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Macroscopic thermal dilatation coefficients as well as those of the lattice have been pre-
cisely measured along principal crystallographic directions of magnesium single crystals
in the temperature range between room temperature and 650'C. The vacancy concentration
was thus obtained as a function of temperature and it reached the value of 72&&10 in the neigh-
borhood of the melting point. An appreciable anisotropy in the atom rearrangement appears
during the defect-formation process, which seems to correspond to a preferential climb of
edge dislocations in the prismatic planes. From the behavior of the excess in macroscopic
dilatation as a function of temperature, the formation energy is found to be 0. 58 eV per va-
cancy, while the formation entropy is practically zero.

I. INTRODUCTION

The volume of a perfect crystal at low tempera-
tures can be written as

Vo = NOQO,

where 00 is the atomic volume which is constant
throughout the lattice and No is the number of lattice
sites or the number of atoms. Raising the temper-
ature results in both a uniform dilatation of the
atomic volume due to the lattice-vibration anharmon-
icity and the appearance of point defects. The lat-
ter modifies the total number of lattice sites and
produces a relaxation effect which modifies the
mean atomic volume. Then, it is necessary to de-
fine a new atomic volume 0 for N sites in the equi-
librium temperature T; the volume of the crystal
can be written as

V=NO .

For a reversible increase in temperature dT from
T

dV/V =dN/N+dn/0 .

If it is supposed that the macroscopic-dilatation
tensors and those of the lattice, although different,
have superposed principal axes, it is possible to
describe the relative increase of the number of
sites as a function of both the macroscopic relative
dilatation and that of the lattice,

dN ~ dL; da;
a,

The coefficients dL;/L, can be macroscopically
determined while da, /a; can be found by diffra. cto-
metric observations since the lattice appears with
an atomic density and, therefore, an electronic
density which is a triply periodic function showing
well-defined maxima.

Calculation shows that, for a precision of 10 '
on

the increase of the number of sites relative to a
state of reference without defects, an integration of
Eq. (1) is required. One obtains

ln —- = ln -~ -ln -~

and the concentration is given by (for a precision
of 10 ')

c=Z 1 (1 ') —ln(1 ')

One obtains the well-known first-order development
result of Eshelby's' calculation which was used
mainly by Simmons and Balluffi to obtain the for-
mation energies and entropies of vacancies in alu-
minium, silver, gold, and copper' from simultane-
ous measurements of specimen widths and lattice
parameters. For these different materials, as
well as for lead and sodium, ' the structure is cu-
bic; therefore, the defect concentration can be ob-
tained from only one series of measurements on
the same specimen.

For an hexagonal crystal, however, the c axis
is different from the two equivalent basal axes. The
relation (2) is then written as

c = ln(1+ DL„/Lo) —ln(1+ ha„/ao) + 2[in(1+ ALi/Lo)

—ln(1+ aa, /a, )] .

The indices il and ~ refer to the directions parallel
and perpendicular to the c axis, respectively. A
first-order development gives the relation used by
Feder and Nowick for cadmium. ' In this case, sin-
gle crystals must be used and two series of mea-
surements must be made to determine the dilatation
coefficients for the principal directions.
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II. EXPERIMENTAL METHODS

A. Specimen Preparation

The specimens were of two types: single-crystal
bars 500 mm in length for the macroscopic dilata-
tion studies and small single-crystal plates for the
lattice-dilatation observations. Single crystals
having diameters of about 4 cm were grown by the
Bridgman technique using vertical graphite cru-
cibles with pointed lower ends. The speed of the
melted zone travel was 2 mm/h. The single crys-
tals were placed in a goniometric support and cut
with a spark cutter to obtain oriented single-crystal
plates for lattice observations.

Seeds were also cut and used for the growth of
very large single crystals in the form of parallel-
epiped bars. The method consists in placing the
seed, a few centimeters in length and 1 cm~ in
cross section, in the desired orientation beside a
600-mm-long magnesium bar of the same cross
section and containing 100 ppm of impurities. A
melted zone which partially melts the seed and
welds it to the Mg bar is made to travel to the other
end, thus imposing the seed's orientation on the
bar. The specimens selected were those forming
7' and 77' between the growth axis and the c axis.
Their monocrystalline nature was verified by a
series of I aue photographs. The initially ir-
regular faces of the bars were spark polished to
eliminate the presence of external stresses during
the dilatation measurements. The perturbed super-
ficial layer was removed with diluted nitric acid
and the specimens were rinsed with alcohol and
doubly distilled water. Elongation measurements
were made using tungsten reference points stuck
vertically on holes about 500 mm apart bored on
one face of the bar. This is found to be the best
method, considering the amount of evaporation of
Mg in the neighborhood of its melting point.

The platelet preparation for the lattice-parameter
measurements is much simpler. Considering the
geometry of the heating system, they were made in
such a way as to fit against a face of the bar and
present a plane towards the exterior for the diffrac-
tometer measurements.

B. Measurement Apparatus

The system was described and used by Bianchi
and Mallejac. ' The specimen, entirely enclosed
in a 180-cm graphite piece provided with observa-
tion windows, is placed in the refractory steel
tube (70 mm diam) of the 3. 5-m-long furnace. The
furnace has five independent windings and the tem-
perature is made constant in time and space by a
system of regulation; the temperature measurement
uses a single thermocouple which travels 1 mm
above and parallel to the specimen. Thus, it was

possible to maintain a constant temperature through-
out the length of the bars for more than 30 min and
more than 4 h at the x-ray observation windows
with an accuracy of 0. 1'.

To avoid pollution and evaporization of Mg, the
study was made in an atmosphere of purified helium
at a pressure of 3 bars.

The macroscopic elongation measurements were
made with an optical dilatometer consisting essen-
tially of two microscopes equipped with cross hairs
and a system of image transfer. They are fixed
rigidly with bars of Invar at controlled tempera-
tures. The successive sighting of the reference
points is done by moving the assembly with the use
of a micrometer which reads 0. 1 p, . Preliminary
adjustments are realized with three translations
and one rotation of the assembly.

For the lattice-dilatation measurements, a mod-
ified "rotating crystal method" was used in which
the crystal is fixed and the diffractometer oscillates
around an axis contained in the plane of the plate-
lets. A 1-m optical lever allows a reading of the
order of 10 ' for the relative displacement of the
diffraction spot corresponding to the selective re-
flection chosen. Since the entry and exit of the x
rays in the furnace is limited by a 30' cone, the
reflections of the Ko&& of Fe on the planes (0115)
and Ko.

&
of Co on the planes (1233) were used.

C. Measurements

After annealing for several days in the neighbor-
hood of 450 C, a bar and a platelet were subjected
to successive temperature increases at 20' inter-
vals from room temperature to the neighborhood of
the melting point in such a way as to be able to trace
simultaneously the macroscopic- and microscopic-
dilatation curves on two neighboring crystallographic
directions. This process is repeated several times
before another set of specimens is observed.

1. Principal Macroscopic Dilatations

The measurements give directly the relative
dilatations hL«&/L and b,L&2& /L for the two bars
having axes forming 7' and 77' angles with th

axis, respectively.
Table I gives an example of the experimental re-

sults obtained in a late series of measurements for
b,L «& /L and b.L &» /L.

The dilatation on the principal crystallographic
directions is therefore the result of a combination
of the two series of independent measurements.
This combination is not linear since the dilatation
anisotropy produces a change in the angles between
the characteristic directions of the structure. A

more rigorous calculation gives
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Ol„s 'a'[ Sar, a/)I~ (al„)/,I,)'],—sio'a, [(al,„)/I,, (OI c/)I, )'] )'"
sin(n(+ n, ) sin(o. , —o.,)

ol,„cos'a, [col ()/I, (ola)/Ic)'] —cos'a, [cols, /I, (ol )„/I„)'] )' '
sin(u(+ (].,) sin(n( —o.,)

where a, and a2 are, respectively, the angles
formed by the measurement directions with the basal
plane; 4L(» /I 0 and b.I (»/I 0 having been deter-
mined at different temperatures, the experimental
values are replaced by two fourth-degree polynomi-
als whose coefficients have been found by computer
calculations. One can also replace the polynomials

by a parabolic interpolation.

2. PxineiPal I attice Dilatations

Knowing perfectly the diffractometer geometry,
one can deduce, in the same manner outlined above,
the principal lattice dilatations from the measured
values. An error calculation shows immediately
the impossibility of determining this geometry to an
accuracy of 10 -10 ' using classical methods. One
must be contented with an accuracy of 10 -10
and a precise mathematical determination which
identifies the macroscopic dilatations with those of
the lattice for a given direction at low temperatures
where the point defect concentration is not detect-
able. The calculation is as follows: One calculates

the lattice distances d(T) as a &unction of temp~ra
ture up to about 400 'C for the family of planes
(0115) and (1233) by the relation

d(T)'=
4 h + 0'+ I(k + 4 (a'/c') l'

where

0 = Qo(l + M/Qo) = so(l + AIs( /II(])

e = e,(l + ac/c, = c(l(1+ al, „/I.(]) .

From this, one deduces the values of the corre-
sponding Bragg angles

8(T) = arcsin(X/2d(T)) .

These values 8(T) are adjusted mathematically,
using a computer, to those obtained from the geom-
etry of the system (Fig. 1):

8(T) =arcsin

$[h cosP + (X —b) sing]2 —(e —e,)~P/'
——arctan

2 I( sin(t( —(X —h) cos(t(

TABLE I. Experimental values for ~I (~)/I 0 and
&I ~~)/I 0 after macroscopic stabilization of the specimens.

T 105&L(g)/L ()
10'&L (2)/L 0

(c)

where h is the distance between the specimen and

the photographic plate O'H, b is the distance between

the reference point 0 on the film to the foot on the

17.9
48. 6
73. 5

117,3
144.2
179.0
213.0
244. 8
310.7
333.4
367.6
389.5
408. 7
431.1
446. 6
468. 5
496. 7
534. 7
566. 1
591.0
613.3
634. 0
647. 7

—19.9
62. 8

130.7
255. 4
331.6
432. 6
533.3
629. 0
834.3
906, 1

1015,5
1087.1
1149,0
1223. 8
1275.2

1351.0
1449, 1
1581.4
1695, 6
1787.0
1872. 2
1951.3
2012.3

56. 8
74. 7

102.2
127.8
169.8
205. 7
232. 8
259.7
304.2
341.0
363.6
394.8
413.7
437. 8
457. 2
492, 6
521.2

556. 9
591.2
612.8
635, 4
646. 0

79.4
124. 2
197.7
267. 3
383.2
485, 2
564. 2
643. 5
779. 5
893.1
964. 0

1065.5
1126.8
1206. 9
1272. 3
1394.6
1497. 1
1631.2
1763, 9
1850.0
1941.6
1985.6

p (~as c)f p()a lag) c~hlc pic)la

roy source

Spl&C IIYI&h

FIG. 1. Diffractometer geometry. Symbols are de-
fnied in the text.
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plate of the perpendicular to the specimen OII, Q is
the angle between the horizontal projection of the
plate and the incident rays, X(T) is the coordinate
OP of the diffraction spot referred to the reference
point 0, e —eo is the height of the average diffracted
ray referred to the horizontal plane containing the
average incident ray, and X(T) are the experimen-
tally obtained quantities; the other values result
from the mathematical adjustment.

Knowing the diffractometer geometry, one cal-
culates for 8,(T) and 8,(T) up to the melting point
using experimental values [Eq. (7)]. From these,
one obtains d, (T) and d2(T) [Eq. (6) and finally the
principal lattice dilatations ha~/ao and bak/uo
[Eq. (5)] for the whole range of temperatures.

Again, a series of independent measurements
at various temperatures are involved in the calcu-
lations, thus making the use of a polynomial adjust-
ment or a parabolic interpolation necessary for
each series of measurements.

3. Formation Energy and Entropy

Using Eq. (2), it is possible to calculate the point
defect concentration c(T) as a function of tempera-
ture. Finally, these values c(T) are identified with
those given by the relation

A &-Eylkr

Usually, the quantity inc is adjusted to a function
in (I/T). In this case, the greater uncertainty for
the points at low temperatures would correspond
to a smaller statistical weight. It is preferable to
determine directly A and E& by the method of least
squares for the minimum of

W=g&[c(T;) —Ae ~~k ']

The calculation shows that it is obtained for the
maximum value of

p'(E~) = (Z,u;y, )'/Z, u', Z;y,'
where

y, =c(T,), u, =e

The energy of formation E& is then given by the
abscissa corresponding to the maximum of the
curve p'(Ez) which is obtained by a computer calcu-
lation. The entropy coefficient A* is then esti-
mated by

A* =2& y;u, /Z; u;, when E& = E& .
A confidence range on the values of A and E& can
be determined by the following conditions:

(E —Eo) (A/k) (n —2)'~' ={[K)u; Z; Vk

after the law of Student for n —2 degrees of free-
dom, where n is the number of points taken into
consideration and

V, =uq/T, .
This calculated confidence range takes into ac-

count only the uncertainty due to the scatter in the
experimental measurements and holds only for the
assumption of a single type of thermal defect. In
this sense, it is an optimistic estimate of the true
error in the energy and entropy of formation. Sys-
tematic errors which may have an appreciable ef-
fect on the results are not included. However, it
would seem that such systematic errors, if they
exist, would make it very difficult, if not impossi-
ble, to obtain reasonable values for k, 5, and P,
which are adjusted mathematically by identifying
the macroscopic dilatations with those of the lat-
tice at low temperatures.

III. EXPERIMENTAL RESULTS

A. Macroscopic Measurements

During the raising or lowering of the tempera-
ture, the regularity of the dilatation curves can be
followed by tracing the changes in length as a func-
tion of temperature on diagrams of large dimensions
(7 mx4 m). The curves do not superpose for the
first heating-cooling cycles; a residual dilatation
appears at room temperature. Two successive
heatings on the same specimen give very different
curves at low temperatures (up to 500 C for the
direction near the basal plane and 300 C for the
direction near the c axis) which converge towards
each other at higher temperatures to coincide per-
fectly at temperatures near the melting point. Af-
ter three or four heating-cooling cycles, this
phenomenon disappears and the macroscopic dila-
tation curves coincide within the precision of the
experiment.

Table II gives the values of nL/Lo for the two

measurement directions corresponding to the first
and last raising of temperature. The differences
between the initial and final dilatation coefficients
illustrate the analysis described. The values given
in Table II result from a polynomial adjustment of
the experimental values, and their less than 10 '
spread shows that the desired accuracy is attained.

B. Lattice Measurements

(A —Ao) (n —2)' '=[[K, (u,' —V', )

—(Z, u, V,.)']/[Z, y,'Z, V,'- (Z,. y, V,)']]"',

Here, the experimental quantities are the posi-
tions X(T) of the diffraction spots It has be. en
stated above how the diffractometer geometry must
first be determined from macroscopic measure-
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TABLE H. Values of &I-/I-o for the two measurement directions corresponding to the first and last raising of
temperature.

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650

10'&I./1.0

near basal plane

First
temp.
rise

0
64. 3

130.1
197.4
266, 1
336.1
407. 2

479. 6
553. 0
627. 6
703.2
780. 0
858. 0
937.2

1017,7
1099.6
1183.0
1268. 0
1354.7
1443.4
1534. 1
1627.2
1722. 8
1821.0
1922.3
2026. 8

Last
temp.
1ise

0
62. 2

126.3
192.0
259. 4
328. 1
398.2
469, 4
541. 9
615.5
690.3
766. 2
843. 2
921.5

1001.1
1082, 1
1164.5
1248. 6
1334.5
1422. 4
1512.5
1604. 9
1700.0
1798.0
1899.1
2003. 8

F1rst
temp.
rise

0

70. 3
141.8
214. 0
287. 2
361.1
435. 9
511.3
587. 5
664. 5
742. 1
820. 5
899.7
979.7

1060, 6
1142.5
1225. 4
1309.4
1394.6
1481.1
1569.1
1658. 7
1750. 0
1843.2
1938.4
2035. 9

10 ~L/I p

Last
temp
rise

0

67. 2

135.7
205. 5
276. 5
348. 5
421. 6
495. 6
570. 6
646. 5
723. 2
800. 9
879.4
959. 0

1039.5
1121.0
1203.7
1287.6
1372.9
1459.5
1547. 7
1637.7
1729.6
1823„5
1919.7
2018, 2

10'C'

0

9.2
14.8
19.5
23. 7
27. 6
30. 7
35. 9
37.0
41, 8
42. 5
45.3
48. 9
51.9
55. 8
59.8
64. 5
69.9
75.4
81.6
88.4
96.4

104.3
113.9
124. 6
135.6

ments using Eqs. (5)-(7).
The initial estimation of the geometric elements

by direct measurements are within an accuracy of
10" -10; for instance, the distance between the
photographic plate and the specimen, h, is known
within an accuracy of 1 mm. The difference be-
tween the estimated and the adjusted [Eq. (I)] values
is called "Ah correction. " It appears that the first
series of parameter measurements X;(T) cannot be
adjusted by Eq. (7) to the angle 0(T) calculated
from the first macroscopic-dilatation measurements
at low temperatures; the "correction hh" must be
of the order of 10 mm, which is not acceptable.
On the other hand, if the measurements correspond-
ing to the last heating-cooling cycl.es are used, the
adjustment gives only a correction 2 h not exceed-
ing 1 mm and which can decrease up to 0. 1 mm for
certain X,(T) series.

Analogous observations were made concerning
the "corrections" Ab, bQ, and b, (e —eo) on the
geometric parameters 5, P, and (e- eo) which were
directly determined for ea,ch series of measure-
ments.

As long as the ma, eroscopic dilatation curves do

not superpose, they cannot be used for the equi-
librium point-def ect concentration determinations.
It must be noted that the described initial process
is involved only in the macroscopic-dilatation coeffi-
cients and does not affect the lattice dilatation.

C. Formation Energy and Entropy

The adjustment of Eq. (8) was done by making use
of the following experimental results: (i) macro-
scopic and lattice measurements on only the last
two series. The mathematical adjustment was
done by parabolic interpolation between groups of
three experimental points. This gives Ef =0. 59 eV
and A= l. 188; (ii) the same measurements as (i)
but using the polynomial adjustment E&= 0. 57 eV
and 4 =0. 932; (iii) a,ll measurements except for
the nonreproducible measurements of the first eyele,
Ez = 0. 58 + 0. 01 eV, A = 1.05, or S& = (0 + 0. 3)k. Ta
ble III shows the results which led to these deter-
minations. The quantities

characterize the influence of the appearance of
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30
50
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510
530
550
570
590
610
630
650
Tf

651

10'O, 10 C

0. 9
1.0
0. 9
0. 8
0. 6
0, 3
0. 0

—0. 4
—0. 6
—0. 9
—1.0

1~ 1
—1.2
—1, 1
—1.0
—0. 6
—0. 2

0. 5
1.1
2. 2

3.1
4. 5
5. 9
7. 6
9.4

ll. 5
13.8
16.3
19.0
21.9
25, 1
28. 3
28. 4

1.2

0.3
—0. 3
—0. 7
—0. 9
—1.0
—0. 9
—0.7
—0. 5
—0. 3

0. 0
0. 1
0, 3
0. 5
0. 5
0. 6
0. 5
0. 5
0. 5
0. 5
0. 5
0. 7
0. 8
1.2
1.8
2. 7
3.9
5.4
7. 4
9.9

13.1
16.9
17. 1

2. 7
1.9
1.1
0. 6
0. 0

—0. 7
—1.0
—1.6
—1.7

2 ~ 3
2 ~ 3

—2.4
2 0

2 ~ 1
—1.6
—0. 9
—0 2

1.2
2. 6
4. 6
6.4
9.3

12.3
16.0
20. 1
25. 1
30.9
37. 1
44. 3
52. 5
61.8
71.9
72. 2

TABLE III. General results after a polynomial
adjustment.

which can be viewed as dislocation structures; the
surface, which depends on the form of the speci-
mens. It is possible to show in the present case
that the dislocations are responsible for the va-
cancy emission and trapping.

Taking, for example, the simple reasoning of
Damask and Dienes, ' the rate of vacancy creation
(+ sign) and annihilation (- sign) can be written as
dn/dt = + aDn, where n is the number of point defects
present at a given instant, D is the diffusion coeffi-
cient of the material, and n is a numerical factor
depending on the nature of the sources or sinks.
For the surfaces,

n, = pP (I/L f + 1/L', + 1/L', )/sites per cm'

if the specimen is a parallelepiped of dimensions
L„Lp, Lp. In the present case, o.,= 20/sites per
cm.

For a dislocation density No per cm,

2Np/ln (r,/rp )

with

rp
= ap and wr, = 1/Np .

Here, the dislocation density is greater than 10'/
cm', hence

o.o &10'/sites per cm

Thus, the frequency of absorption and emission
of vacancies is at least 5000 times greater on the
dislocations than on the surfaces. The creation
and annihilation of point defects occurs in the vol-
ume and the effect of the free surfaces is negligible.

This justifies the method used and one can under-
stand the following two experimental observations.

1. AnisotroPy of Site Creation

vacancies in the planes parallel and perpendicular
to the basal plane, respectively. The ratio 5g/l5p

is always greater than unity and is a decreasing
function of temperature; it takes the value 7 near
480'C and 1.7 near the melting point. The same
type of observations were made on cadmium by
Feder and Nowick' and on zinc by Gilder and Wall-
mark "

IV. DISCUSSION AND INTERPRETATION OF RESULTS

A. Mechanism of Defect Formation

For convenience, the macroscopic measurements
were made on two different monocrystalline speci-
mens. In order that the two series of measurements
be complementary, the defect effect should behave
in the same manner on the two specimens following
the principal crystallographic directions. This
effect is dependent on the nature of the sources and
sinks for vacancies: grain boundaries, which are
not present in our single crystals; subboundaries,

The ratio of the quantities 5~ and 5(, shown in Ta-
ble III is always greater than unity and decreases
regularly with increasing temperature. This means
that the excess atoms which appear after vac3ncy
creation move preferentially in the prismatic planes
Bnd much more so for a low density of vacancies.
The product of dislocation density and the velocity
of dislocation climb is the. efore larger for the
prismatic plane than for the basal plane. On the
other hand, the ratio 5, /5„ indicates that the veloc-
ity of climb increases much faster in the basal
plane with increasing temperature. It is interesting
to note that this anisotropy of site creation lowers
the natural anisotropy of magnesium by decreasing
macroscopic-dilatation anisotropy much faster than
that of the lattice dilatation.

2. Dilatation Anomaly for First Heating Cycles

The measurements show a perfect reproducibility
for the lattice dilatations but the same cannot be
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said of the macroscopic dilatations. For a given
direction, all the curves AL(T) coincide near the
melting point, but at room temperature there is
an appreciable spread of data for the first two or
three heating cycles. When the low-temperature
dilatation coefficients no longer change, there ap-
pears a relative residual dilatation of 23x10 ' for
the direction forming 77' with the c axis and 17.7
x10 for the direction forming 7' with the c axis.
It is easy to eliminate the effect of creep since the
specimens do not show any elongation when they are
maintained for several days at a given temperature
even in the neighborhood of the melting point.
Neither can pollution of the specimen from the heli-
um atmosphere, the graphite crucible, the Fe fur-
nace tube, or traces of oxygen in the furnace ex-
plain this residual dilatation. The saturation of
the phenomenon after two or three cycles would
mean that the pollution is so much as to make the
specimen a definite and stable alloy, which should
considerably affect the lattice measurements; but
no such effect was observed.

Finally, the possible instability of the tungsten
reference points must be taken into account. How-

ever, it is difficult to understand why this instabil-
ity would manifest itself several times at low tem-
peratures (region of dilatation anomalies for the

first cycles) and never at high temperatures (all the
macroscopic-dilatation curves coincide at high

temperatures).
The residual dilatation can be explained in terms

of structural defect rearrangements. In the making

of single-crystal specimens, a melted zone was
required to travel at a relatively fast rate to main-
tain a continuous and well-defined germination at
the solid-liquid interface. The resulting solidifica-
tion stresses establishes a dislocation network at
a thermodynamic metastable equilibrium at room
temperature. These stresses may be responsible
for the dilatation anomalies of the initial cycles in
accordance with the observations of Rosenholtz
et al." But the preliminary heat treatment at 450 'C
should, to a large extent, anneal out these stresses.
We prefer to base our interpretations on the easy
condensation of vacancies into loops as observed by
Poirier et al. ,

' and recently by Hillairet et al. ,
'

from their quenching experiments. It is, therefore,
not impossible to find in Mg a process analogous
to that observed by Baudelet and Champier'6 in Al.
During solidification, some vacancies do not go to
sinks but condense into small imperfect loops in
metastable equilibrium at room temperature. The
preliminary annealing at 450 C does not eliminate
these faulted loops definitely but allows them to
develop in the cooling process. During the first
heating cycles, these loops act as preferential sinks
for vacancies until their complete disappearance,

while the Frank network of dislocations are the
most efficient vacancy sources. To verify this
point, the relative increase of sites corresponding
to the first heating cycle was calculated using
Eq. (3) and shown on column C' of Table II. (For
this calculation, the lattice dilatations at low tem-
peratures were adjusted to the macroscopic dilata-
tions as described above. ) It is impossible to ad-
just C' to a single relation of the type

s'/u -s'/Ir

An adjustment using only the temperatures lower
than 300 'C gives an apparent formation energy
E&= 0. 32 + 0. 05 eV, while near the melting point,
one obtains E&= 0. 53 eV. If it is supposed that the
sites created at low temperatures are due to the
faulted loops, the apparent formation energy must
be

E yg

where y is the energy of the stacking fault and s the
site area (the variation of the line energy is ne-
glected). If E& is taken equal to 0. 58 eV, as ob-
tained above, and E& = 0. 32 + 0. 05 eV, then y = 250
+ 50 erg/cm' which is compatible with the estimate
of Hillairet et al. ,

" and the measurements of Har-
ris and Masters. ' Tables II and III show that the
"low-temperature" process favors the direction
parallel to the c axis, indicating a maximum density
of faulted loops on the basal plane in accordance
with the observations of Hillairet et al."on materi-
als of equivalent purity.

During the cooling that follows the first rise in
temperature, some vacancies condense into new
loops which develop progressively until a practically
stable dislocation network is established. ' This
stable state requires several heating-cooling cycles
whose number is least for the basal-plane direc-
tions in accordance with the idea that the structural
defects evolve much faster in the prismatic planes.
The dislocations formed by the point defects created
by the first heating cycles would be responsible for
the residual dilatation observed.

B. Formation Energy and Entropy

Work on the dilatation of Mg is very limited.
Goens et al. ' give 26. 96x10 and 28. 3x10 for the
macroscopic-dilatation coefficients on the basal
plane and along the c-axis directions, respectively.
The values fit very well with our results, i. e. ,
28. Vx10-8 and 28. 4x10-~(+0. 2x10-~). Raynor and
Hume-Rothery" reported lattice-dilation values
which agree with the present study up to 450 'C;
at higher temperatures, their values are always
greater than ours.

Experimental determinations of vacancy-forma-
tion parameters in Mg are also rare. Mairy et al.
measured the resistance of Mg wires in thermal
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equilibrium and deducing the defect concentration
from the difference between the variations at low
temperatures and the extrapolated law, found the
formation energy to be between 0. V8 and 0. 81 eV.
Beevers ' measured the resistivity after quenching
to —80 'C and obtained 0. 89 eV for the formation
energy. Recently, Hillairet et al."also measured
the resistivity after quenching and gave the values
0.80-0. 93 eV, depending upon the conditions of
the quench. There is not any direct determination
of the formation entropy in the literature. One
finds one measurement of self-diffusion energy by
Schewmon giving 1.40 and 1.39 eV, respectively,
for the basal plane and along the e axis and some
results concerning the migration energy of vacan-
cies: 0. 5-0. 8 eV by Levy et al." (resistivity after
quenching and annealing), 0.40-0. 45 eV by Nicoud'
(resistivity after irradiation), and 0. 52 eV by
Beevers (resistivity after cold deformation).

A comparison between the formation energy ob-
tained ln the present s'tudy (0. 58 eV) with those
cited above (0. i8-0. 93 eV) shows a difference too
large to be solely due to measurement errors. A
(:ritical examination of the experimental conditions
allows the following remarks.

Divacancy and Impurity Effects

It is well known that the apparent formation energy
of single vacancies is lower than its real value be-
cause the formation of divacancies at high tempera-
tures and the existence of vacancy-impurity inter-
actions. However, calculations show that the pres-
ence of divacancies in the neighborhood of the melt-
ing point cannot modify the present determinations
to a quantity greater than 1%, even if high values
for the binding encl gy are used (0. 30-0. 35 eV).

Recently, Hillairet et al. ' ascribed the large
difference in quenched resistivity between ultrapure
Mg (1 ppm) and less pure Mg (30 ppm) to a high

vacancy-impurity binding energy. If this is so, the
measured vacancy concentration in the presence
of impurities is given by

C=Ae x~" (1 —Zi+Zie ~~ ),
where Z is the coordination number of the metal
(12 for the present case), i is the impurity concen-
tration, and EI is the vacancy-impurity binding
energy.

Using this new definition for the experimental
values, C in the calculations, in which the impurity
content was varied between 100 Bnd 500 ppm and the
binding energy between 0 and 0. 5 eV, the computer-
obtained values show that the correlation coefficient
between the experimental and the optimal calculated
values is least for small i and E~ (i-100 ppm and
0 «Er, «0. 2 eV) even for the smallest confidence
range for A and E&. This appears in Table IV and
eliminates the impurity effect in the present study.

2. ImPerfect I ooPs as Vacancy Sources

The lowering of the formation energy of vacancies
when the imperfect loops are the sources was al-
ready invoked above and it was seen that a stacking-
fault energy of about 250-300 erg/cm' corresponds
in this case to an energy-of-formation decrease of
0. 30 eV, which is exactly the order of magnitude
and sign of the difference between our results and
those cited in the literature. However, it seems
difficult to make this interpretation for at least two

reasons: (i) After several slow anneals by raising
the temperature up to the neighborhood of the melt-
ing point, it seems very improbable that faulted
loops would remain in the specimens. (ii) In the
resistivity measurements in equilibrium and after
quenching, "' ' the imperfect loops would also create
vacancies resulting in a formation energy for va-
cancies decreased by the same order of magnitude.

TABI K IV. Impurity effect on the vacancy-formation energy.

i{ppm)

100
100
100
100

300
300
300
300

500
500
500
500

El, (ev)

0. 2
0. 3
0, 4
0. 5

0. 2

0. 3
0, 4
0. 5

0. 2

0. 3
0. 4
0. 5

E~ (eV)

0. 58 +0. 012

0.58+0. 019
0.60+0. 021
0. 66 ~0. 026
0.82+0. 029

0. 59 +0.020
0.63+0.022
0.75 + 0. 026
0. 93 + 0. 030

0.59 +0. 020
0.65+0. 022
0.79 +0.024
0. 97+ 0. 017

l. 049 + 0.450

1.033+ 0.739
1.284+ 0. 891
2. 426 + 1.853

13.064+ 9. 637

1.143+ 0. 788
1.706 + l. 222
5. 753 + 4. 183

29. 025 + 18.020

1.110+ 0. 823
2. 01 + 1.518
7. 667 + 5. 863

33.287 +23. 801

0.99954

0.999 54
0. 99949
0. 99933
0.99931

0. 999 53
0.99947
0.99947

0.999 53
0.99948
0.99929
0.999 15

10 Cy

71.9

70. 9
68. 4
60. 9
44. 0

69. 1
62. 4
46. 7

?

67. 3
57.4
37. 9
17.2
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3. Resis ti vi ty-Measurement ResuLts

The three studies preceding the present work are
resistivity measurements on wire or ribbon speci.—

mens formed by drawing or rolling. It must be
noted that in forming the specimens, a texture is
produced in the specimen wherein the basal plane
forms an angle of about 10' with the drawing axis,
and this texture remains after annealing. ' Con-
sidering that the material is anisotropic, that the
process of defect formation depends on crystallo-
graphic orientation, and that the quenched clusters
have anisotropic structures, " it seems difficult to
establish a simple relation between the physical
measurements on this texture (equilibrium and
quenched resistivity) and the va.cancy concentration
in the specimen at a given temperature.

Also, and this is very important, it seems that
the three cited studies could not have been made on
correctly stabilized specimens. The present work
shows that several cycles of slow temperature rise
and cooling are required for the stabilization of
the dislocation network which is formed by the small
loops created during the quench (or slow cooling of
a few degrees per second) by the condensation of
vacanc jes. Beevers, Majry, and Hjllajret' an-
nealed by maintaining their specimens for a certain
time at a given temperature of the order of 450 or
500'C, thus putting their "no vacancy" reference in
a state similar to that of our specimens during the
first or second heating cycles. To verify this point,
we determined the "point-defect concentration"
using only the measurements for the first heating
cycles by finding the difference between the low-
temperature (below 400 "C) dilatation curve extra-
polated to the melting point and the real "high-
temperature" curve. The mathematical treatment
already described gives a "formation energy" equal
to 0. 80 eV for an apparent vacancy concentration
of 3. 16X10 in the neighborhood of the melting
point. As it was seen before, a comparison with
the lattice dilatations indicates that the macroscopic-
dilatation curves of the first cycles are not charac-
teristic of the reversible formation of vacancies.

It is known that quenches cannot be fast enough
to retain all the vacancies. Therefore, even when
the processes of formation and elimination of defects
are isotropic, one entertains a few doubts on the re-
sults obtained from measurements after quenching.

The case of Mg is still more disturbing since a
single type of defect, that of vacancies, seems to
exist, but these vacancies are divided into two
families: those which appear (or disappear) easily
onthe prismatic planes and those which are formed
and eliminated with more difficulty on the basal
planes. Logically, the vacancies that disappear
during the quench are those of the first family and

therefore the resistivity measurements are highly
affected by second family. Making the ex3ggerated
supposition that only the latter remain, the corre-
sponding apparent formation energy can be estimated
from the dilatation measurements obtained here
for the direction parallel to the c axis. One obtains
0. 96 eV.

These two remarks tend to prove that the values
of 0. 78-0. 93 eV are really too high; the experi-
mental methods used must be responsible for the
systematic errors.

4. Correlations bet&veen E& and Other Physical
Quantities

Usually the self-diffusion energy is taken to be
the sum of the formation and migration energy of
a vacancy. For Mg, the rare estimations of the
self-diffusion energy give 1.3& E„~1.4 eV, while
the migration energy is quoted as 0. 4 ~ E~~ 0. 7 eV.
If this rule is accepted, it is deduced that the for-
mation energy must be between 0. 6 and 1 eV. An-
other rule which is also very often cited, E&= —2E&,
would place the formation energy in the range 0. 65
& E& & 0. 70 eV. In both cases, the value obtained
here, E&=0. 5P eV, is outside the permissible
range. Meanwhile, one can ask if the measured
values E„are not systematically increased by a
contribution of the migration entropy. The latter
is a function of temperature since the creation of
vacancies by atom movement has an anisotropy
which, initially appreciable, decreases near the
melting point. It seems, therefore, logical to
write S„=a+ b/T The term .b/T would then be
involved in the determination of E„by the slope
method. It must also be noted that the two cited
rules, although well verified for fcc metals, do
not seem to hold for hcp metals. For cadmium,
for instance,

0. 31 & E& ~ 0. 40 eV,

0. 23 ~ E ~ 0. 25 eV.

The sum 0. 54 ~ E&+E ~ 0. 65 eV is much lower than
0. 76 ~ E„~0. 89 eV, while the rule Ef 2E„ is al-
most satisfied.

Table U summarizes experimental quantities
which may allow certain empirical correlations be-
tween the vacancy formation energy E&, the melting
point temperature T&, the cohesion energy E„and
the Debye temperature e~. All the elements shown
have close-packed structure; the E& values are
those already cited above or those .-. eported by
Quere; the T&, 6» and E, values were taken from
Gschneider. The relation E& =Km a'8D, where
m is the atomic mass of the element and a the lat-
tice parameter, was established by Glyde ' for
close-packed structures. With Table V, the follow-
ing remarks can be said: (i) 0. 20& Ez/E, ~ 0. 37;
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TABLE U. Correlations between the vacancy-formation energy and some physical properties.
Metal

Al
CU

Ag
Au
Ni
Pt

Zn

Co
Mg

Ey
(ev) /

0. 76
1.00
1.06
0. 95
1.35
1,20
0. 31
0.40

0.31
0. 50

1.25
?

Tf
{K)

933
1356
1234
1336
1726
2042

692

1765
923

eD
(K)

403
332
213
160
443
229

160

231

446
363

(eV)

3.34
3.52
2. 97
3.81
4. 45
5. 85

1, 17

l. 35

4. 42
l. 55

E~/T~
(10-' ev 'K-')

0. 81
0. 74
0. 86
0. 71
0. 78
0. 59
0. 52
0. 67

0.45
0. 72

0. 71

0. 23
0.28
0. 36
0. 25
0.33
0.20
0, 26
0.34

0.23
0.37

0.28

K=E /m e~

1.06
1.09
1.29
1.13
0. 95
0. 76
1.21
1.56

l. 25
2. 02

1, 70
K

0.33

if Mg satisfies this correlation, E& can only be be-
tween 0. 31 and 0. 59 eV. (ii) 0. 45&&10 ~ E& /T&
~ 0. 86&&10; this gives for Mg a magnitude within
the range 0.41-0.79 eV for E&. (iii) 0. 76~K
~ 2. 02; here E& is found to be between 0. 25 and
0. 65 eV for Mg. It seems, therefore, that, despite
the disagreement with preceding studies, our value
of 0. 58 eV for the vacancy-formation energy in

Mg is perfectly acceptable and we have seen how the
resistivity mea, surements can have systematic
errors.

The entropy term seems to be small since one
usually expects values S&/k in the order of unity. '9

However, if one considers that the atomic mass of
Mg is three times smaller than that of Zn and five
times lower than that of Cd, it would seem that the
vacancy in Mg is a small mass defect. It is seen
also that a vacancy in Mg is a, defect of force con-

stants much smaller than a vacancy in Zn or in Cd
whose interatomic force constants are about three
times larger' (11.84, 30. 82, 27. 52& 10 ' dyne/cm,
respectively). Logically, the modes vibration of
the lattice must be only slightly perturbed and the
formation entropy must be much smaller than for Cd

(S&/0 =0. 7, Feder and Novick) or for Zn (S&/k
= 1.6, Gerstriken and Slyusar").

In conclusion, it can be said that, although results
are obtained with the use of so much mathematical
treatment in the case of anisotropic materials, a
direct comparison of the relative variations of
lattice and macroscopic volume as a function of
temperature is the most desirable method for the
estimation of point-defect concentration. Also,
the values proposed for the vacancy-formation en-
ergy in magnesium preceding the present work
must be reexamined.

J. D. Eshelby, J. Appl. Phys. ~25 255 (1954).
R. O. Simmons and R. W. Balluffi, Phys. Rev. 117,

52 (1960).
R. O. Simmons and R. W. Balluffi, Phys. Rev. lip

600 (1960).
R. O. Simmons and R. W. Balluffi, Phys. Rev. 125,

862 (1962).
5R. O. Simmons and R. W. Balluffi, Phys. Rev. 129,

1533 {1963).
6R. Feder and A. S. Nowick, Phil. Mag. ~15 805

(1967).
~R. Feder and H. P. Charbnau, Phys. Rev. 149, 464

(1966).
R. Feder, A. S. Nowick, and H. P. Charbnau, Bull.

Am. Phys. Soc. ~12 388 (1967).
G. Bianchi, thesis, Nancy, 1968 (unpublished).

~ D. Mallejac, thesis, Nancy, 1970 (unpublished).
~H. M. Gilder and G. N. Wallmark, Phys. Rev. 182,

771, (1969).
'2A. C, Damask and G. J. Dienes, Point Defect in

Metals (Gordon and Breach, New York, 1963).

'3J. L. Rosenholtz and D. T. Sonith, J. Appl. Phys.
21 396 (1950).

'4J. P. Poirier, J. Antolin, and J. M. Dupouy, J. Phys.
(Paris) 27, 98 (1966).

J. Hillairet, C. Mairy, J. Expinasse, and V. Levy
(private communication) .

B. Baudelet and G. Champier, J. Phys. ~30 999
(1969),

~VJ. E. Harris and B. C. Masters, Proc. Roy. Soc.
(London) A292, 240 (1966).

' E. Goens and E. Schmid, Z. Physik 37, 385 (1936).
' G. V. Raynor and W. Hume Rothery, J. Inst. Metals

65, 379 (1939).
C. Mairy, J. Hillairet, and D. Schumacher, Acta.

Met. ~15 1258 (1967).
2~C. J. Beevers, Acta. Met. 11, 1029 {1963).

P. G. Schewmon, Trans. AIME 206, 918 (1956).
~3V. Levy, J. Hillairet, D. Schumacher, G. Revel, and

T. Chaudron, in Proceedings of the International Confer-
ence on Vacancies and Interstices in Metals, Julich, W.
Germany, 1968 (unpublished).



JANO T, MAL LE JAC, AND GEORGE

J. C. ¹lcoud (pl"1VRte coIIlIQunlcatlon).
J. Mianney, thesis, University of Paris, 1969 (private

coIQmunlcRtlon) .
Y. Quere, Debuts Ponctuels dans les metaux, edited

(Masson et Cie. , Paris, 1967).
K. A. Gschneldelq Solid StRte Phys. ~16 344 (1964),
H. R. Glyde, J. Phys. Chem. Solids 28 2061 (1967).

L. Dobrzynskl (private communication).
3 G. Toussaint, in Proceedings of the International Con-

ference on Lattice Dynamics, Copenhagen, 1963,
edited by R. F. Wallis (Pergamon, Oxford, 1965).

"S. D. Gertsriken and B. F. Slyusar, Ukr. Fix. Zh.
4 137 (1959).

PHYSICAL REVIEW B VOLUME 2, NUMBER 8 15 OCTOBER 1970

New Version of the Modified Augmented-Plane-Wave Method*

H. Bross, G. Bohn, G. Meister, %. Schubo, and H. Stohr
Sektion Physi%, University of Munich, Get'many

Received 5 September 1969

A method is presented to calculate electronic band structures for a general one-electron
potential. Both the wave functions and their gradients are continuous everywhere in the crys-
tal. As a test, calculations for paramagnetic ¹i,Cu, and Alby Hanus, Burdick, and Segall,
respectively, were repeated, using their muffin-tin potentials.

I. INTRODUCTION

Among the different methods to calculate the
band structure of solids, the augmented-plane-wave
(APW) method proposed by Slater' has proved
particularly useful. It is based on the fact that the
crystal potentials near an atomic site are approxi-
mately spherically symmetric. Therefore, the
crystal will be divided into several parts by con-
structing a sphere (radius r; ) about each atomic
site. The wave function is expanded inside each
sphere in terms of radial functions multiplied by
spherical harmonics; in the region between the
spheres the wave function is expanded in a Fourier
series of plane waves. Across the surfaces of the
spheres, the APW method in its original form makes
the partial waves continuous, however, for the
lower values of the azimuthal quantum number l
only. Usually all the calculations using the APW
method are based on a muffin-tin potential, which
is spherically symmetric inside the atomic spheres
and has a constant value outside.

Within the one-electron approximation, several
improvements of the APW method are desirable:
(i) exact continuity of both the wave functions and
their first derivatives on the surfaces of the APW
spheres (this is a necessary requirement if the wave
functions are to be used to calculate matrix ele-
ments, in particular, those of the momentum op-
erator and functions thereof), (ii) generalization
of the method to allow for non-muffin-tin potentials
(this step should be done if the band structure is
calculated in a self-consistent manner), (iii) or-
thogonality of the wave functions of the valence elec-

trons to the wave functions of the core electrons.
Preferably the core electrons should be described
by Bloch functions also.

In addition, one would like to have a formalism
which can be handled on a computer using standard
techniques of numerical analysis.

Different modifications of the APW method
have been proposed with the above-mentioned goals.
The version previously proposed by one of the pres-
ent authors' ~ incorporates the first requirement.
Further, it allows for a nonconstant potential in
the plane-wave region as do the formulations of
Leigh, Schlosser and Marcus, and De Cicco.
General potentials have been studied by Marcus
and others. ' In the 1937 formulation of the APW
method, the wave functions of the valence electrons
are orthogonal to those of the core states if the
latter are also determined by the APW method.
The aim of this paper is to describe a new version
of the modified-augmented-plane-wave method
(MAPW) which produces wave functions of the va-
lence electrons orthogonal to the wave functions of
the core electrons and which is especially suited
for computers. Applications to paramagnetic ¹i,
Cu, and Al are reported with the special view to-
wards comparing the results with earlier calcula-
tions.

II. DESCRIPTION AND DISCUSSION
OF METHOD

A. MAP% Trial Functions

As in the original APW method, we approximately
solve the one-electron Schrodinger equation by the


