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A method is presented to calculate electronic band structures for a general one-electron
potential. Both the wave functions and their gradients are continuous everywhere in the crys-
tal. As a test, calculations for paramagnetic ¹i,Cu, and Alby Hanus, Burdick, and Segall,
respectively, were repeated, using their muffin-tin potentials.

I. INTRODUCTION

Among the different methods to calculate the
band structure of solids, the augmented-plane-wave
(APW) method proposed by Slater' has proved
particularly useful. It is based on the fact that the
crystal potentials near an atomic site are approxi-
mately spherically symmetric. Therefore, the
crystal will be divided into several parts by con-
structing a sphere (radius r; ) about each atomic
site. The wave function is expanded inside each
sphere in terms of radial functions multiplied by
spherical harmonics; in the region between the
spheres the wave function is expanded in a Fourier
series of plane waves. Across the surfaces of the
spheres, the APW method in its original form makes
the partial waves continuous, however, for the
lower values of the azimuthal quantum number l
only. Usually all the calculations using the APW
method are based on a muffin-tin potential, which
is spherically symmetric inside the atomic spheres
and has a constant value outside.

Within the one-electron approximation, several
improvements of the APW method are desirable:
(i) exact continuity of both the wave functions and
their first derivatives on the surfaces of the APW
spheres (this is a necessary requirement if the wave
functions are to be used to calculate matrix ele-
ments, in particular, those of the momentum op-
erator and functions thereof), (ii) generalization
of the method to allow for non-muffin-tin potentials
(this step should be done if the band structure is
calculated in a self-consistent manner), (iii) or-
thogonality of the wave functions of the valence elec-

trons to the wave functions of the core electrons.
Preferably the core electrons should be described
by Bloch functions also.

In addition, one would like to have a formalism
which can be handled on a computer using standard
techniques of numerical analysis.

Different modifications of the APW method
have been proposed with the above-mentioned goals.
The version previously proposed by one of the pres-
ent authors' ~ incorporates the first requirement.
Further, it allows for a nonconstant potential in
the plane-wave region as do the formulations of
Leigh, Schlosser and Marcus, and De Cicco.
General potentials have been studied by Marcus
and others. ' In the 1937 formulation of the APW
method, the wave functions of the valence electrons
are orthogonal to those of the core states if the
latter are also determined by the APW method.
The aim of this paper is to describe a new version
of the modified-augmented-plane-wave method
(MAPW) which produces wave functions of the va-
lence electrons orthogonal to the wave functions of
the core electrons and which is especially suited
for computers. Applications to paramagnetic ¹i,
Cu, and Al are reported with the special view to-
wards comparing the results with earlier calcula-
tions.

II. DESCRIPTION AND DISCUSSION
OF METHOD

A. MAP% Trial Functions

As in the original APW method, we approximately
solve the one-electron Schrodinger equation by the
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equivalent variational principle. In contrast to APW sphere, even if the potential is spherically
other versions, however, we do not work with exact symmetric in this region. As a trial function for
solutions of the Schrodinger equation inside the the Rayleigh-Ritz procedure we rather use

L

p(r)=Q Q (2I+1)i' A„, R„,(r)Y, (r )+Q Q v(kj)(2l+1)i" Y, .~(k&0)j,(k&r)Y, (r0)
n l =0)m kg l =L+1;m

L
=Z (k, )e'"R ~ Z (21+1)i'" QR„,„R„,(r) —Ee(k, )j,(k, r)F, (k12))F, (P) (err

kg &=00m
(lb)

P"„(r)=~ v(k, )e'"&~
kg

for z&z& (2)

Here r and k& are unit vectors. The electron
states are characterized bg the reduced wave vec-
tor k. We defined k&=k+ K&, where K& denotes a
reciprocal-lattice vector. The expansion coef-
ficients A and v are obtained from the condition
that the energy be stationary. Y, and j, denote
spherical harmonics and spherical Bessel functions,
respectively. The radial dependence of the partial
waves with l = L inside the AP W sphere is described
by the functions R„,(E„,, r), which a,re solutions of
the differential equation

R l+ (2/r)R l+ [E l I(I+1)/r V Rh(r)]RR( 0 (3)

where V,»(r) denotes the spherical mean value of
the potential V(r). In Slater's APW version, ' as
well as in the earlier MAPW procedure, the com-
plete set of the R„,'s was generated by the requirement
that all partners have the same logarithmic deriva-
tive for x= x, . This results in a severe restriction
of the flexibility of the ~ dependence of the trial
functions in the vicinity of the sphere x= x, and
necessitates a further variation of the E„,'s. Since
this second variation turns out to be very time con-
suming in practice, we consider solutions of Eq.
(3) in the interval 0 &r&r0 with r0&rl, and orthog-
onalize them as before. The different R„,' s for
a given l having the same logarithmic derivative
for t'= to~

cl= R'I( l ro)/R l(E l ro)

in the range from 1.2r, to 2r, ; and (ii) that this
procedure yields R„,'s which are well suited to
describe the core states, too. The first-mentioned
property allows one to take a single fixed set of
c,'s for all states having the same order of magni-
tude of energy, with the consequence that only the
coefficients A and v depend on k.

Given a spherically symmetric potential for
x & x, , the APW method leads to exact solutions of
the Schrodinger equation inside the sphere for the
eigenvalue E"„, which in practice, however, can
only be achieved iteratively. In the present ver-
sion, the partial waves for both l & L and l &L gen-
erally do not have this property, as in the APW
method for a nonspherical potential in r& r; .
Despite this fact, our trial functions have the cor-
rect x dependence near the atomic site, where

I V,»(r)+ I(l+ I)/r l» IE)", I. Furthermore, we find
it more appropriate to minimize the mean error
in the whole cell rather than to solve the Schrodin-
ger equation in one region exactly.

In Eq. (la), the second sum implies the conti-
nuity of the partial waves and their derivatives for
l &L. In order to fulfill these conditions for l & I
also, we demand

ZA„( R„,(r;) -pv(kj)Y, , (kj0)jl(karl)=0, (4)

Z&„, R„',(r,)-P (k )Y, (k0)j,'(k r, )=0 . (5)

are distinguished by the index n which counts the
number of zeros in 0 & x& xo. The values of the
c,'s are not determined at this stage. It has proved
advantageous to fix them by choosing a value of E
which has the order of magnitude of the expected
energies of the valence band, and by calculating
c l

=
R 2(E r0)/R, (E, r0) using E(I. (3). In the cases

of Ni, Cu, and Al, we found (i) that the final re-
sults are neither sensitive to the choice of the c,'s,
even if a small number of R„,'s is used, nor
to the choice of the value of xo which was varied

Furthermore, the presence of the second sum in
E(I. (la) makes it possible to work with a rather
small value of L. Usually it is sufficient to limit
L to 2. The trial functions in the representations
(lb) and (2) consist of only finite sums. This
proves advantageous for the calculation of matrix
elements with these functions.

B. Variational Principle

We proceed in the usual manner and make the
expectation value of the energy stationary under
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the constraints of normalization and continuity of
the wave function and its derivative, as described
by Eqs. (4) and (5). These conditions are incor-

porated by means of I agrange multipliers -E"
o, , and P,~ &

respectively. We get the following
secular equations:

I L

+(Hsi' Ef ~&&')U(~s')+~ + H&, nim+n~~ ~ FF ~(kg)A(kg&~)o'im — Z F~), (kg)j ', (k;s;)P,„=O for all j, (6)
j' n $-"Opm F=Opm, l-O fft

QH„, ; (k, ) Q g (H„, „.; ~ -E„-6„S„.0„,„„., )Az; .+R„,(z, )u,„R„',(~,)P, =0 for aii „ l ~
j l'~0; m'

The following abbreviations have been used:

I
fl;p = Ao&„'-4v 5 {2l+I)P,(ko~ k~0)J j,(k~~)j,(k~r)~'dr,

S=Q

'
O

n„, „.,„=47r(21+1)[(l+m)!/(1 —m)! ]f 'R„,(Y)R„., (r)Y'dK,

I
H,.y,

—'(k,. / —
jpg, )Q, ,,ygoV(~Ky -Kp~)+4r J V, „(Y)Ijo(~Kg —Kg, ~r) -p (2l+ l}P/(ky. ip~)j/( kg@)j /(kgb)} Y dr

I L CO eo

Z Z + Z Z + Z Z Sg~
l"-Oqm l =0~me l-Gym )~-I+1 ~ms )-I.+1;m )'-Ogm

(10)

Hq „, .=H„*.;„.)=(21'+1)i'' '
Q (2l+ I)i' Ff (k)) Q f P,' F,„.K, d(o f j,(kqr)R„.p(x)V(l", r)r dh,

i=I.+1;haft r"& O

&= 2v(21+ I) [(1+m)!/1 —m)! j6„.& .(E„, &+„.,) f R„,(x)R„,(r)r dr

+ Q (2l+1)(2l'+ I)f' '""'"-'f F*,-.F,,„df;.d~ f,
*

R(~) R(~)V(l", ~)~'d~,

g», , -(2l+ I)(21'+1)i' '"' ' -'F+ -(k,'}F, (k,'.) 2 fFf„F;„df,- d&ugj, (k,~)j,, (k,,~) V(l", ~)~'dy.

Qo denotes the volume of the atomic cell. The de-
viation of the potential from muffin-tin form, V(r),
is expressed by

V(r) —V„„(~) for x& x;
V{r}=

V(r) for x&x&

It may be expanded in a Fourier series

V{r)=Q V{K,)e'"~' .

The surface integrals extend over the unit sphere
and can be evaluated using Clebsch-Gordan coef-
ficients. In Eqs. (10) and (11), several l sums

occur which extend from L+ 1 to ~. Since the in-
dividual terms contain one of the integrals

f,"'j,(k, ~)R„.;(~) V{1",r}'r' dr

or

f j,{k~r)j;(k~.r) V(l "& r)r A&'
Q

which in Inost cases turns out to diminish rapidly
Inside the AP% sphere, it is appropriate to express with growing values of [, convergence is ensure
the angular dependence by lattice harmonics"

V{r) = Z V(l, ~)& (r')
C. Reduction of Eigenvalue Problem

Briefly we should li'ke to comment on the nu-
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merical solution of the eigenvalue problem, which

has the form
ments.

D. Orthogonality to Core States

H„ H„

Hgl Hgp

v gi 0 tv
0

0 n, A

0

where the submatrices H, &
generate the matrix

element ($ I Hlg), the 0, guarantee the normaliza-
tion of g, and finally, where the C, force the wave
function and its gradient to be continuous. In (I'7)
the first two equations correspond to Eqs. (6) and

(7), whereas the third and fourth equations corre-
spond to the requirements of continuity, Eqs. (4)
and (5).

Clearly, one tries to reduce the rank of the
eigenvalue problem. The main object in view
should be, however, to retain a linear eigenvalue
problem, because nonlinear eigenvalue problems
can only be solved by directly searching for the
zeros of the secular determinant. In our case, it
is possible to eliminate twice as many equations
as the vectors of the Lagrange multipliers n, and

P& have components. The elimination ean be done
such that the Hermitian property of both matrices
involved is conserved. Since all rows of C& and

C3 are linearly independent —otherwise any energy
E would solve the eigenvalue problem —we can
take a sequence of Gauss elimination steps to re-
move the submatrices C& and C2. These steps
cannot change any element of C& or C3. Therefore
it is possible to perform the transposed elimination
steps for C& and C3. It would not be suitable to
carry out the elimination analytically in our for-
mulas since any of the denominators which arise may
vanish or become very small, leading to numerical
risks. As a consequence of the elimination pro-
cess, all zero eigenvalues of the semipositive
definite matrix on the right-hand side of Eq. (IV)
are removed, so that its Cholesky decomposition''
becomes possible, and we get a Hermitian eigen-
value problem of standard form A y = Ey. For
most computers, subroutines are available which
simultaneously yield, with high speed and accuracy,
all energy eigenvalues as mell as eigenveetors in
a given energy interval. If we take as a realistic
example a k point without any symmetry, we have,
for instance, 9e, 's, 9P,„'s,18A„, ' s, and 51m&'s,

consequently, a total rank of 87. After elimination
the rank will be reduced to 51.

For highly symmetric directions of the k vector,
the size of the eigenvalue problem may, of course,
be further reduced by group-theoretical argu-

The formalism developed above yields both va-
lence states and core states which are orthogonal
to one another. In the case of a low-lying core
state, an essential simplification is possible since
the wave function falls off very rapidly inside the
APW sphere and ean be regarded to be zero at its
surface. As a consequence, the coefficients v and
the I agrange multipliers will turn out to be negli-
gibly small. Furthermore, in the cases of Ni, Cu,
and Al, we found that by choosing the c,'s as de-
scribed in Sec. II A, only one of the coefficients
A will be essentially different from zero. This
core state may approximately be determined by
solving the Schrodinger equation of the corre-
sponding atomic problem with the actual crystal
potential. This procedure leads to k-independent
wave functions which are orthogonal both to one
another and to the valence functions. Noticing this
property, we can omit those partners 8„,which
represent the low-lying core states in the ansatz
for the valence states.

III. RESULTS

Using the muffin tin potent1als of HRIlusq Bur-
dick, and Segall, the band structure and the
wave functions were determined for paramagnetic¹i,Cu, and Al in the (001), (110), and (ill) direc-
tions of k space, limiting ourselves to L =2. In
order to test the convergence, the number of part-
ners 8„& was increased from 2 to 7 and the number
of plane waves from 15 to more than 100. As a
typical example, we show in the first three columns
of Table I a k point in the middle of the ~q line of
the first conduction band of Cu. We remark that
we achieve an accuracy better than 0. 005 Ry if we
restrict ourselves to 2n values and 51 plane waves.
The same accuracy was established in all cases
considered.

Comparing our results with those of Burdick
and Segall, we found that the deviations of the en-
ergy values for Cu mere constantly within the
limits of accuracy of 0. 01 Ry and less than 0. 008
Ry for Al.

For Ni, the k dependence of the energies for the
three directions of high symmetry, as determinated
by the MAPW procedure, is plotted in Fig. 1. As
compared to Hanus's results, we always find for
the conduction electrons somewhat lower energy
values. These deviations show a weak k de-
pendence and are most pronounced at I'& with 0.05
Ry. On the average, these deviations are about
0. 02 Ry. In the view of the excellent agreement
in the cases of Cu and Al, we have some confidence
in the Ni results, yet we cannotunderstandthe dis-
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FIG. 1. Ek versus k
along the O10), (001), and
(ill) directions in the Bril-
louin zone in nickel. Re-
presentation labels are in
the usual Bouckaert-Smolu-
chowski-signer notation.
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crepancy between our results and those of Hanus.
We also calculated the highest-lying core bands.

In Table II we list the energies for k= 0, E„o and

TABLE I. Dependence of E& and 0&&& on the number
of plane waves 0 and the number of partners 8„& for a
fixed l, ¹

the bandwidths ~E.
Since it is mell knomn that variational principles

need not yield a reasonable approximation for the
true eigenvectors even if the eigenvalue is con-
verging well, we have to look for a criterion to
judge the accuracy of the wave functions.

An obvious criterion mould be

&z= f Wi(& ~r) 4r«/f W~C«

113

—0.797 439
—0.845 422
—0.846 226
—0.846 473
—0.846 584

—0.845 170
—0.846 997
—0.847 188
—0.847 233
—0.847 253

—0.847 309
—0.847 371
—0.847 376
—0.847 378

—0.847 326
—0.847 384
—0.847 389
—0.847 390

0.051
0.021
0.019
0.022
0.026

0.0333
0.0073
0.0050
0.0055
0.0065

0.0046
0.0013
0.0011
0.0012

0.004 30
0.000 64
0.000 29
0.000 29

since the value of this expression will vanish for
the exact solution. Homever, it is easy to verify
that this is true for any trial function, as a con-
sequence of the demand that o& be stationary.

Another test for the accuracy of the mave function
would be to evaluate

o„(r)= &P(r)/Pl(r) -&~

at every point of the cell. In regions mhere the
wave function P is small, a slight deviation of („-

from the exact value will lead to a large o,~(r).
However, when calculating matrix elements, these
regions generally are expected to give negligible
contributions. Therefore, orI does not seem to be
an appropriate measure. A more adequate criterion
for the wave function seems to be the expectation
value of the operator (H —E) . The natural gen-
eralization to cases where the highest derivatives
of the vrave function or the potential are discon-
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TABLE II. Energies at I', Ez, and band widths ~ for the highest core bands of Ni, Cu, and Al.

¹ Cu Al

Corresp. Rtoxnic
level

Er (in By)
m {ln By)

—6.9248
0.006

—4.2436
0.02

—8.3722 —5.4248
0.002 0.01

—7.0952 —4. 2420
0.0003 0.0018

continuous is the expression

~us= tf (&C)*(III')« ~~X-f/gd~]lpga«

=-f [(H —E„)PI dr/fg"„Pdv

In column 4 of TaMe I, the values oqqq are given for
the saxQe cases as considered above~ It is remark-
able that a rapid decrease of o&» is only achieved
if the values of N and J are chosen in a Nell-bal-
anced manner.
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