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The wave-number- and frequency-dependent dielectric function of a semiconductor is de-
rived and calculated in terms of a model consisting of an electron gas with an energy gap.
From it are deduced, as a function of the gap width, (i) the screening of a point defect, (ii)
the annihilation rate of positrons, and (iii) the stopping power for swift charged particles.
A partition rule holds between the contributions of single-particle excitations L8 and col-
lective resonance excitations L~ to the stopping number L=L~+L„ in the sense that I ~= C+L„;
the constant C grows with the gap width.

I. INTRODUCTION II. RESPONSE FUNCTION

In the past the response of condensed matter to
the disturbance set up by a charged particle has
been investigated extensively in terms of the many-
bo&'y theory of an extended degenerate electron gas.
Among the problems that have been studied are the
screening of point defects, ' positron annihilation,
and the stopping power of matter for heavy charged
particles. ' The method has been applied to atomic
systems. ' Recently beginnings have been made
to extend the theory to models for semiconductors
and insulators. Penn derived the static wave-num-
ber-dependent response function for a semiconductor
model proposed by Callaway. It consists of an
electron gas with an energy gap E~. Others' '"
investigated the frequency dependence of the x e-
sponse in the long-wavelength limit.

In an extended study of this model semiconductor,
we have derived the full wave-number- and frequency-
dependent longitudinal response function in the ran-
dom-phase approximation and its parametric de-
pendence on E~. From it, semiconductor properties
are calculated and their sensitivity to changes in
the energy gap studied. Although the results apply
strictly only to the high-density limit, we expect
that the emerging trends reflect realistically the
effects of the energy gap on the properties of dif-
ferent semiconductors. For a given semiconductor,
the degree of internal consistency of this approach
can be tested experimentally because all properties
so calculated are interrelated through the param-
eter E~. This should provide guidance for re-
fining the theory and for expanding the scope of
experimental investigations.

In Sec. II we summarize the derivation of the
response function and apply it, in Sec. III, to the
static screening of charged particles in the model
semiconductor. In See. IV, the stopping power for
swift charged particles is calculated. The princi-
pal result is an important partition rule of stopping
powers in a solid with an energy gap.

%e base our considerations on a model semi-
conductor consisting of a uniform electron gas of
density n with a single energy gap charactexized
by a gap width E~. In this model, the valence band
is filled, and the formation of standing waves at
the Brillouin boundaries and umklapp processes
are taken into account. The distribution of the
model density of states is constructed such that the
states removed from the gap are piled up on either
side of the gap. The Fermi surface is placed half-
way in the forbidden gap so that the excitations of
the system amount to particle-hole excitations
across the gap. In real solids the band structure
is complicated, and the gap widths and the elec-
tron density are not independent parameters. There-
fore, when comparing the theory with experiments,
E is taken to be an adjustable parameter charac-
teristic of a given semiconductor. As E,- 0, the
umklapp terms vanish and we retrieve the response
of the uniform electron gas.

The response of the system to an external electric
field of wave numbex q and fxequency ~ is de-
scribed by the dielectric function'

«(q, (u, E,) = l —(4m/q') k (q, (u, Eg).

The response function h can be written in the ex-
tended zone scheme,

k(q, ~, E,)=(2m) 'g f d'k
~

M(k, k+q+K; E,)
~

g k &k~

&&([(u E(k+—q+ K) + E(k)+ iq] '

—[~ + E(k+ q+ K) —E(k) + ir)] ']. (2)

T11e sum ovel the l eclpl ocal lattice vectol s K in-
cludes the summation over the valence and conduc-
tion bands. The Fermi momentum k~ is related
to the electron density n hyke= (Sm n) ~', the Fermi
velocity vr =kr (a. u. ), and the Fermi energy Er

The matrix element M eonneets transitions
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between the state of energy E(k) in the valence band
and the state of energy E(k+ q+ K) in the conduction
band, subject to the restrictions imposed by the
energy gap E~. Equation (2) is derived in the zero
limit of the damping constant q.

The calculations incorporate an approximate
formulation for the matrix element, proposed by
Penn. It interpolates between the correct asymp-
totic limits for large and small values of the param-
eter z=q/2k~. The approximations impose limits
on the two parameters of the semiconductor model,
viz. , the electron density and the energy-gap width.
We require the electron density to be high enough
for the parameter

sulators is in close agreement with Penn's inter-
polation formula. Therefore at least in the static
limit, this calculation illustrates that the results
are not affected sensitively by the approximation
made for E(k) and for the matrix elements.

In calculating h(q, a, E~), for a given y, one has
to sum over the contributions from the normal and
umklapp excitation processes. The general fea-
tures are conveniently discussed by writing Eq. (2)
as a parametric function of the gap parameter in
the form

~(z, u, E,) =I+g(z, E,)['f, (z, u, E,)+if,(z, u, E,)],
(4)

y' = e'/tv~ = r,/6. 02 (3)
where

to be small compared to 1; g is proportional
to the ratio of the Coulomb interaction between the
electrons- x, ', and the Fermi energy -x,'; in the
usual notation r, = (3/4')'~~ Th.e other model
parameter e, =E,/Ez must be small compared to 1.
The quantity y —= 4 e, = -,' E,/E F occurs naturally
as an expansion parameter. Another parameter of
smallness, viz. , (E,/e~) = ($3)(r/y), appears in the
theory; &u~ = (4vn)'" is the plasma frequency. As
shown in Fig. 1, it imposes less stringent limita-
tions on E~ than &~ & 1 in the X range appropriate
for the valence electrons in solids.

Fry' calculated the matrix element for insula-
tors by representing the electrons in the conduc-
tion band through single orthogonalized plane waves,
and the electrons in the valence band through tight-
binding wave functions. The resulting q dependence
of the static dielectric function for a number of in-

z0
IO

Eq(e

Z(z, E,) = X'/(W" +z')

z =q/2k~,

u = (u/qv„.

are reduced wave vector and frequency variables,
respectively. The functions f, and f, are algebraical-
ly complicated. Their display here would be cum-
bersome but not instructive. They are reported
and displayed graphically over ranges of the vari-
ables u and z elsewhere; a computer program
for their evaluation is available. " The dielectric
function obeys the sum rule for the oscillator
strength distributions g= (2/7l)(m/~&~)1m' ',

J A2 g(q, id ~ Eg) = 1 (s)

The error in the sum rule of the calculations under-
lying this paper is «y/(I +z').

In the limit E~- 0 we make contact with the elec-
tron-gas model and obtain Lindhard's dielectric
function. In the short-wavelength limit q-~,
Eq. (4) becomes equal to the dielectric function of
the electron gas for any E~. In the long-wavelength
limit q- 0,

z(0, (u, E,) = I —(u~z/[(~a

+i'll)

E,']. -(9)

0 0.25 0.5 0.75
x'

FIG. 1. Validity range of the approximations is
bounded by the solid curves.

I.O

This is the dielectric function describing a simple
excitation across a gap of width E~, corresponding
to a vertical transition in the reduced zone scheme.
One may use Eq. (9) at ~ = 0 to make contact with
real materials by adjusting E, such that w(0, 0, E~)
becomes equal to the static dielectric constant.
Table I lists some typical values. For the study
of the dynamic response of electrons bound in inter-
mediate shells of atoms or molecules it is often a
suitable approximation to retain only the K = 0 term
and to set E = ~~ or & =r,'

We have studied in detail the E~ dependence of
v(q, 0, E~). Figure 2 illustrates some of the re-
sults for the value of X =0.33 typical of real semi-
conductors. The limit ~-0 of Eq. (9) determines
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Subs tanc e

Typical semiconductor parameters.

~ {0,0, E,) X' ~, ~,(eV) ~, E,(eV)

Ge
Si
C {graphite)
C (dianmnd)
Anthracene
LiH
AgCl

16 0.34
12 0.33
8.0 0.35
5.7 0.24
3.6 0.40
3.6 0.33
4. 2 0.35

2.04
1.98
2.11
1,44
2.41
1.98
2.11

0.35 4. 2
0.38 4.8
0.36 4.0
0.54 13.6
0.90 5.5
0.82 4. 2
0.79 8.5

the intercept of the curves with the ordinate. %hen
E~ & 0, normal and umklayp processes combine to
give It(q, 0, E ) a weak maximum [and It '(q, 0, E )
a Bnlllmum] a' t

s =q /2hz=(43)y„y

of relative magnitude (1+y'). The value of y„
depends sensitively on the matrix element justwhere
the interpolation formula is least certain. Our cal-
culations indicate that y y. Other investigators
find sxmxlar results

At finite frequencies It(0, v, E~) has a singularity
at co =E~, or uz=y. In coming from low frequencies
&u & E„or s & yju, the umklapp processes at first
dominate the behavior of the system. Figure 3 il-
lustrates this point by showing the ratio f,(umklapp) j
ft(normal) as a function of s. As the frequency in-
creases, the normal processes begin to dominate
and go through a maximum. Normal processes
dominate for ~ & E, or s & y/u. The absorptive part
f2 ls zero when Qp &Eg, rises sharply at Q7 =Eg and
vanishes as m in the high-frequency limit. Col-

lective resonances occur when ~(q, v, E,)=0, as
discussed in Sec. IV.

The trends of our results can be summarized
concisely by the interpolation formula

v(q, a&, E,) = 1—
(v+ itI)a - E',+ 2y„E,sq - s'q'- —,

' q'

(11)
Equation (11) replaces aa(q, &o, E,) of the full di-
electric function by a 5 function. The term con-
taining y is uncertain and in any case small. The
last term, &q, accounts for the strong q depen-
dence introduced by quantum-mechanical effects.
Since this term is independent of n or X, the func-
tion x in the high-q limit defies scaling in terms of
the electron density in a unified way. At moderate
q, Eq. (11) reduces to the dielectric function in the
semiclassical approximation

It(q, &u, E,) =1 —(o~a/[((e+iri)'-E,'-s'q'].
The constant s is given by s = {5)er when ar&qual,
and by s' = (-,')e~a when &u & qe~. "

The dispersion relation for longitudinal collective
excitations, defined by I(. = 0,

is at the root of a wide range of phenomena connected
with the excitation of electrons bound in dense
media.

2.0

u = 0.32
eg* 0.32
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FIG. 2 Reciprocal static dielectric function
f( ~(q, 0, & ) at g~=2 as a function of E~.

FIG. 3. Ratio of contributions of umklapp and normal
processes to the real part of the response function at fre-
quencies corresponding to g = 0.32.
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III. SCREENING OF POINT CHARGE

In this section we illustrate some of the salient
features of the screening of a point charge Z&e
fixed in the semiconductor discussed elsewhere. '
The potential V is screened as given by the func-
tion

rv(~E), R , sinx .,
(

y'x

)dX K
Zye v 0 X

In the limit of large r, and in any case for large E~,
the screening function tends to the usual screened
Coulomb potential (xV/Z, e) = x '(0, 0, E,). When

E~ is small Eq. (14) shows pronounced modulations
as illustrated in Fig. 4.

The electron density surrounding the point charge
Z,e is modulated relative to the mean density n by

0.44

~n 1 " . ) mx xxdx slnx 1 —K ~ Oy Eg+yen 2g 7'
p 2r

(»)
as illustrated in Fig. 5. In the limit E~- 0 the
modulations reduce to the well-known periodic
Friedel oscillations of the electron gas (cos2krr)/
(2kzr)'. They are caused by the singularity of
dz(q, 0, 0)/dq at q = 2k~. When E~ &0, no such
singularity is included in the domain of integration
in Eq. (2). As a consequence, the oscillations are
damped and their period increases with x.

Noted parenthetically, the disappearance of the
singularity in dx/dq with E~ & 0 suggests that, by
comparison with metals, the Kohn effect ' in
solids with band gaps can at best be observed in a
damped form.

The annihilation rate of positrons X is propor-
tional So the electron density at the site x= 0 of the
annihilating positrons. In the electron gas the
polarization by the positron increases the mean
density n at x = 0 to n+ 4n. Thus

0.43-

0.42-

—(a.u, )
rV

Z, e

E'g

1.0

X = 0.33

V (r=00)

4.3x 10 '

X = X $ = X (1+&n/n), (16)

where Xo = 12.Qx, nsec is the annihilation rate
in the absence of polarization. The term in paren-
theses in Eq. (16) defines the density enhancement
factor $(x,). It has been calculated in various ap-
proximations. "Neglecting effects of positron in-
ertia, Eq. (15) permits us to calculate a correction
factor for materials with an energy gap, f(r„E,)
such that

X(r„E,)=X,(r,)l I+f(r„E,)[~(~,) —ID . (17)

0.06-

0.05-

0.01-

0
2 4 6 8 10 12

5.5 x 10

.9x I 0

0,0
14 16

The factor f(r„E~) is tabulated in Table II. The
enhancement factor in the random-phase approxi-
mation (RPA) $apg(r ). is well approximated by
the expression $av„(x, )= 1+1.65r,' '. In higher
approximations, 4 $(r,) = 1+0.63r',

In general, the experimental annihilation rates
of semiconductors and insulators are known to fall
below the values expected from the electron-gas
model. We illustrate the use of Eq. (17) and pre-
dict the positron annihilation rates in Si and Ge by
correcting the $(r,) for the electron gas as given
by Carbotte' with the appropriate values of f(x„E,).
We obtain X(Si) = 4.08nsec ' and X(Ge) = 4. 55 nsec '.
The most recent experimental values are X(Si)
= (4. 00 a 0.08) nsec ', and X(Ge) = (4.24 + 0. 12)
nsec '. '

FIG. 4. Screening function of the potential of a fixed
positive point charge in a semiconductor ~, = 2. For

0 the curves rise to the value 1. The asymptotic
values for large ~, ff (O, O, E~), are indicated by the
arrows ~

IV. STOPPING POWER FOR HEAVY CHARGED
PARTICLES

The electronic stopping power of a dispersive
medium for a particle of charge Z,e and velocity
v& is given by
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The propex'ties of I have been studied for the
importance of collec ~v

excitations for the stopping popover o insu
heen pointed out previously

The roperties of the integrand in Eqs. l9 anThe proper
18 Rl 6 discUssed(21) for the model semiconductors

re. The most conspicuous feature for
finite E is R contrlbutlon f loni Uxn Rpp p
to the losses in close collisions in8 ln the long-%'Rve-

length domain. In the limit of high particle veloc-
ltles, we xnake use 0 6
the x esponse function and obtain

(22)I-(u„Eg) =lny(u„E, ),

I l

l 2 l 4 l6

FIG, 5 ~ Displaced denai ty RroQnd R fi pfixed oaitive point
charge in R sexMcondQctor J~ = 2.

th stopping number per targtar et electron

(23)2
y = 2u', /((o, +Eg)

d d variable proportional to the particle
6Del gy. In 6 lmlI th limit E -0 we obtain the 8 opp'

%'ex' fol mula fol RD 616ctx'GQ gRs.po%'ex' ol m
It is of particular interest to s u ystud the relative

d I . The contribution I.„frommagnitude of I., an

collective oscillations sets «n at paarticle veloci-
t & . The constant y, is a measure

of the threshold energy for the onset of un ampe c
It is defined by the intersec-lective oscillations. i

s u E)=0,tion of the curves v, (s, u, E ) = 0 and g~(g, u, E
6 The range of particle veloc-

ot contrib-ln which collective excltRtloDs do Do collities in w lc ' ' o con

p = = (o +E) isacharac
t to the stopping power grows wl

ping function at y =y~= 2vy~/((op+ I
E ) lotted in Fig.tex'lstlc constant L = L~ = C

Bohr foun ad that the energy ].Gst by swift charged
PRltlc 68 o'

1 t atoms in close collisions shou e
colli-D6Rl l.y egua G 6 co l-1 t the energy lost in distance co i-

This eqUlpartltlon %Rs exRmlQeslons. 18
I indhard and Winther. They proved that a parti-

udu zdzim[~ (z, u, E,) —,.fP/'tP~

—I,. (IQ)I = --p
+X 0 o

One cRQ 18 lngd t -uish two types of contx"ibutlons
to I, 0.4

Ij.. Enhancement correction factor f(s, &~ ).TABLE I . ance ' x & ).
For the electron gass f &SP &g =

f~~s~ &g~

& -0 2 0.6 0.8 1.0

( )I =I,+L„.
t I comes fxom close single colllslons.The f«rs

It 18 equal to the double 1Qtegral 1Q q.
d tions such that ImI(, 40. T,.e second L cGIH68con 1 «on

of the s„s-collective resonance excitatlons ofroIQ CO ec 1V

here Imv =0tern. It corresponds to condlt«ODS %' 6
satisfies a dis-Rnd th6 x'eRl partP through ReK = OP sa

pel'sion x'61Rtlon. 6Th contribution from collective
excltatlons ls 1vt s given by the line integral

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0

0.941
0.951
0.956
0.959
0.960
0.963
0.965
0.966
0.967
0.968

0.866
0.885
0.901
0.908
0.915
0.921
0, 923
0.929
0.931
0.933

0.785
0.820
0.829
0.851
0.864
0.872
0.880
0.886
0.890
0.895

0.705
0.749
0.778
0.794
0.808
0.821
0.830
0.841
0.847
0.852

0.632
0.683
0.714
0.737
0.755
0.770
0.781
0.792
0.801
0. 808
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FIG. 6. Collective excitations contribute to the stopping
power of the valence electrons in a semiconductor vrhen

y&y~(g2, E~), Eq. (23). The approximations are valid
below the dashed line corresponding to E~/&& =1.

FIG. 7. Constant C(x, E~) in the partition rule
(25) for the valence electrons in semiconductors. The
approximations are valid below the dashed line corre-
sponding to E~/~& ——1.

tion rule holds for the uniform electron gas. %e
have investigated the partition for the electron gas
with an energy gap, and find that the equipartition
rule

dl.„(~„q',Z, ) df.,(v„q', E,)

holds for E~ & 0. That is,

I.,(v, z,) = c(y„z,) + f.„(y, z,), y & y, .
The constant C(y„E~) gives a quantitative measure
for the result that, as E~ increases, relatively
more single-particle excitations than collective ex-
citations contribute to the energy loss in the valence
electron gas of a semiconductor. Examples are
given in Table III and Fig. 8. L, and L„become
asymptotically equal only at particle velocities so
high t t [C(y, E,)/in~]«1.

The shift of the energy loss from collective ex-
citations to single-particle excitations with increas-
ing E~ comes mathematically from the branch of
the integrand of Eq. (19) displayed earlier which
has a negative slope ln the Q, 8 plane 3ust as the
plasma resonance curve. It is caused by umklapp
processes in the long-wavelength domain. The
proof of the partition rule is a simple extension
of the proof for the electron gas, because this
branch corresponds to zeros of x in the complex
z plane that place single-particle poles for z '
along with the plasma pole below the real axis. In
performing the integration, Eq. (19), the contour

IO IO

FIG. 8. Contributions from close single collisions Ls
and from distant resonance collisions L,„add up to a stop-
ping function I. that is insensitive to changes in E~ if
sealed in terms of y, Eq. (23).
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TABLE III. Stopping functions L~ and L„as a function of y. The total stopping function L = L, +L„. Asymptotically
for large y, L = ln y. . The notation .R(x} xneans R &&10".

1.000 (—1)
1.585 (-1)
2. 512 (—1)
3.981 (—1)
6.310 (—1)
l.ooo (o)
1.5s5 (o)
2.512 {0)
3.Ssl (o)
6.31o (o)
l.ooo (1)
1.585 (1)

0.)
3.Ssl (1)
6.31O (1)
1.000 (2)
l. 5S5 (2)
2. 512 (2)
3.981 {2)
6.31O (2)
l. ooo (3)

1.942 (—3)
3.875 (-3)
7.730 (-3)
l.542 (- 2)
3.ov3 (-2)
6.118 (- 2)
l. 216 (-1)
2. 409 (—1)
4. V50 (-1}
9, 316 (-1)
1.623 (O)

1.963 (o)
2. 243 (O)

2.5o2 (o}
2.v49 (o}
2. eeo (o)
3.226 (O)

3.46o (o)
3.693 (0)
3, 923 (0)
4.155 (O)

2. 138 (-1)
5.536 (- 1)
S.342 (-1)
1.093 (0)
1.340 (0)
1.581 (o}
1.817 (0)
2.o52 (o)
2. 284 (0)

(o)
2.746 {0)

1.V42 {-3)
3.55V (- 3)
v. 2o2 (- 3)
l.451 (- 2)
2. 91O (- 2)
5.824 (- 2)
l. 162 (—1)
2. 310 (—1)
4. 561 (—1)
s.e2v (-1)
l.v56 (o)

(o)
(o)

2.682 (o)
2. 928 (o)
3.169 (o)
3:406 (0)
3.641 (0)
3.8v3 (o)
4. 1o3 (o)

(o)

0.1
0.6
0.1

3.v2e (- 1)
6.542 (—1)
e.13o (-1)
1.15s (o)
1.4oo (o)
1.63v (o)
1.872 (0)
2. 105 (0)
2. 334 (0)
2. 566 (0)

L~

S.424 (-4)
2. 271 (—3)
5.442 (- 3)
l. 215 (—2)
2. 6ov (- 2)
5.442 (- 2}
1.116 (-1)
2. 26O (- 1)
4.517 (-1)
S. SSV (-1)
1.voo (o)
2. 518 (0)
2.ves {0)
3.059 (0)
3.3o6 (o)
3.54v (o)
3.vs3 (o)
4.olv (o)
4, 25o (o)
4.479 {0)
4.vll (o)

4.ooo (-3)
2.784 (—1)
5.365 (-1)
v. s35 (-1)
1.o25 (o)
l. 261 (0)
1.495 (0)
l.v2s (o)
1.958 (0)
2. leo (o)

O. 182 0.184

cg„z,)
10.05 14.06

2.522

Z, (eV)

X

y

1.000(-1)
l.585{-«)
2. 512{-l)
3.esl {-«)
6.3«o{—«}
«. ooo {0)
l. 585 {0)
2. 5«2 (0)
3.ssl {0)
6. 3«0 {0)
«. O00 («)
«. 585 («)

3.ssl {«}
6.310 {«)
1.000 {2}
l. 585 {2}
2. 512 (2)
3.981 {2)
6. 3«O (2}
1 . 000 (3)

2. 285 (-3)
4. 5V6 (-3)
e. lv3 (- 3)
1.841 (—2)
3.701 {-2)
V. 451(—2)
l.5O3 (-1)
3.037 (-1)
6.169 (-1)
1.234 (O)

1.581 (o)
l.86o (0)
2.116 (O)

2.362 (O)

2.6ol (o)
2.83v (o)
3.ovl (o)
3.3o3 (o)
3.535 (O)

3.766 (0)
3.Sev (o)

1.468 (-1)
4.932 {-1)
v. v21 (- 1)
l.o29 (oj
l. 274 (o}

{0)
l.v49 (o)
l.983 (o)
2. 216 (O)

2.447 (0)
2.6vs (o)
2. 912 (0)

13.S
0.33
2. 0
0.1

L„

2, 1oe (-3)
4.257 (- 3)
8.593 (-3)
1.734 (- 2)
3.505 (- 2)
v. ose (- 2)
1.436 (-1)
2.912 (-1)
5.e22 (- 1)

(o)
1.6v4 (o)
1.962 (o}

(o)
2.46v (o}
2.706 (0)
2. 942 (0)
3.lv6 (o)
3.4os (o)
3.64O {O)

3.svo (o)
4.1o3 (o)

3.vv4 (- 1)
6.652 (- 1)
9.23v (- 1)
1.169 (0)
1.409 (0)
1.645 (O)

1.878 (0)
{o}

2.343 (O)

2. 5V4 (0)
2. so6 (o)

43

0.32
Ls

l. 5O1 (—3)
3.3V4 (-3)
v. 24v (-3)
l.521(- 2)
3.155 (- 2)
6.510 (- 2)
l.339 (-1)
2.v48 (—1)
5. 629 (-1)

(o)
1.896 (o)
2. lv5 (o)
2.432 (O)

2. 6vv (o)
2. Slv (o}
3.152 (O)

3.386 (o)
3.61e (o)
3.85o (o}
4.osl (o)
4.314 {0)

1.V63 (—1)
4.569 (-1)
7.143 {—1)
9.592 (—1)
1.199 (0)
1.434 (0}
1.668 (0)
l.Sol {o)

(o)
2.363 (O)

2. 596 (o)

0, 333 0.334 0.342

C {y„Eg)
E~(ev )

l. 297

8.11

l.718
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X

f$

Ls Ls

Table III (Continued)

1.0
6.0

0.1
Ls

0.32
Ls

1.0

1.000(-1)
1.585 (-1)
2. 512(-1)
3.981(-1)
6. 310(-1)
l. ooo (o)
l. s8s (o)
2. 512 (0)
3.981 (0)
6. 310 (0)
1.000 (1)
1.585 (1)
2. 512 (1)
3.981 (1)
6. 310 (1)
l. 000 (2)
1.585 (2)
2. 512 (2)
3.981 (2)
6. 31O (2)
1.000 (3)

1.96V (-3)
4.009 (- 3)
8. 222 (- 3)
1.698 (- 2)
3.53v (- 2)
V. 432 (- 2)
1.578 (- 1)
3.394 (-1)
7.550 (- 1)
1.2os (o)
1.488 (O)

l. v44 (o)
1.989 (o)
2. 228 (0)
2.463 (O)

2.696 (o)
2. 929 (0)
3.160 (0)
3.391 (0)
3.622 (0)
3.853 (o)

4.O63 (-1)
6.895 (-1)
9.458 (- 1)
l. leo (o)
1.429 (0)
1.66s (o)
1.898 {0)
2. 130 (0)
2. 362 (0)
2. 593 (0)
2. 823 (O)

3.os2 (o)

1.816 (—3)
3.V28 (-3)
v. 6ev (-3)
1.601 (-2)
3.35s (—2)
v. oe6 (-2)
1.515 (-1)
3.272 (-1)
7.247 (- 1)
1.226 (0)
1.534 (0)
1.790 (0)
2. o35 (0)
2. 2v4 (o)
2.slo (o)
2. v43 (o)
2. evs (o)
3.2ov (o)
3.438 (0)
3.668 (O)

3.898 (o)

3.3so (-1)
6.432 (-1)
8.995 (—1)

(o)
1.383 (0)
1.619 (0)
1.8s2 (o)
2, 084 (0)
2. 316 (0)
2. 547 (0)
2.vvv (o)
3.007 (0)

1.468 (- 3)
3.133 (- 3)
6.653 (—3)
1.415 (- 2)
3.O22 (- 2)
6.498 (—2)
1.407 (—1)
3.ovl (-1)
6.816 (-1)
1.275 (0)
1.584 (o)
1.8ss (o)
2. 100 (0)
2. 336 (O)

2. 575 (0)
2. 808 (0)
3.o4o (o)
3.2v2 (o)
3.so3 (o)
3.v33 (o)
3.963 (0)

2. 548 (—1)
5.63s (—1)
8.346 (—1)
1.079 (0)
1.318 (0)
1.554 (0)
1.v8v (o)
2. ole (o)

(o)
2.482 (0)
2.v12 (o)
2. 942 (0)

1.479 (- 10)
4. 8S6 (-4)
2. 568 (—3)
v. v62 (-3)
2. O16 (-2)
4. 913 (- 2)
1.16O (-1)
2.685 (—1)
6.139 (-1)
1.419 (0)
1.882 (0)
2. 138 (O)

2. 383 (O)

2. 622 (0)
2. 857 (0)
3.091 (0)

(o)
3.554 (o)
3.v85 (o)
4.016 (0)
4. 245 (0)

2. 960 (- 1)
s. s2o (-1)
7.970 (- 1)
l.o36 (0)
1.2v1 (o)
l. 505 {0)
1.v3v (o)
1.968 (0)
2. 199 (0)
2.430 (0)
2, 659 (o)

0.575 0.518 0.582 0.630

c(y„E,)
E,(eV)

4. 15

0.799

4. 42

0.891

0.14

4. 93

1.021

0.43

7.49

l.586

1.39

circles these poles and the collective resonance pole
in the same sense. The relative contribution of
collective excitations diminishes as more poles
shift below the axis when E~ increases. The equal-
ity of the incremental changes of L, and L„, Eq.

(24), remains unaffected. Although the umklapp
processes cause the relative contributions of
L,(y, E~) and L„(y, E~) to vary sharply with E, the
total stopping function I,(y) depends on E essential-
ly only through p.
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The electrical and optical properties of materials which are characterized by narrow bands
in the vicinity of the Fermi energy are discussed. For such materials, electronic correla-
tions and the electron-phonon coupling must be considered explicitly. Correlations in f bands
and in extremely narrow d bands can be handled in the ionic limit of the Hubbard Hamiltonian.
It is shown that free carriers in such bands form small polarons which contribute to conduc-
tion only by means of thermally activated hopping. Wider bands may also exist near the Fermi
energy. Carriers in these bands may form large polarons and give a bandlike contribution to
conductivity. A model is proposed for determining the density of states of pure stoichiomet-
ric crystals, beginning with the free-ion energy levels, and taking into account the Madelung
potential, screening and covalency effects, crystalline-fieM stabilizations, and overlap effects.
Exciton states are considered explicitly. The Franck-Condon principle necessitates the con-
struction of different densities of states for electrical conductivity and optical absorption. Be-
cause of the bulk of experimental data presently available, the model is applied primarily to
NiO. The many-particle density of states of pure stoichiometric NiO is calculated and is
shown to be in agreement with the available experimental data. When impurities are pres-
ent or nonstoichiometry exists, additional transitions must be discussed from first prin-
ciples. The case of Li-doped ¹iOis discussed in detail. The calculahons are consistent,
with the large mass of experimental information on this material. It is concluded that the
predominant mechanism for conduction between 200 and 1000 'K is the transport of hole-
like large polarons in the oxygen 2p band. A method for representing the many-particle
density of states on an effective one-electron diagram is discussed. It is shown that if
correlations are important, donor or acceptor levels cannot be drawn as localized levels
in the energy gap when multiple conduction or valence bands are present. This result comes
about because extrinsic ionization energies of two correlated bands differ by an energy which
bears no simple relation to the difference in energies of the intrinsic excitations, which are
conventionally used to determine the relative positions of the bands.

I. INTRODUCTION

Transition-metal and rare-earth compounds are
characterized by d and f bands in the vicinity of the
Fermi energy. Since the spatial extent of these
electrons away from their ion cores is relatively
small compared to outer 8 and p electrons, the d
and f states on nearest-neighboring ions overlap
only slightly and thus ordinarily form very narrow
bands. It might be asked whether ther e ls any
meaning in referring to these somewhat spread out
levels as bands rather than localized states, since
they are certainly not one-electron bands in the or-

dinary sense. However, long-range magnetic order
is the rule rather than the exception in these mate-
rials, and so the effective overlap must be finite.

These materials can be either insulating or me-
tallic. However, for a large class, e. g. , Coo,
band theory appears to fail. In these compounds,
it can be shown by symmetry arguments that a par-
tially filled band must exist, and yet they are ex-
cellent insulators. Although attempts at modifying
band theory to explain the insulating behavior have
been made, and these have succeeded in reducing
the number of materials in the class, it does not
appear likely that a pure Hartree-Fock approach


