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The second-order term of a series expansion for the exact Feynman path-integral expression
for the polaron self-energy is calculated. For all values of the polaron coupling constant, the
result yields a correction of less than 2% to Feynman's variational approximation of the polaron
self -energy.

In a description of the motion of a single conduc-
tion electron in an ionic semiconductive crystal,
Frohlich' has developed a Hamiltonian for the sys-
tem consisting of the electron interacting with the
macroscopic polarization field resulting from the
long- wavelength longitudinal-optical modes of the
crystal. Frohlich's Hamiltonian is given by

H(n)= ——,+ Q b „'b-„+i-

The integral in Eq. (3) is a Feynman path integral
over paths x(t) satisfying the boundary conditions
x(0) = x(T) = 5.

Feynman has employed a variational principle
for obtaining an overestimate to the self-energy.
Feynman's result E~ can be expressed as the sum
of the zeroth- and first-order terms of the series
expansion of Eq. (3) in powers of

AS =S —S'
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where x is the electron coordinate, b and b; are
bosonic creation and destruction operators of a
polarization field quantum of wave vector v, n is a
dimensionless coupling constant characteristic of
the crystal, and S is the normalization volume. The
limit S-~ is to be taken with

lim P;= S(2v) '
1 d'v as S- ~ (2)

where
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+0 ~0

A natural unit system is employed in which 5= v
=m=1, where (~ is the frequency of the long-wave-
length longitudinal-optical modes and m is the Bloch
mass of the electron.

The name "polaron" has been given to the entity
consisting of the Bloch conduction electron together
with its accompanying nonradiative polarization
field. Accordingly, Frohlich defines the polaron
self-energy Eo(o.) a,s the least eigenvalue of H(n)
Feynman has obtained an exact expression for the
self-energy in terms of a Feynman path integral,
namely,

E,(n) = —lim[T 'ln(J e-'Dx(f))], (3)

where S purports to approximate S and is given by
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+ —C e- '-' [x(r) —x(o)]'dr do, (8)
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wherein C and m are variational parameters chosen
to minimize E~. The superiority of Feynman's
variational result to other approximations for the
polaron self-energy as well as for the self-energy
of an exactly solvable one-dimensional analog of
the polaron problem suggests that the series ex-
pansion of Eq. (3) may be rapidly convergent. Ac-
cordingly, it is the purpose of this paper to evaluate
the second-order term in the expansion. Since the
series carried to second order is not variational,
the values of the parameters C and zv which mini-
mize Feynman's variational result E„are still to
be employed.

The expansion of Eq. (3) as a. power series in &S
can be written as

Eo(o) = Ez+ EE2i 0((as )'),
where E„ is Feynman's variational answer given by

Ez —lim(T ' in[/- ——' e Dx(t)] —T '(&S)] (8)

and where &E~ is the second-order term given by

~E, = -lim[(2T) '((~S- (~S))')] .
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The angular brackets in Eqs. (8) and (9) denote a
path average defined by

&f[x(t)]) = J. ' f [x(t)]e 'Dx(t)/ J
' e 'Dx(t)

where

f-„(t)= ik [S(t- r) —O(t - o)]

and

(2i)

(io)

For the purpose of reduction, Feynman's self-en-
ergy, given by Eq. (8), and the second-order cor-
rection term, given by Eq. (9), may be written as

E = 8(v- u)'(4v)-'- limA

f; -„,(t) = ik [8(t- ~) —8(t - o) ]+ ik'[8(t - ~') —tr(t - o') ] .

(22)

The generating function defined by Eq. (17) may be
evaluated by the method outlined in Ref. 2. The
result is

and

40
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f(t) x'(t)dt
Jp
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where

V[x()t]=-e 8-' 'rj,' J e-"-' ~x(~)-x(o)
~

'd~do,

(»)

where each rectangular component x', (t) of x'(t) is
the solution to the equation

+T

= 2C~~ e ' ' [x';(t) —x';(o)] do- f, (t), (24)

and

A = —
& V[x(t)] & /T,

J3= ~CT ' J J e ''&[x(r) —x(o)] &drd o

v -=[u'+ (4C/w)]'" .

(14)

(is)

(is)

subject to boundary conditions x';(0) = x;(T) = 0, where

f;(t) is the ith rectangular component of f(t). Apart
from transient terms which are appreciable only
near f, = 0 and t= T and which will be irrelevant in
the required limit T -~,

x'(t) = —(2v ) '
J E(~ t —t'~)f(t')dt'+const (25)

where, in the limit T-~,
In order to evaluate &V2[x(t)]), A, and B, it is con-
venient to introduce the generating function E(t) = (v' —u') v '(1 —e-"') + w't . (28)

W[f (t)] -=&exp[ j'f(t) x(t)dt]& .

Then

A=orS 'r'T 'J J J e- -'-' (2-rr k )-'W[f-„(t)]d'kd7'do

(is)

In obtaining this result, use has been made of the
property of f-„(t) and f- -„,(t) that

J f(t)dt=o . (27)

Substitution of Eqs. (23) and (25) into Eqs. (18)-(20)
yields, upon reduction,

B= 'CT ' J l e ~ ' '-1- V~ W[f-(t)]f„~dado

and

(i9)

and

Er;=8(v —w) (4v) ' —2nvrr '

x f p exp( —p')F 'r'(p') dp (28)

x(2rr k ) '(2rr k' ) 'W[i'„--„,(t)]

& d kd k' dv'do'd7'do' (2o)

&Er ———4n v rr'I+ o. v (v —w)rr '
J pexp( —p )

"E '"(p') dp —~(v' —w')'v-' --,'a(v' -u ')7r-'"
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tion to
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TABLE I. Numerical results for variational param-
eters and self-energy values.

=- n —0. 01235o. + 0(n )

and the corrected energy E, is given by

E, =Er+-&E2 = —e/ —a,n + O(n')

(35)

1 3.110 2.871 —1.01
3 3.421 2.560 —3.13
5 4.034 2.140 -5.44
7 5.810 1.604 -8.11
9 9.850 1,282 —11.5

11 15.41 1.162 —15.7
15 30.08 l.076 —26.7

—0.0035
—0.031
—0.083
—0,13
—0.17
—0.22
—0,39

—1,02
-3.16
—5.52
—8.24

—11.7
—15.9
-27.1

0.35
1.0
1.5
1.6
1.4
1.4
1.5

=- n —0. 01592o. + O(o. )

where

a, = ln(1+ 3 W2/4) —I/W2

(s6)

x J "p exp(- P2)E-"(p')1(I+ 3v'v-') [1 —exp(- vp')]

This corrected energy expression E, is identical
with the result of the fourth-order perturbation ex-
pansion for the self-energy, which is exact to sec-
ond order in n. For strong coupling

+ (v' —zu2) v-'p'exp(- vp'))dp,

where

(29) E~= —(3&) o.' +O(o.') =-0.1061n +O(n ) (38)

and the corrected energy is
I= J3"J "J "[p,exp( —p', )F-'"(p',)]

with

x [p2 exp( —P2)& (P2) l

x [Q
' arcsin(Q) —1]dp, dp2dp, .

Q=Q, for p, —pz+ p& —0 and p3 —p2- 0,

(so)

E,= —b, /2 + O(o. ) =- 0. 1078n + O(o, ),
where

(2n)!
(4') + ' ~, 24"(nt)2n(2n+I) '

(39)

(40)

Q= Q2 for p3 —pz+ p, 0 and ps p2( 0p
2 (sl)

Q= Qs for p3 —p&+ p& & 0 and p3 —p2(0,2 2 2

wherein

Q
1F-1/2( 2)F-1/2( 2)( 2 &2)v 1e PP3--
x (1 —e "'&)(e""—1) , (32)

Q
& F-1/2( 2)F 1/2( 2)f( 2 2) v-1[e P(P2 p3)

—e "'3(1+e " 'i '2' —e "'&)] —23v (P2 p3) ) y

(33)

Q
— -& ' '(p )& ' '(p'){(v' 3v')v '[e "'3

x (1 — "'&) + ""2- '3'(e"'i —1)]+23v'p', ) . (34)

E,= —n —(I/81) ~'+ O(n')

Although the integrals in Eqs. (28)-(30) must be
evaluated numerically, weak and strong coupling ex-
pansions may be obtained from them by following
the approach described in Ref. 2. For weak cou-
pling

This refinement amounts to only a 1.6%% correction
to Feynman's strong coupling result for the self-
energy.

For intermediate values of z, computer programs
were written to calculate the integrals in Feynman's
variational expression, given by Eq. (28), and in the
second-order correction term, given by Eqs. (29)-
(34). The values obtained for the variational param-
eters v and zo by numerically minimizing Feynman's
variational expression E~ disagree slightly with
those reported by Schultz and are given in Table I
accurately apart from an uncertainty of +1 in the
fourth significant digit. For these values of v and
so, Feynman's self-energy, its second-order cor-
rection, the corrected value, and the percentage
correction were calculated and are all given in
Table I accurately to within an uncertainty of at
most +1 in the least significant digit reported.

In conclusion, the second-order correction term
represents less than a 2% correction to Feynman's
variational answer for all values of cy. This con-
clusion is suggestive that further corrections to the
self-energy would be rather insignificant.

Acknowledgment is made here to the Louisiana
State University Computer Research Center for use
of its IBM 360/65 computer for performing the
numerical calculations.
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Electrical resistivity anisotropies (a =—pgp)„direction referred to the c axis) of pure indium
containing 0—9-at.% lead have been measured at 4. 2, 77, and 273 K. For pure indium it was
found that a(77) = 0, 988 +0, 003, while a(273)=1.037 + 0. 003; thus the direction of maximum re-
sistivity changes from the c to the a direction as the temperature goes from 77 to 273 'K. This
behavior is interpreted in terms of the resistivity anisotropy model of Klemens, Van Baarle,
and Gorter, which is also used to qualitatively explain the observed anisotropies of the indium-
lead alloys studied. Anomalies in the resistivity anisotropy were observed at 3.5- and 7. 0 at. %
lead, which were traced to anomalous behavior in the resistivity perpendicular to the c axis.
The behavior at 7. O-at. % lead is interpreted as the Fermi surface popping through the (200)
zone boundary. The temperature-dependent resistivity anisotropies of indium-lead alloys at
77 and 273'K were determined, and at 273'K, the direction of maximum temperature-depen-
dent resistivity was found to change from the a to the c direction between 6- and 7-at. % lead.
This behavior is attributed to an increasing perturbation of the indium lattice periodic poten-
tial by the lead ions at the relatively high temperature of 273'K, and it is interpreted in terms
of a breakdown in the &-function potential approximation in the model of Klemens et al.

INTRODUCTION

Investigations in recent years on idium doped
with lead have produced several interesting results
in the 0—10-at. % region. These investigations
have been concerned with superconducting transition
temperature, ' thermoelectric power, electronic
specific-heat coefficient, and lattice spacings '
of this system. If these various properties are
plotted as a function of lead concentration, each
will exhibit some interesting or "anomalous" be-
havior in the regions of 3. 5- and 7. 0-at. % lead,
with the exception of the superconducting transition
temperature which exhibits unusual behavior only
near V. 0-at. %(; lead. These investigations gave im-
petus to the work reported here.

In the present investigation, nearly 100 cylindri-
cal single-crystal specimens were prepared from
pure indium and indium doped with 3-9 at. % lead.
Approximately 80 of these specimens were consid-
ered to be of sample quality and had measurements
made on them. Master alloys of 3.00-, 3. 25-,
3. 50-, 3. V5-, 4. 00-, 6. 00-, 7. 00-, 8. 00-, and
9. 00-at. % lead were prepared. A set of randomly
oriented single-crystal samples was grown from
each master alloy in addition to a set grown from
pure indium.

The electrical resistivities along the cylindrical
sample axis were measured at 4. 2, V7, and 273 K.
In addition, the angle 6) of the cystallographic c axis
with respect to the cylindrical sample axis was de-
termined for each sample. Since indium is tetrag-
onal, the resistivity in a direction making an angle
0 with the c axis can be written

p(g) = p, +(p„—p, ) oos'e,

where p, )
and p, are the resistivities parallel and

perpendicular to the c axis. It is evident from Eq.
(1) that a straight line drawn through the data for
crystals of various orientations, plotted as p,„,
versus cos 0, will yield p(( and p„and thus the re-
sistivity anisotropy a, where a—= p, /p„.

Although some work has been done on measuring
the resistivities of pure indium and indium doped
with lead, "all of the previous work with the ex-
ception of that by Barisoni et al. was done on poly-
crystalline samples and thus gives no direct mea-
sure of any anisotropies. We say "direct measure"
because theoretical estimates of the anisotropy of
the total resistivity can be made from polycrystal-
line data. For pure indium, Olsen' reported a
value of 1.05 for the anisotropy at 273'K. How-

ever, Olsen's value appears to have been a theoret-
ical estimate based on polycrystalline data taken


