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The two-band quantum-mechanical model of Phillips and Van Vechten is applied to the cal-
culation of the second-order susceptibility. The theory contains no adjustable parameters and

gives the correct sign and reasonable agreement with measured magnitudes of second-harmon-
ic coefficients for nine zinc-blende crystals.

Recently Phillips and Van Vechten (hereafter
called PV) have applied the Phillips theory" of the
dielectric constant (also called the "dielectric the-
ory of electronegativity") to the second- and third-
order susceptibilities of zinc-blende and wurtzite
structure crystals. Prom their presentation it is
clear that the theory is capable of giving order-of-
magnitude agreement with the measured l X"' I. It
can not account for the measured l

X'"
I in Si, Ge,

or GaAs, but this has been explained by Van Vechten
and Aspnes who have shown that a "Franz-Keldysh"
mechanism is dominant for x"' in semiconductors
having a sufficiently small direct gap. In this paper
the PV theory for x"' will be reformulated to elim-
inate an objectionable approximation made by PV,
and to bring out clearly just how the theory predicts
the sign of X,"a,' (the only nonvanishing component)
in zinc-blende crystals. Wurtzite crystals will not
be discussed here.

At zero frequency the linear (y'") and second-
order (g"') susceptibilities are defined by

& =& x) ~J+&: x&.~& &~+(x) ~ (2)

j jk

where E is the macroscopic electric field and P is
the macroscopic electric polarization. We consider
only the electronic contribution to x

' and x
' and

ignore the contribution of the infrared lattice vibra-
tion' which is negligible at optical frequencies.
Adler has shown that the electrons canbe considered
localized within cells which are small compared to
optical wavelengths and large compared to atomic
dimensions. The linear polarizability n and second-

order polarizability P of a single cell can be
written '

e, ,,=z "&0
I
el',

l
v) &v I

eIi,
I u & &u I

eff,
I o& a

+(if'- iaaf)+(if'-fil ),
where the ground electronic state l 0) is taken to
be at zero energy, R~„ is the energy of state 1 v),
the primed sum omits the ground state, and

eR=- eZ r -e(ol Zr IO) (4)

is the total electric moment operator. The coordi-
nates ijk refer to principal axes of n. Implicit in
(2) and (3) is the assumption that E is constant over
the cell (the electric dipole approximation). Al-
though the macroscopic field can be assumed con-
stant there is in general a microscopic local field-
correction having the periodicity of the crystal. If
this local-field correction is neglected the suscep-
tibilities are

=Nn, X =NP, (5)

where N ' is the cell volume.
It is not necessary here to go into the question

of the validity of neglecting local-field corrections,
since (5) can be regarded as exact if (2) and (5)
refer to a suitable macroscopic model for the elec-
trons. We use the model introduced by PV based
on Phillips dielectric theory ' and, with no addition-
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where a is the edge of the unit cube in the crystal.
The factor 3 ' in (7) arises because each bond in
this model can only polarize along the bond direc-
tion. This is a feature of the model in disagreement
with the prevailing view of the covalent bond, but

there seems to be no way of avoiding it without

giving up the elegance and simplicity of the two-
state (Pauli matrix) formalism.

According to the Phillips dielectric theory X'"
can be written

Ne A/m
X E2 (8)

where n = 32a ' is the electron density and E, is an
effective energy gap for transitions to the conduction
band. Furthermore

E2 E2+C2
g h

where E„is the effective gap for a hypothetical
homopolar crystal of the same lattice constant, and
the ionicity gap C is due to the antisymmetric part
of the electron potential. These gaps have been
tabulated by Van Vechten' for all crystals of the
diamond, zinc-blende, wurtzite, and rocksalt
structures for which data on X'" are available. The
f-sum rule for the assumed model requires

al assumptions or parameters, proceed to calculate
X' ' for this model. According to this model each
valence electron in a zinc-blende crystal is de-
scribed macroscopically by a quantum-mechanical
model with two states and a single coordinate $

measured along the covalent bond. Each electron
contributes the polarizability

~, =(2"/8~„)
I &. I& I

b&I', (8)

where a, b represent the antibonding and bonding
(ground) states, respectively. It follows that the
isotropic linear susceptibility is

x'" = (84"/3"~~.~) I (~ I(l » I',

y123 = (32/3 a ) pygmy (i4)

in accordance with the usual convention on coordi-
nates in zinc-blende crystals.

The model is now constructed as follows: Consid-
er a, homopolar crystal (no antisymmetric potential)
with electron eigenvalues +(E„/2v'3) and eigenstates

I bo&, l ao&. In the basis I bo), I ao& the homopolar-
model Hamiltonian is

ao=(2v 3) '
If

Now let there be an antisymmetric potential V, ($)
sketched in Fig. 1, and let

C—= 2W3&bol Vu($) I so& . (i8)

The heteropolar Hamiltonian in the basis l bo&, I ao&

is then

a=(2&3) '
C E„J (i7)

having eigenvalues +(E~/2W). Note that E„&0,
Eg &0, but C may have either sign. Nevertheless
we shall see that the theory uniquely determines
the sign of P«& in (i3). The eigenstates of H a.re

(=o

pn~ =(3"«'~.'»
I &o I & I » I'I:&o

I & I ~& -&b
I & I » ] .

(i3)
Let ( be measured as shown in Fig. 1 from the
midpoint of the bond toward the V atom in a III-V
compound (or the VI atom in a II-VI compound); then

(2m~„/N)l&, lglb&l'=I .

It follows that (7) and (8) agree if

3(R(u„)'= Eg',

and it then follows that

ol(l b&l ~=(3 6/4)(a' /e) Eg

(io)

(i2)
v, (()

This relation was not used by PV.
It follows from (3) that each electron contributes

the second-order polarizability

FIG. 1. Coordinate $ is measured from the midpoint
of the bond toward the V atom, or the VI atom in a II-VI
crystal. The antisymmetric potential V~ (() is related
to the ionicity gap C in (9).
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I »=fl bo&+gl so&,

I a) =fl (2o& —gl bo),

where

f =p(1+p') "', g= —(1+p') "',
p—= (Eo+E )/C .

From (9) and (19) it can easily be shown that

p'+1=2(E~/C) p, p —1=2(E„/C) p,

(18)

(19)

fer in the covalent bond. The sign of the ionicity
gap C is irrelevant and may arbitrarily be chosen
positive for convenience. With $ defined as in Fig.
1 it is clear on physical grounds that (b lg I b) & 0,
since the electron must be polarized by V,($) toward
the atom with the greater positive charge on its
core. Therefore X/$3 ~ 0 in agreement with experi-
ment. 'o ' From (12) and (21)

&/a C E s/2

(b I
t'

I

—b) = 0. 38 & — — ' (y(")'~
0 Ea e'

(23)

f g —E„/E

f'+g'= 1 .

It then follows that

2fg = —C/Eo, (20) where ao= I2 /me is the Bohr radius and ~=av 3/4
is the interatomic distance (bond length). It should
be noted that PV did not use (23) but instead invoked
a rough estimate $ (C/E, )7'. Fina. lly from (22)
and (23)

&(2I ( I a& = (c/E )&aol g I bo&,

&b I & I » = -&~
I S I

~ &
= —(C/Eo) &s I & I », (»)

&s
I ( I » = (E./E, )&~o I ] I bo&,

and (14) becomes

(22)

Here e= —4. 8&&10 esu is the electron charge, and

E, is in absolute units.
We note that the sign of X»3 is determined by the

sign of (b I ) I b), which represents the charge trans-

2 3/P, C e2 1/2
(2) 0 49 o (~(1))3/2 (24)

~0 Eh &0Eg

Using the tables of X"', C, E„, and E~ given by PV,
and the numerical values a'2 / I e I

= 5.83x 10 2 esu,
e'/ao = 27. 1 eV, values of $/7 and y', zo' have been
calculated and tabulated in Table I for all the zine-
blende crystals for which data on X»3 are available.

The calculated values of X',» are in better agree-
ment with experiment than those obtained by PV,
and in some cases are within experimental uncer-
tainty. The theory contains no adjustable param-
eters. The agreement obtained further establishes
the physical significance of the gap parameters C,
E„, and E~ in the Phillips dielectric theory. The

TABLE I. Calculated X' ) according to (24) for zinc-blende crystals. Values of X ), C, Ez, and E~ from Ref. 1. For
information on the experimental uncertainties in the measured X ) the indicated references should be consulted. 4/7
is the calculated charge transfer according to (23), ($/7') m, is a molecular orbital calculation using (25), and 7' is the
bond length. For more data on X =2d, where d is the second-harmonic coefficient, see Ref. a.

Crys tal

GaAs
GaSb
InAs
InSb
GaP
ZnS
ZnSe
Zn Te
CdTe

a/ao

10.68
ll. 56
11.41
12.24
10.30
10.22
10.71
11.51
12.25

x")

0.79
1.07
0.90
l.17
0.65
0.33
0.39
0.50
0.49

C
(eV)

2. 90
2. 10
2.74
2. 11
3.28
6. 20
5.57
4.48
4.40

E„
(eV)

4.3
3.5
3.7
3g 1
4.7
4. 8
4.3
3.6
3.1

Eg
(eV)

5. 20
4. 13
4.58
3.74
5.75
7.85
7.02
5.34
5.40

x'"
10 8 esu)

108
193
171
286

75
43
63

112
134

X&» (obs)
(10 esu)

90
300
200
330

52
17
22
73
80

Ref. '( /&

0.33
0.31
0.37
0.36
0.32
0.49
0.51
0 ~ 50
0.59

(&/ ).,
Q. ll
0.085
0.14
0.11
Q. 13
0. 24
0.21
0.19
0.21
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values calculated for P/v are quite reasonable, and
tend to support the obvious interpretation that the
states I b), I a) in the model refer to the bonding
and antibonding orbitals in the molecular orbital
picture of a covalent bond. However, it is not es-
sential that a macroscopic theory agree in detail
with any microscopic model of the covalent bond.
Flytzanis and Ducuing' have carried out a micro-
scopic calculation of y', » using bond orbitals of the
form

~+III + +V y (26)

where 4«&, 4v are analytic sp' hybridized orbitals
centered on their respective atoms. For 4&,» 0 v
they used analytic wave functions of the form

$/r in the macroscopic theory. This should not be
considered a discrepancy between the theories,
since Flytzanis and Ducuing' obtain agreement with
experiment comparable with that obtained here.
They find that n for the covalent bond is nearly
isotropic.

Recently Levine' has described a classical mac-
roscopic model based on the Phillips dielectric
theory in which all (linear and nonlinear) polariza-
tion is ascribed to the rigid displacement of a phe-
nomenological bond charge q. Unlike the quantum
model of PV, the Levine model assumes that the
linear susceptibility of the bond is isotropic. Le-
vine's result, which is in excellent agreement with
experiment, can be written

@(r, 8) = (16v) " (1+3 cos8)
2 2

X '=0 49 —— —
(X ') .(2 0

le] ao E~ aoEz q
(27)

g [(2~) t j-1/2(2))a+1I2 ~la-Q-gP (26)

where p, , P are parameters determined by the pre-
scriptions of Slater' for the ions III, V'. Coulson,
Redei, and Stocker" have given a molecular orbital
description of tetrahedrally coordinated covalent
crystals using (25) and (26), and they find that ap-
propriate values for X are X = 0. 68 (III-V crystals)
and &=0.49 (II-VI crystals). The values labeled
($/r), in Table I have been calculated from (25).
They are on the average only 37% of the value of

For the bond charge Levine assumes

q/e = 2/e + 0. 6(E/ /E, )'= 0.5, (28)

where e = 1+4 vy'" is the dielectric constant (at op-
tical frequencies). Comparison of (27) with (24)
shows that the PV and Levine models are not
equivalent.

The author is pleased to acknowledge helpful dis-
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