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exact numerical evaluation of all the microscopic
contributions to I'„—I'2,. splitting (except 2s-3d
covalency). Because of spatial symmetry, the
3d-2P transfer plays no role. The resulting calcu-
lated value of the I'»-I ». splitting is negative
(e lower) and the crystal field contribution is rather
insensitive to the wave functions.

It is interesting to compare our results with the re-
cent augmented plane-wave (APW) calculation of the
band structure of Re03 by Mattheiss. ' The crys-
tallographic and electronic structures of Re03 are
very similar to that of SrTi03 and KTa03, and con-
sequently, the basic qualitative results of band cal-
culation are expected to be the same for all three
materials. Mattheiss calculates a value' of the
r» —r», splitting in Re03 which is positive and
equal to 3. 9 eV, 2. 6 eV being due to the 5d-2s co-
valency and 1.3 eV due to crystal potential. The
latter contribution, which was calculated using the
corrections to the "muffin-tin" potential is equi-
valent to the diagonal term discussed in this paper
and which for SrTiO~ turns out to be negative. The
discrepancy is certainly due to the use of different

potentials. Because the corrections to the muffin-
tin potential (atomic Coulomb interaction and Slater
average exchange potential) do not mirror sufficient-
ly accurately the microscopic character of the crys-
tal field potential, the APW calculation of this par-
ticular problem of crystal field contribution to the
I'» —I"». splitting should be compared with the
quantitiative theory outlined above. The same is
true for the APW calculation of I"»-I"». splitting
in SrTi03 mentioned briefly in Ref. 12. The re-
sults of such an analysis may be even more impor-
tant in transition-metal oxide with rocksalt struc-
ture (TiO and VO), because in these materials, the
d functions at k =0 are orthogonal to both 2p and
2s oxygen wave functions and the positive contribu-
tion of 2s-3d covalency is missing.
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A quantum-mechanical calculation of transverse magnetoresistance is made for an electron
gas with anisotropic effective mass. For acoustic-phonon scattering, numerical calculations
are made with parameters appropriate to the conduction band of n-Ge in the temperature range
30—77'K with magnetic fields up to 200 kG. For high magnetic fields there is a quantitative
disagreement between theory and experiment which is not understood at present.

I. INTRODUCTION

There has been a relatively small amount of
experimental work on high magnetic field trans-
verse magnetoresistance in semiconductors. This

is largely due to the belief of many investigators
that effects of inhomogeneities are greater than
those of fundamental scattering mechanisms.
However, the experiments of Gallagher and Love'
suggested that inhomogeneity effects might not be
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so important. More recently, Baranskii and Ba-
bich have made a detailed investigation of the in-
fluence of various inhomogeneities in high-field
transverse magnetoresistance. They conclude
that there is little correlation between inhomo-
geneities and the magnetoresistance. It is, there-
fore, of interest to see if calculated transverse
magnetoresistance agrees with experiment. In this
paper such a calculation is made for n-germanium
assuming acoustic-phonon scattering of the elec-
trons.

Electrical transport in the presence of magnetic
fields where the Landau quantization is important
has been studied by a number of authors. ' Most
of these investigations are limited to the extreme
quantum limit (strong magnetic fields) where the
electron cyclotron angular frequency f~, is large
enough so that ku, /kT»1; also, in this limit v,
is greater than 1/7 the reciprocal of the relaxation
time. The general form of the expression for
current derived in most published works presents
divergence difficulties in summing over energy
states. Various authors have used special cutoff
mechanisms to offset this difficulty. In any case,
regardless of the formalism few detailed calcula-
tions have been made using the properties of real
semiconductors.

A formalism in which 1/7 is not assumed negli-
gible compared to (d, was suggested by Argyres. '
This not only makes the theory applicable to low
as well as high magnetic fields, but also eliminates
the divergence difficulties. In this paper we ex-
tend the approach of Argyres and of Adams and
Holstein' (AH) to include the case of anisotropic
energy surfaces. Numerical calculations are made
for n-Ge as a practical application of the theory.

In Sec. II, the general formalism is developed.
Sections III and IV deal with the application of the
theory to n-type germanium. Numerical results
on n-Ge are displayed graphically and discussed
in Sec. V.

II. GENERAL FORMALISM

The quantity of physical interest is the electric
current. The equation that will be used in obtain-
ing the statistical average of the current density is

(I) =»(PI) . (2. 1)

Here j is the current operator and p is the density-
matrix operator that depends on the total Hamilton-
ian of the system. The trace is taken over a com-
plete set of states of the system considered. In
this work, we will treat electron-phonon scattering
in the presence of crossed electric and magnetic
fields. Our first task, therefore, is to find the
density matrix p, assuming that the scattering
interaction U is small compared with the rest of

the single-particle Hamiltonian.
The density matrix p will evolve according to

the Liouville equation

iA—= [H+ V, p]
dp

(2. 2)

We will assume that at /= 0, the interaction po-
tential U is switched on, and that prior to this
time the system is in thermal equilibrium. We
express this by saying

= p(0) =f, (2. 2)

where f(e) = [e' ~'~' + 1] ' is the Fermi distribution
function with p, as the Fermi energy. If P(s) is s
times the Laplace transform of p(t), Eq. (2. 2) is
equivalent to

i KsP(s) = [H+ V, P(s)]+ihsp(0) . (2. 4)

As t- ~, we expect p to approach a steady state.
For such a function, s times its Laplace trans-
form approaches the function as t- ~ if the limit
s-0 is taken. Following AH, we assume

p„„.=f„5„„+G„„.+J„„.. (2. 5)

—iks(G„„, + J„,.) = [G, H]„„+[J, V]„„+[G, V]„„.

+ [J,H]„„.+[f, V],„, . (2. 6)

From Eq. (2. 6), we find

—its J„= -e„„.J„„,+f„~ V„~y[G, V]„„+[J, V]„„,
(2 . 7)

In this equation, e,„. stands for the energy dif-
ference e„—e„, and f„„.will mean f„f„.. We-
look for a solution of J to lowest order in V. To

Here, the subscripts stand for the matrix elements
between the states v and v . The eigenfunctions
and eigenvalues will be discussed in Sec. III. For
the general discussion of this section, it is suf-
ficient to point out that a state such as v is char-
acterized by a set of quantum numbers (n, k„k,),
typical of the eigenvalue problem. The quantity
f„5„„.is the initial value of the density matrix and

G„„.+J„„.is s times the Laplace transform of the
correction to the density matrix due to scattering.
G„„.is defined to be that part of p(s) for which the
states v and v are characterized by the same wave
number (k, =k,', k, = k,'). The elements J„„,are de-
fined to be equal to zero in this case. The trans-
form P is broken up in this form because the ma-
trix elements of the current operators that deter-
mine the conductivity are found to be diagonal in
the k's with n'=n+1 (see Sec. III). We will effect
an expansion in powers of the interaction potential
V. Combination of Eqs. (2. 4) and (2. 5) gives
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f.~ f"i
&„)„—28s E„i),+ gSs

E„)„—LES &)t„i —ZAS

(2. 10)

Here, the nonquadratic terms in U and quadratic
terms in U other than those which will lead to the
form

~ V„„~ are dropped, because in an ensemble
average, the random phonon phases make these
terms go to zero. " Finding the limit of p as t- ~
by setting s -0 on the left-hand side of Eq. (2. 10),
we obtain after a rearrangement

Q V V fnx fn%
Gag —sks &„i)t+ z~

x e —P IV„~I
'

I V„,, I'
(2 11)

E ~)t
—2 ' E„i)t + 1ks

this order Eq. (2. 7) gives us

j„„,=(f„„,V„„,+[G, V]„„.j/(e„„.-iks) . (2 8)

on the other hand, terms diagonal in k, and k, in
Eq. (2. 6) give

—iks G„„,= -e„„,G„„,+ [Z, V]„„.

= —&„„.G„„,+ P (Z„V „,—V„J „,). (2. 9)

The summation index A stands for a set of quan-
tum numbers (n, k, , k, $. Substituting for J from
Eq. (2. 8), we can rewrite Eq. (2. 9) as

—ihs G„„.= —e„„,G„„,+P V„, V,„.

discussed by AH, upon changing t -—t the con-
tributions from the principal parts do not change
sign, whereas the direction of current flow is re-
versed. Since s changes sign with time, only
terms that change sign with s can describe currents.
Equation (2. 11) then becomes

Gnn' ——ivy), V„&VS„.[f„z5(e„~)+f„,~8(&„.~)]/

x &e- —ivL[l V..I'&(e")+
I V.'I'~(e.')]). (2. »)

Equation (2. 12) represents the general perturba, -
tion approximation for the density-matrix elements
and will be used to calculate the electric current
in Sec. IV.

III. WAVE FUNCTIONS AND CURRENT-DENSITY-
MATRIX ELEMENTS IN n-Ge.

We now specialize to the case of germanium.
In germanium, the conduction-band minima are
at the first Brillouin-zone boundary along the four
principal dia.gonals [111], [111], [ill], and [111]of
the reciprocal lattice. ' The eight half-ellipsoids
terminated by the plane surfaces of the Brillouin
zone are equivalent to four complete ellipsoids.
The transport properties which we calculate are
the sum of contributions from each ellipsoid.

The effective-mass Hamiltonian for an electron
in an anisotropic crystal like n-Ge in the presence
of uniform electric [E] and magnetic [B] fields is

1
lim . =P —+ ivy(x),
S„PX —SS

with

P(1/x)=1/x for x~o

=O for x=0. t2. 12)

The principal part of P(1/x) will not be used. As

The second term in the denominator has been miss-
ing in most discussions of electrical transport
by other investigators, leading to divergence dif-
ficulties. To simplify further, we will use the
result where A is the vector potential describing the mag-

netic field B and e and m are the electronic charge
and mass, respectively. The quantity n, '/m is
the reciprocal mass tensor whose components de-
pend on the orientation of the 0th energy ellipsoid
with respect to a, chosen coordinate system (x, v, z).
In the principal axis system (x, V, z ) of each el-
lipsoid, a is a diagonal tensor; however, for the
general case of an ellipsoid of revolution about the
z "' axis we find"

a11 cos Q + col

~

~

n!)'-— (a„—n, ) sing, cosy,

a» cosP,

(a„—n, ) sing, cos y,
a„sin'P, + o., eos (t),

a13 singg

a13 cos Q

a]3 sin P

&33

(2. 2)

with

a„=n, cos 8,+ ns sin28„n33= n, sin~8, + n~ cos 8„aq„=(n, —n3) sin8, cos8„o1™/mt n3- m/~i ~
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x y„[P(x x2)],- (3.3)

where in terms of the Hermite polynomials H„,

y„[ii(x-x,)]= [P/(""2"n')]'"

x exp[- -', P'(x x,)']H„[P—(x —x2)]

(3.4)

The masses m, and rn, are the transverse and
longitudinal effective masses, respectively. Here
8, is the angle between the chosen z axis (B) and
the longitudinal principal axis (z"")of the oth el-
lipsoid; P, is the angle between the x""z""plane
and the zz "' plane. In all intermediate calcula-
tions, we will be dealing with only one ellipsoid.
We first determine all our results for this ellipsoid
and then obtain the corresponding quantities for
the whole conduction band by summing over all the
ellipsoids. The ellipsoid index 0 will be suppressed
in the following for convenience.

For the z axis along B and the x axis along E,
the gauge may be chosen such that A= (-Bxo.,z/o1»,
Bx, 0). Then, the eigenfunctions of the Hamiltonian
(3. 1) may be verified to be

+„„,= exp[i(kp+ k,z) —i(y„k,+ y„k,)x]

With the wave functions (3.3), the matrix elements
of the current operators of Eq. (3. 10) are diagonal
in k, and k, . The dependence on n is

(j„)„,„(-i=kep~„/m)(( 'n)2'"-6„. „,
- [-,'(n+ I)]'"&„,„.1)

(3. 11)

(i,);.=(eklm)( 22 11)'"&1[2( + )1'" . ...1

center of the cyclotron orbit. In Eq. (3.6), the
term eExo can be regarded as the average poten-
tial energy of the electron in the electric field
and 2'm(c—E/8I the additional translational kinetic
energy due to the (cE/B) drift velocity.

The electric current density is given by j,= e&, ,
where the velocity-operator components v; are
given by(i/k)[H, r]. The transverse current com-
ponents are then found to be

Aj„=(e/m)(n„p„+ n, ~ p 12,y )
(3. 10)

e t eBx n» eB
jy = +pa p3)

- + — —x+ &yap'+ &aspz
11

with

( +22/+11)

m

y12 12/ 11 and 1222 1222 &12/&\1 ~
2 /

The corresponding eigenvalues are given by

z„,„,, =z„,, + ,'m(cE/B)'+-eEx, .
Here,

(3. 6)

(3. 6)

(j„)=
~2

1211pg [(n+1)'"p .1 „-n'"p„,„],
n20

&j,) =
~2
—(~22&»)'" PZ [n'"P„1,„

n20

+(n+1)'"p., ]pe —Q p„„.
n2k

(3. 12)

Recalling Eq. (2. 1), we find the transverse com-
ponents of current density to be

z„,„=(n+ -', ) k&u* + k'kz/2m* (n = 0, 1, 2, . . .), (3~ 7)

with

where

+c(+11&22)

Also,

(u, = (eB/mc) .

(3. 6)

m (E'
Xo- -A.~ 0 +

Q22 n~~cE 8
(3. 9)

Tl.e quantity X = (ch/eB)" is a length comparable
to the orbit radius for the ground state n= 0. The
distance xo corresponds to the x coordinate of the

We are now in a. position to use Eq. (2. 13) to
find the electric current density. This will be
done in Sec. IV for the case of acoustic-phonon
scattering.

IV. ACOUSTIC SCATTERING CONDUCTIVITY

In the 30-77 'K temperature region of interest
to us in this work, acoustic-phonon scattering ap-
pears to dominate in relatively pure germanium
samples. ' '3 Thus, we will calculate the trans-
verse-current components for electrons which
interact with acoustic phonons in uniform crossed
electric and magnetic fields. It will be assumed
in the calculations that the change in the phonon
distribution function from its equilibrium value
is small and that the electron-electron collisions
can be neglected. Also, the change in electron
energy due to scattering will be taken to be much
less than kT, i. e. , the scattering is essentially
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elastic. For T& 20'K, this assumption is justi-
fied in Ge. '

Only intravalley scattering will be
treated since for the temperatures and magnetic
fields considered here (30 ( T ( 77 'K, 0 (B ( 200
kG) we can neglect intervalley scattering.

For the perturbation due to lattice vibrations,
we use

i (n' ke k'
I

e" "
ln~ k» ke)

I

ke k'e+ e I~»»' (4. 2)

Here C = E& kT/(2p, v, ), p, is the density of the
crystal, and v, is the speed of sound in the crystal.
For the phonon mode q

V= E,Q, Q, q exp(iq r) (4. 1) lz„„,
'=

I

1'.dxye [p(x-x,]

where Q, is an acoustic-phonon creation or an-
nihilation operator and E& is the coupling constant
between the electrons and the dilational waves for
the phonon mode q in the Shockley-Bardeen
theory. " The transition from an electronic state
4„, ~, to a state 4„,~. „.via this interaction in-
volves the matrix element squared,

«xp[i(q„+rikq, +r,kq, )x] p„[p(x —x2)]
I
.

(4. 3)
A useful summation formula' for t J~. I is

f dq, dq, lz„„,
I

=2v/2'„. (4. 4)

The current components can now be obtained from
Eqs. (2. 13) and (3. 12) as

(j„)= V 2V 0—&&K( + ) Z k k, n+i[fnk 2 2)+fn+&, &5(~ne»)]~» n+i/
m

(~'„,„,, + 2'I 2 [I v„,
I
'5(~„,)+

I
v„...I'5(~...,)]j'), (4 5)

(. )
ek

(~ ~ )&/2pp eE 6 n+ f» n+i +(22 ) Z Vnk Vk, n, g[f»25(&nk)+fn+1, 25(&»ei, k)1
m „,g - &ff,fi+t

x [I V„,I'5(e„„)+
I v„.. .I'5(~„.&,,)]/&~„' „.i+ v' 2 [I v.kl'«'k)+

I v"i.kl'5(" i,k)]'j (4. 6)

Let us look at the arguments of the energy 5 func-
tions in expressions (4. 5) and (4. 6) for the current

k k e k, k e X eE(xO x0) ' (4'

In Eq. (4. 7) we have made use of Eq. (3.6). We
have also used the notation e„),= e„~ —E„.@. Upon
substituting for x, a.nd xk from Eq. W3. 9), we find

&n~=&~-«~m@y ~

where

kinetic energy of the electron. By making the
lowest-order expansion, our intent here is to re-
formulate the results for numerical application.

Upon using (4. 8) in Eq. (4. 5) together with the
identities,

Q q, V„„V,„„=(K2 p~') ' (n+1)'

(4 9)

~q. V.kvk, "i= (&2P~') '(n+I)'"Z
I
V„, l

with

Q, =q, +Dq, , (4. 8) we find to first order in E

(j„)= (I+D)o!uE Q (n+1) f'(e„)-eh e k
m n, If

"7n
(+$1+22 +12+12)/(+ll 22 12 )

2

The momentum transfer k —k,' in the y direction
has been set equal to the phonon momentum q„
because of the Kronecker 5's in Eq. (4. 2).
Similarly, k, k,'= q, . Using Eq.-(4. 8), we can
interconnect 5(k„k) and 5(k~) by expanding with
eEX Q, as the expansion parameter. The "small-
ness" of the parameter implies physically that the
work done by the electric field over the magnetic
length X is small compared with the translational

f'Ie„,|)@

7'(n+1) k „„„+k/7' »,g

(4. 10)

where D is given by (4. 8) and

1 1 1
v(n)+v(n+1)

=-'Q[l v„,
l

5(2'„,)
I
v„„,

l
5(&„'„,)] .

(4. 11)
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Here, the relaxation time r(n) is defined by

1/~(n)=(v/h)P„~ V„„~ 6(~„',) (4. 12)

In like manner, we obtain

(j ) = (uzao)() (1+D)EQ (n+ 1)
n, k

straightforward algebra required to reduce the
sums defined above to a convenient form for com-
putation. After this reduction, it is found that
aside from some constant factor the expressions
for current depend only on h(d*~/A ():B/T and
L)~/k T~ B/T.

In the case of acoustic-mode scattering, the
zero magnetic field mobility is given by'

)(( = —',)/2v' h p v, e/[E m* (kT) ], (4. 18)

X
fthm f1+1 2 ~ ~

7 n+1 ~n+1
(4. 18)

in terms of which h(d* /4 = (9&m k(u*T/4e @)0 0

For our numerical calculations on n-Ge, we used

Q = Q'[e„—(n'+ —,') h(u*] '",
n'

P =g'[e„„—(n'+-.') h(u*]-'/2 .
2 n'

(4. 16)

The electron distribution function f(e„) to be used
in Eq. (4. 10) will be taken to be the nondegenerate
limit of the Fermi distribution,

The results obtained here should be good for low

magnetic fields (&uv'«1) a,s well as high ((d1» 1).
This is made possible by the presence of the cutoff
factor 1/(e„„„+h /1'„„). With e„„„=h(d*, the
cutoff fa, ctor'6 is obtained in the form 1/(w*
+ 1/1 „„,).

The relaxation time defined by Eq. (4. 12) is ob-
tained using Eqs. (4. 2)-(4.4) as

=a~~'[e„—(n'+-,'h~*] '" . (4. 14)
v (n)

Here,

2vE)kT(2)/A ) (2m*/h )
hp, v,

characterizes the electron-phonon coupling in
terms of the previously defined symbols. The
prime on the summation is to remind us of the
restriction e„~ (n'+ 2)he*for values of n' included
in the sum. For compactness, we define

(h(u*'//1') (266)'
(h(d*/k T) T('K)

to agree with zero magnetic field experimental
results. '" The n-tensor components of Sec. III
w ere found using'

&) = m/m, = 1/0. 082 a,nd ()(3 = m/m, = 1/1. 58.

The expression (4. 17) for the current involves
the Fermi energy p, . In finding p. in high mag-
netic fields, the interaction energy between the
electron's magnetic moment and the magnetic
field may be important. ' This involves the ef-
fective g factor of electrons in the conduction
band which is anisotropic in germanium. The
spin-magnetic field interaction where the g factor
is anisotropic and is therefore a tensor is given
by ' o t/', = ~p, ~o

+
g 9 where g stands for the

Pauli-spin matrices. The g -tensor components
are calculated along the same lines as the n-ten-
sor components using g1

—-1.92 and g33 g3 0. 87.
The total number of electrons N(B) in the conduc-
tion band is then found to be

N(B) =Z N, (B)=Q 2(2)/A. ) 'exp —"
CF=1 0=1 A' T

x cosh (g ~) + g(~) + +(s) ))/2
2 2 2

13 23 33

f(e„)=- exp[p, —e„)/kT], (4. 16) cosech ' 4 19

where p. is the Fermi energy in the presence of
the magnetic field. The x component of the current
then reads

(
~

)
e @+))E(1+B)p ( 1) (v. -eg)/aT/ @(L)

(4. 17)

Equation (4. 6) can be similarly rewritten in terms
of L and g,. We omit most of the tedious but

The ellipsoid index 0 has been restored here for
clarity. In this expression the hyperbolic cosine
term arises from the Boltzmann factor for the two
spin orientations. The remaining factors in Eq.
(4. 19) are obtained from the rest of the Boltzmann
factor by summing over the energy eigenstates.
The current components were then calculated for
each ellipsoid and summed over the four ellipsoids.
The conductivity components o;,. were then obtained
using j;=cr;,E;.

In the presence of a magnetic field in the z
direction and a current in the x direction with the
electric field in the xy plane, what is frequently
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measured experimentally is the magnetoresistance
ratio p„„(B)/p(0) and the Hall voltage (p„,). The
p, &'s stand for the resistivity-tensor components
in the laboratory frame and p(0) is the resisti'vity
in zero magnetic field. The resistivity-tensor
components are found by inverting the conductivity
tensor. This yields

B [llpj .8oK

if the current and the magnetic field are in sym-
metry directions. In our calculations we used the
Ts" law for acoustic scattering to calculate p(0)
at various temperatures, starting with the ex-
perimentally measured value' of p(0) at 7= VV K,

p (0) = (40 —cm) (T/77)'" .
The following geometries were investigated: 8
in the (1, 0, 0) direction with Z in the (0, 0, 1)
direction; B in the (1, 1, 0) direction with Z in the
(1, —1, 0) direction; and B in the (1, 1, 1) direction

I'xx(B&
s(0)

heory

xpt.

63.6oK

----- Expt

B [lllj
J [1103

40 80 120 160 2pp

28-

&xx~B~

p(0)

oK

FIG. 2. Transverse magnetoresistance of n-Ge for
various temperatures and symmetry directions. The
solid curves are the theoretical ones and the dashed
curves are from the experiments of Gallagher and Love,
Ref 1

with J in the (1, —1, 0) direction. The calculations
were made for an electron concentration of
10' cm . All data were processed using the
University of Colorado CDC 6400 computer.

V. RESULTS AND DISCUSSION
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FIG. 1. Transverse magnetoresistance of n-Ge for
various temperatures and symmetry directions. The
solid curves are the theoretical ones and the dashed
curves are from the experiments of Gallagher and Love,
ref, 1

Numerical results for several temperatures
in the range T= 30-VV 'K are depicted graphically
(Figs. 1-3) in the plots of p„„(B)/p(0) versus B
for magnetic fields up to 200 kG. In all these
figures the solid lines are the theoretical curves,
while the dashed lines refer to the experimental
data of Gallagher and Love. The theoretical
curves for higher T continue to rise in the 20-100-
kG region and do not exhibit a true saturation
region as predicted by theories based on the con-
cept of a fixed relaxation time. Thus the varia-
tion of relaxation time with magnetic fieM tends
to wipe out the saturation region. The curves
have steeper slopes at higher fields and lower
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temperatures. The inflection is pronounced at
the lower temperatures. It is clear from the fig-
ures that there is not quantitative agreement with

FIG. 3. Transverse magnetoresistance of n-Ge for
various temperatures and symmetry directions. The
solid curves are the theoretical ones and the dashed
curves are from the experiments of Gallagher and Love,
Ref. 1.

experiment at higher magnetic fields. This is
surprising in view of the Miller and Omar'3 calcu-
lations on longitudinal magnetoresistance using
acoustic-phonon scattering. Their results indi-
cate agreement with experiment ' to better than
10/p, showing that for T parallel to B this scat-
tering mechanism is dominant.

The experimental data show a near linear varia-
tion with magnetic field at low temperatures.
Many investigators have attributed this lack of
saturation of magnetoresistance to inhomogeneities
or surface effects. One is also tempted to blame
such effects for the lack of quantitative agreement
between theory and experiment. However, Puri
points out that while surface effects change the
magnitude of p„(B) a little, the field dependence
is nearly the same for a sand blasted or etched
sample. Gallagher and Love' questioned the pos-
sibility of detecting randomly distributed inhomo-
geneities by measuring p„„(B)/p(0) as a function of
B. Also, as pointed out previously, the extensive
investigations of Baranskii and Babich showed

very little correlation between inhomogeneities
and the magnitude of the near linear rise of mag-
netoresistance with B. They conclude very firmly
that the linear behavior is entirely due to quan-
tization effects. In addition, the most recent re-
sults of Orazgulyev on the transverse magneto-
resistance in n-Si show that approach to saturation
is not observed for T & 150'K. He remarks that
quantum effects mask the magnetoresistance
saturation. The disagreement between theory and

experiment in the transverse magnetoresistance
suggests that the crossed E and B fields introduce
a new relaxation process in addition to the mag-
netic-field-dependent acoustic phonon v we have
considered here. It is planned to investigate this
possibility in future studies.
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The effect of orbital quantization on microwave helicon dispersion in n. -type InSb and InAs
is investigated theoretically and experimentally. In the local limit, the leading term describ-
ing helicon dispersion is, unlike helicon damping, unaffected by orbital quantization. Quantum
effects enter through the scattering-dependent terms involved in the dispersive part of the heli-
con propagation constant. The main contribution is shown to be associated with the Shubnikov-
de Haas-like oscillations of the scattering correction to the dissipationless Hall conductivity.
Experimental measurements of the transmitted helicon phase observed at quantizing magnetic
fields in highly doped n-type InSb and InAs at 35 GHz and liquid-helium temperature are com-
pared with the theory. The magnetic field dependence of the observed oscillations in helicon
phase agrees reasonably well with the theoretical analysis. While little can be said analytically
about the amplitude of these oscillations (of the order of a few percent), our data does provide
an empirical measure of the limits within which the usual classical analysis of helicon disper-
sion is valid. Finally, the effect of quantum oscillations appears to be considerably stronger
in the helicon dispersion than in the related dc problem of the Hall coefficient.

INTRODUCTION

It is well known that in the quantum limit heli-
con-wave damping in semiconductors and semi-
metals displays strong Shubnikov-de Haas-like
oscillations. ' At the same time it is usually
assumed that helicon dispersion is free of the
effects of orbital quantization. Of course, this is
an approximation, since both damping and disper-
sion originate in the same conductivity tensor.
The behavior of helicon damping and dispersion is
similar, respectively, to the behavior of trans-
verse dc magnetoresistance and Hall effect. While
in magnetoresistance the Shubnikov-de Haas oscil-
lations are overwhelming, the Hall coefficient is
relatively independent of these contributions.
Nevertheless, weak quantum oscillations in the

Hall effect in semiconductors have been known
qualitatively for some 15 years and have more
recently been a subject of quantitative experimental
as well as theoretical study. "

In this paper we investigate the oscillatory mag-
netic field dependence of the local helicon-wave
dispersion in small-gap semiconductors in the
quantum limit. In order to determine the dominant
oscillatory contributions to the helicon dispersion,
we analyze the general expression for transmitted
helicon phase in the light of existing theoretical
formulations of the appropriate quantum conduc-

tivity tensor. Specifically, it is shown that, in the
parameter range of interest, oscillatory contribu-
tions to the helicon dispersion originate primarily
in the frequency-independent elements of the loca1
conductivity tensor and are dominated by the small


