constant, &„, is
defined in Eq. (10) and &„„—= [o„„/o„,'] . All but the
leading term in Eq. (11) are directly affected by
orbital quantization.

The effect of quantum oscillations and the rela-
tive importance of the various contributions can be
clearly shown by considering the simple case of

high quantum numbers and high damping. Then f„,
«1 and pz»1. Substituting Eqs. (9}and (10) into

Eq. (11)we obtain (neglecting 2/Pz and higher pow-

ers of f„,)

1 (1+2fcc.) 1(1+!f.„)2( 2
)I~

2 (0&c& pf 8 (0&, 70) pz

1 9
+Oz 1

( & )2 8fcsc

o„„=(o„„)„+(o„„)..„
where

(o„„}„=(ne/B)( 1/0~, & 0)

(9)

(o..).„=(o..}.& [lf,.+ 2 (f...)'],
and 70 is the relaxation time defined within the Born
approximation, which also satisfies the condition

&0 &&1 in our range of interest.
Proceeding similarly, ' Guseva and Zyryanov

(GZ) have recently investigated the effect of orbital
quantization on the Hall conductivity, obtaining

o., = o",,'(1 —&.,) = o.',"[1—(&.,), - (&.,)„.], (10)

with

o„",' = ne/8, (n„,)„=((u,~0}

(&.,}...= (&.,).& [rf...+4(f-.)'+-'(f-'}']

where o„','= ne/B is the ideal (colli—sionless) Hall con-

( )1/2 O(0& 1 fccc
4 (0&, ~0)2j

(12)

where the monotonic classical scattering correction
term —, (& ~, &0) has also been omitted. Note that the
oscillatory contributions from 0'„„and 0„, enter with

opposite sign, and the resultant osc:dilatory behavior
of y„ is dominated by the oscillatory part of o„,~ The
phase of the oscillation is thus opposite to that of
o„„(j.e. , when o„„and P display maxima, o& will
display minima).

The results obtained for high quantum numbers
(small f„,), in particular the relative importance
of the contributions from e and e, are expected
to remain qualitatively true for lower quantum num-
bers, which are of direct interest in this paper. Un-
fortunately the regime of low quantum numbers does
not lend itself to similar quantitative analysis in
terms of the present model. It is immediately ev-
ident from Eqs. (9) and (10) that, as the amplitude
of the oscillations increases with increasing mag-
netic field, the higher powers of f„,must be taken
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r~ = (I+ 2 )h(u, + 2 S Igl psB.
Here p, ~ is the Bohr magneton, l gl is the magni-
tude of the g factor for conduction electrons, and S
takes the values +1 and -1 for the two spin orienta-
tions. Magnetic fields satisfying Eq. (18) are

B'- 2l 2 ~pa m*l g'j
+ k+

e vn 2mo
(14a)

2h 2 ~ -
»~ „m*lgl '" "', 14b

mn ~q ~ 2rno

where rno is the free-electron mass. It is easily
seen that scattering, which is the very mechanism

into account. The situation is further complicated
by the fact that, when scattering is considered,
these terms differ in phase by an amount which in
this range depends on the dominant scattering mech-
anism. ' Nevertheless, two useful conclusions can
immediately be drawn. As long as f„,is of the
order of unity (which appears to be typical of quan-
tum oscillations in semiconductors at low quantum
numbers, as can be readily inferred from the amp-
litude of the oscillations in experimentally observed
dc behavior of o„„ in InSb), ' then, by generalizing
Eq. (12) to include all orders of f„„it is still pos-
sible to show that the quantum oscillations in the
transmitted helicon phase arise predominantly from
the oscillatory part of v„,. "

Furthermore, by using the Poisson sum formula.
to express the oscillatory terms as a harmonic ser-
ies, ' it can be shown that the phase shift between
O„„and 0„, arising from collision broadening will
not exceed 4m. We take this to mean that (o„„)
and (o„,) „will still occur at approximately the
same fields. However, the theoretical formulation
of the general behavior of a„„and cr„, is, at low quan-
tum numbers and intermediate values of f„„par-
ticularly complicated and physically unrevealing,
even after drastic simplifying assumptions.

We can, however, substantiate and extend the
above conclusions pertinent to this range by an al-
ternate argument, as follows. As the quantum
limit is approached, the concepts of periodicity and
phase of the quantum oscillations lose their signifi-
cance, and it is more meaningful to concern oneself
with the actual magnetic field values at which mag-
netoconductivity extrema occur. These are now
affected by the electron spin and the magnetic field
dependence of the Fermi level. Ideally O,„maxima
correspond to maxima in the scattering rates, which
occur when a particular Landau level of quantum
number I passes the (magnetic field dependent)
Fermi level, i. e. , when '6

responsible for the existence of cr, impedes the
current transverse to the electric field which, in
the absence of collisions, is described by the ideal
Hall conductivity o„, = ne/B. It may be said, infer-
ring from the orbit-center migration approach of
Kubo et al. , that at high magnetic fields the con-
ductivity (dissipative) current exists at the small
expense of the Hall (dissipationless) current. We
thus expect that minima in cr„, should ideally coin-
cide with, and in practice at least lie close to, cr

maxima. In this respect the present intuitive pic-
ture agrees essentially with our conclusions dis-
cussed in preceding paragraphs. We thus expect
the quantity z'j3, where 0, is the helicon propaga-
tion constant (in which the oscillatory terms are
dominated by o„,), to display minima roughly coin-
cident with absorption maxima.

We remark parenthetically that, as shown in the
Appendix, in the related problem of the dc Hall
effect we expect the oscillatory contribution of 0„
to be overshadowed by the competing terms in cr„„,
so that ideally R~ will display minima near a„„max-
ima. On this point we differ with GZ. It should be
mentioned, however, that the competing contribu-
tions of O„„and o„, to R& are expected to be much
closer in magnitude than their respective contribu-
tions to a, and the discussion of positions of ex-
trema is in the case of the Hall effect far less
meaningful, particularly in the presence of signifi-
cant collision broadening.

EXPERIMENTAL RESULTS

Detailed helicon-phase measurements were
carried out as a function of magnetic field on sev-
eral samples of doped n-type InSb and InAs using
a 35-GHz Rayleigh interference bridge. The
experiments were carried out at 4. 2 K in the
Faraday configuration (propagation parallel to the
external magnetic field) in magnetic fields up to
60kG. The sample parameter range satisfied the
helicon limit &u~/&v» &o, » u&, r ' as well as the condi-
tion g~ (0) -., h~, » kT, where f~(0) is the value of
the Fermi energy at B=O.

The amplitude of the transmitted signal displays
the well-known oscillatory behavior associated
with quantum effects on helicon damping, ~& ~ as
shown in Fig. 1. The samples were sufficiently
thick (approximately 1—2 mm) so that complica-
tions arising from Fabry-Perot'-like multiple
reflection effects could be ignored, validating the
use of Eq. (1) and the neglect of the phase correc-
tion term P/o, [or, equivalently, the term 2/Pz
in Eq. (12)].

In these relatively thick samples a single quan-
tum oscillation spans several helicon-phase cycles,
which permits us to resolve the departure of the
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helicon phase from the ideal behavior. Here we
present two superimposed interference curves
obtained at two bridge settings 180 out of phase.
Thus, the field increment between two consecu-
tive crossover points corresponds to an advance
of l80 in the phase of the transmitted helicon
signal. A large number of reliable helicon-
phase points within a single quantum oscillation
can be obtained by recording interference patterns
at additional settings of the bridge, e.g. , 90'
apart (see, e. g. , Fig. l of Ref. 2). We remark
that the crossover points provide a more reliable
phase measure than do the interference extrema,
which are broader and are, furthermore, subject
to shift because of the varying amplitude. This
feature is particularly important in dealing with
small dispersive anomalies, as in the present
case.

Helicon dispersion data are analyzed conven-
tionally by exploiting the fact that the deviation of
n from the ideal dependence

uo = ((ozone/B) "' (l5)

is very small. In the absence of oscillatory ef-
fects, consecutive integers associated with equal
increments of advancing phase relative to some
arbitrary point, when plotted against correspond-
ing values of B ' ', form a straight line. " Assum-
ing phase changes due to interface reflections to
be small compared to nz for thick samples, the
slope of the resulting plot yields o. and n. In Fig.
2 this analysis is applied to phase data obtained
for a sample of InSb at 77 'K, where quantum

oscillatory effects are absent, yielding a concen-
trati. on of n = 1. 1x10 cm

A similar plot of phase increments for the data
observed on the same sample at 4. 2 K is shown

in Fig. 3. The points correspond to equal phase
increments of 90, while the solid line gives n
at 77 'K obtained from Fig. 2, which we take as
the "ideal" value given by Eq. (15), since the con-
centration does not change between the two tem-
peratures. We note that the variation of n with
B ' at 4. 2 'K manifests a small but quite dis-
cernible and systematic oscillation about the
simple classical behavior.

We mention as a point of interest that the above
approach to the analysis of the phase dependence
on the magnetic field, and particularly its devia-
tion from the ideal behavior, is very similar to
that used in the study of the quantum oscillations
of the Alfven wave dispersion in bismuth. ' Figure
3 is, in fact, strikingly similar to Fig. 3 of Ref.
18. It should of course be emphasized that the
mechanisms leading to the oscillatory behavior
are in the two cases entirely different. In the
present case of a highly doped semiconductor at
low temperatures, the carrier concentration is
taken as fixed, and the observed oscillations arise
entirely from the influence of the magnetic field
on scattering. The mechanism giving rise to the
quantum oscillations of the Alfven velocity in Bi
is, on the other hand, associated with the explicit
fluctuation of the carrier density which takes place
in this compensated system (n„=n, ) as a conse-
quence of the magnetic field dependence of f~. In

220
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100-

FIG. 2. An integer plot
of e versus B for helicon
transmission at 77'K ob-
served with the same sam-
ple as in Fig. 1. The data
show a purely classical be-
havior in accord with Eq.
(15) and provide a measure
of the concentration.
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FIG. 3. Helicon-phase cons-
stant versus J3 ' for helicon
transmission data on n-type
InSb. The points represent
transmission at 4. 2 K ob-
tained from the data of Fig.
j., showing phase behavior
in quantizing fields. Helicon
phase transmitted in the quan-
tum range displays unambig-
uous oscillations about the
classical behavior of 77'K,
represented by the solid line
taken from Fig. 2.
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principle, Alfvdn wave velocity would also be in-
fluenced by scattering oscillations of the type in-
vestigated in the present paper, but for very large
values of &,7' this oscillatory contribution to the
dispersion is presumably masked by the afore-
mentioned effect involving the density fluctuation.

To display the oscillatory nature of p„, we
plot in Fig. 4 the normalized quantity yQ' '/z
—nB, obta, ined from the 4. 2'K da, ta.. We
observe a clear oscillatory behavior, consider-
ably in excess of experimental error. The
liquid-nitrogen data, which did not depart from
the classical behavior within experimental error,
are shownbythe dashed line for comparison. The
experimentally observed positions of maximum
helicon damping for the same sample are indicated
for the last two singularities. The field B, is in
excellent agreement with Eq. (14), while the last
experimentally observed transmission dip marked
Bp occurs consistently at fields lower than those
predicted by Eq. (14) (see Fig. 1 and Refs. 1 and
2). It is clear that uB'" displays minima near
the absorption maxima, which seems to indicate
that oscillations in n are indeed dominated by the
oscillatory part of o„, , in accord with the preced-
ing discussion. It would be premature, however,
to draw any further conclusions of precise quanti-
tative nature regarding the relative phases of the
two oscillatory phenomena, both on account of the
size of the experimental error and of the present
state of the theory.

Similar data, obtained on doped n-type InAs and
shown in Fig. 5, display essentially the same

features. The fields B, and B2 indicate positions
of maximum absorption, which in turn agree well
with the theoretical values obtained with Eq. (14).
The normalized phase nB" shows somewhat
smaller (of the order of 1%) but quite unambiguous
oscillations. The minima again occur in the vi-
cinity of the a„„singularities.

The order of magnitude of the effect at fields
+ & ~ p in both materials is somewhat larger than
that typically seen in the quantum oscillations of
the Hall coefficient at these quantum numbers, '
probably because in RH the competing contribu-
tions associated with (b„, )08m and (o„„)„, are
closer in magnitude (see Appendix).

CONC LU DING REMARKS

We have shown that, in the local helicon limit,
the major effect of orbital quantization on helicon
dispersion enters through the dc value of the col-
lision-dependent correction 6„„-4 [o„„/o„",]' in

Eq. (11). The results of GZ' indicate that the
competing quantities &„, and (o /a+, ')', which in
the classical constant- v model are both equal to
(&u, 7) ', are also comparable in magnitude in the
degenerate quantum model. We conclude on this
basis that oscillations in the transmitted helicon
phase will be dominated by (n,„,)„„defined in

Eq. (10). It was shown that in the range of high
quantuD numbers the oscillations of cr„„and ~„,
have opposite phase, and thus P,„will coincide
with (B"a) „.

In the region of lowest quantum numbers the
concept of period and phase of the oscillations lose
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their usefulness, and it is more meaningful to
discuss the positions of extrema (e. g. the o„„
maxima) associated with individual Landau levels.
We find the approach of GZ unsuitable for locating
the extrema in this region. However, by referring
directly to the physical mechanism of the oscilla-
tions in a„„and 0.„,, i. e. to the sharp maxima in
scattering rates at the quantum resonances, we
again conclude that the absorption maxima and the
small minima in aB' should occur, at least
approximately, at the same fields.

This coincidence appears to be confirmed by
our experimental results observed in several
samples of n-type InSb and InAs. The oscillations
in nB' are of the order of 1-2% and, while small,
are quite unambiguous. At this stage, however,
in the absence of suitable theory for relative am-
plitudes of the oscillatory terms in the low quan-
tum-number region, we make no attempt at a
quantitative interpretation of the magnitude of the
effect.

It is interesting to compare the oscillatory na-
ture of helicon dispersion with that of the dc Hall
coefficient R~. The competing oscillatory terms
in the latter are closer in magnitude (see Appen-

dix), making the oscillatory character of R„
weaker and the individual contributions of o„„and
6„,harder to disentangle. In the light of the model
adopted here we note that the oscillatory character
of A~ is, unlike n, dominated by the O„„contribu-
tion. It would appear, then, that the helicon disper-
sion affords a particularly useful tool for the study
of the effects of scattering processes on the dissi-

pationless Hall conductivity cr„,.
Our discussion of the oscillatory nature of heli-

con dispersion does not include two effects which

may prove significant under certain circumstances.
First, we have neglected nonlocal effects. These
can be shown to be quite small in the parameter
range corresponding to our experimental work
characterized by the inequality kA «kl «1, where
l = vz 7 is the mean free path, v~ is the Fermi
velocity, and R = vz/~, is the cyclotron radius
Vnder these conditions and for wave propagation
alorg the magnetic field, the contribution of non-
local effects to o„„and 0„, is of the order of
(kR) . Thus, the effect of spatial dispersion on

O„„can immediately be ignored. The importance
of the nonlocal correction to 0„, is, in the context
of this paper, to be compared to the oscillatory
part 6„,. The nonlocal contribution to the Hall
conductivity for our parameter range has been
shown by Sheard ' to be 5 o„,' & R . The relative
magnitude of nonlocal effects relative to the
Shubnikov-de Haas oscillations of o„, are then
estimated by

—,'o„',"k'R'/ro"' a "=-', (kv„r/(o, r)'((u, v)'= 5kf,

which for our purposes is still a very small num-
ber. Thus, effects of spatial dispersion can be
safely neglected throughout this paper. It is ob-
vious, however, that when kl & l (which is possible
even when the high-field conductivity is essentially
"local, " i. e. , kR «1), the problem of quantum
oscillations in helicon phase must be reexamined
and should be of considerable interest.
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Second, we have assumed throughout this dis-
cussion that the quantum oscillations in transport
parameters arise primarily from the oscillatory
character of the scattering process, and we have
assumed that the electron concentration remains
constant as the magnetic field is varied. Recently,
however, the possibility of a perceptible fluctua-
tion in n itself as a function of B has been raised
in connection with anomalous deviations observed
in the Hall coefficient at fields just above the last
quantum oscillation, at least in fairly pure sam-
ples. ' The mechanism for this possible fluctua-
tion is not clearly understood at present. We sug-
gest that simultaneous study of the oscillatory be-
havior of AI, and a, which depend identically on g
but differently on O„„and 6„,, may serve in re-
solving this intriguing and rather fundamental
question.

We remark finally that the relationship between
the quantum oscillations in helicon dispersion and

damping should, in principle, be contained in the
Kramers-Kronig relations connecting e' and c".
Unfortunately, in order to exploit this otherwise
powerful technique to obtain, e. g„, the complete
form of z' at a particular value of v, presupposes
the explicit knowledge of e" at al/ values of w.

This, in the absence of a convenient analytic formu-
lation for the frequency-dependent conductivity of
a quantum degenerate plasma and in the absence of
measurements over a wide frequency spectrum,
does not appear practical at present. It is never-
theless a problem of considerable interest and

hopefully its theoretical as well as experimental

aspects will eventually be resolved. At the mo-
ment we must emphasize that the approximate
helicon-limit expressions for s' and e", Eqs. (5)
and (7), will not as they stand satisfy the Kramers-
Kronig relations, since both are obtained for a re-
stricted frequency range.
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APPENDIX

It is instructive to discuss in this context the os-
cillatory behavior of the dc Hall coefficient A~
which, in zeroth order, constitutes a direct analog
to the helicon propagation constant n. The rela-
tionship between the two quantities is borne out
clearly by examining R~ under conditions corres-
ponding to Eq. (12), which gives n for large quan-
tum numbers:

1++ 3
o&o) y

+ 2fo~c i (i + a fosc)
'(~,r,)' (~,r,)'

$0) i fosn )
2 ((u, v', )'

Thus, in the high quantum-number region the
oscillations of the Hall coefficient are dominated
by the term o„„, which opposes the oscillatory part
of o„, and determines the phase of the oscillation.
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We remark in passing that our conclusion regard-
ing the phase of the Hall coefficient is then oppo-
site to that reached by GZ, who appear to neglect
the term 4,„ in their development. It is interest-
ing to note that the classical collision term
(&u, v'o) cancels identically in the case of 8„, a re-
sult which remains true even for low quantum

numbers within the framework of the GZ model.
Since, except for the leading collisionless terms,
helicon dispersion and the Hall effect are different
functions of the conductivity, simultaneous mea-
surement of both may serve in clarifying the role
of scattering on the quantity o„, and the entire
matter of relative phases of oscillatory phenomena.
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