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Calculations are made of the configuration-averaged density of states and the electrical con-
ductivity of a binary disordered alloy by two quite distinct techniques, namely, by beginning
with the Bloch states of a perfect crystal and making a cluster expansion in the scattering off
imperfections, and by beginning with localized atomic states and making a cluster expansion
in the interatomic hopping matrix elements. The two techniques are shown to give the same
results when all irreducible single-site diagrams are included in the self-consistent field ap-
proximation and multiple-occupancy corrections are made self-consistently; it is conjectured
that this equivalence holds at each level of the cluster expansion. In the process, the connec-
tion between the recent calculation of transport properties by Velicky in the coherent potential
approximation, the diagrammatic technique of Edwards, and the diagramatic technique of
Matsubara and Toyozawa is established.

I. INTRODUCTION

It has recently become clear that formally, at
least, the general problems of determining the na-
ture of electron, phonon, magnon, and exciton
states in disordered alloys are the same. Perhaps
the most widely used approaches to the problem
have been to calculate the Green's functions aver-
aged over an ensemble of all configurations of the
atoms by perturbation-expansion techniques. The
usual technique, which was introduced by Edwards, '

is to begin with the states of a perfect crystal and
make a cluster expansion in the scattering due to
the imperfections, which can with sufficient scat-
tering lead to states localized about the imperfec-
tions. Another technique, first used for th'e con-
figurationally averaged crystal by Matsubara and
Toyozawa, is to begin with localized states, whose
energies vary from site to site and make a cluster
expansion in the hopping matrix elements between
localized states which, with sufficient hopping, can
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lead to delocalized or band states. The first meth-
od, expansion about the Bloch states, has recently
been extended in various equivalent ways to a self-
consistent treatment (which ha, s been shown to be
reasonably accurate in certain cases for the general
behavior of the density of states throughout the en-
tire concentration ranges) by Soven4 and Yonezawa~
for electrons, Taylor, ' Leath, and Aiyer et al.
for phonons, and Onodera and Toyozawa for exci-
tons. The second method has been studied more
recently by Matsubara and Kaneyoshi. The pri-
mary purpose of the present work is to demonstrate
that for single site, self-consistent scatterings, the
two quite different expansions give just the same
results for the density of states and the transport
coefficients, providing multiple-occupancy correc-
tions are included self-consistently. " It is also
shown that the diagrams of Edwards, ' Langer, '
and Verboven, "when properly corrected for mul-
tiple occupancy, give the so-called coherent Poten-
tial approximation for the electrical conductivity'~
and that this conductivity satisfies a Ward identity
which can be used quite simply to obtain the vertex
corrections. In particular, the recent speculation
by Ziman' concerning the advantage of expanding in
localized states appears to be wrong.

Since the question of localized versus band states
has been most frequently raised and discussed in
reference to the electronic problem in semiconduc-
tors and in order to make the problem specific, the
notation of the electronic problem will be used.

We consider a disordered binary alloy made by
randomly placing concentrations (fractions) c of
atoms of type B, and (1 —c) of atoms of type A on a,

regular lattice. We work in the tight-binding for-
malism and assume the simple model used by
Anderson, ' Soven, and Matsubara and Toyozawa.
(It seems that the results presented here would also
hold for more realistic models. ) In this model one
assumes that there is only one eigenvalue in the en-
ergy range of interest, that the atomic wave func-
tions for A and B atoms are essentially identical,
and that the matrix elements of the alloy Hamiltonian
between orbitals centered on different lattice sites
is independent of the types of atoms occupying those
sites. The diagonal matrix elements of the Hamil-
tonian (the atomic eigenvalues) vary from site to
site, taking on the values e~ and e~. The model
alloy Hamiltonian is thus of the form

H=L e„a„'a„+5g W(n —m)a„'a

where W(n —m) is translationally invariant, e„
takes on the values c~ and e~ on A. and B sites, re-
spectively, and a„'(a„) is a creation (annihilation)
operator for an electron in the atomic state at site
~ and is assumed independent of the atom type at n

and the concentration c.

The proof for the density of states and the trans-
port coefficients is most directly established via
the one- and two-particle Green's functions, The
one-particle retarded Green's function G(n, m)
satisfies the operator equation

(e+is —H)G = 1 (2)

for a particular configuration of atoms. The two-
particle Green's function, for a particular configur-
ation of atoms, is just the direct product of one-
particle Green's functions

G"'=G G (Sa)

01

G"'(I, m;n, p) = G(t, n)G(m, p),
where G(l, n) is given by Eq. (2), since we include
only electron-impurity interactions here.

The density of states o(E) and the transport coef-
ficients are simply related to the Green's functions
according to the standard formulas

o(E) = —Im Tr{Gj/v (4)

where Im is the imaginary part, and Tr denotes the
trace over any complete set, and

yc c (e)= —i j dte'"TrIe'"'C2e '"',C, ]f(H), (5)

where f(H) is the density matrix, C, and Cz are
typically electric or energy current operators, This
formula is simply related to G '= G ~ G. '

In practice it is impossible to calculate the
Green's function of Eci. (2) for any particular con-
figuration of impurities in a realistic alloy, How-
ever, one can approximately calculate the Green's
function averaged over an ensemble of all distribu-
tions of the atoms on the lattice sites. This will be
valid if the energy shifts produced in the states at
a particular site by the presence or distribution of
impurities at a distance l, which is much smaller
than the sample size L, are smaller than the resolu-
tion width of the experiment measuring the property.
A theorem relevant to this has been proven by Mat-
suda, ' who showed that, for a one-dimensional
chain with only nearest-neighbor interactions,
G(E+ iI";n, rn) dies out at least exponentially with

(n —m) at a rate proportional to I', which was suf-
ficiently large for reasonable experimental resolu-
tion widths I' that the above criterion was easily
satisfied for the phonon density of states. Hopefully
'similar theorems exist in two and three dimensions.

There are two special cases when the Hamiltonian
of Eq. (1) yields a trivially soluble problem for the
configuration averaged (G). The first is when e„
takes on the same value, say, &„, on each site;
this represents a perfect crystal of A atoms with a
Green's function
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P = (e —e„—W)-'

which is diagonal in the Bloch representation

H = [e „La„'a„+LP W(n- m)a„' a ]

+ L (e„—e„)a„'a„=(0,)+ V (8)

and treating the diagonal scattering term V as the
perturbation.

The second soluble case is when %= 0 and G be-
comes diagonal in the atomic or Wannier repre-
sentation, taking on the values (e —e„) ' and (e —e~) ',
which gives

Thus, if the alloy Hamiltonian is separated into a
local part h and a hopping part 8',

H= (Le„a„'a„)+LP W(n —m)a„'a = (h)+ W, (lo)

one can develop a useful perturbation expansion (at
least for small W) by treating the hopping Hamil-
tonian 8' as the perturbation. Sections II-VI are
devoted to a discussion of the proper way to make
each expansion and to show a self-consistent partial
summation that gives the same Green's function
for each expansion.

Sections II and III are devoted to explaining the
expansion of the one- and two-particle Green's func-
tions, respectively, in terms of band states with a,

discussion of the connection between the diagram
techniques and the multiple-scattering or coherent-
potential approximations. Sections IV and V are
devoted likewise to the localized-state expansion
with the derivation of the equality of the Green's
functions calculated by each method when the self-
consistent single-site terms are included. Section
VI contains a very brief discussion of the failure of
these calculations to describe the transition that
takes place in the transport properties near the
critical percolation concentration.

Il. BAND-STATE EXPANSION —ONE-PARTICLE
GREEN'S FUNCTION

We now study the scattering by substitutional im-
perfections in an otherwise perfect crystal. The
crystal we choose as the reference or unperturbed
crystal will not affect the results as long as a pro-
perly corrected self-consistent approximation is

P(k&k )= Dj k

'

( )

where e(k) is the perfect-crystal energy in the band
of interest. Thus, one can develop a perturbation
expansion [of validity at least for small (e~ —e s) ] by
separating the alloy Hamiltonian into a perfect crys-
tal Ho and a scattering part V:

(&.) (b.) (c.) (d. )

t
I I /
I + I I + g y + I I I

{e) (&) (g )

,0, ~/
I

r I I I +
I

+ ~ ~ ~

FIG. 1. Some diagrams appearing in the expansion
(12) of the Green's function in Bloch States with scatter-
ing by defects.

made. " One can easily show, when expanding in
terms of the tight-binding wave functions of energy
e„of a reference perfect crystal that the states cal-
culated by including single-site scattering self-con-
sistently is independent of e„. For example, various
authors have used the A- or B-atom crystal, ' ~ the
virtual crystal, ' or a self-consistently determined
perfect crystal ' as the reference crystal and gotten
the same results. Thus, for simplicity, we shall
use the separation of the Hamiltonian in Eq. (8) and
call the A-atom lattice the host and consider the
scattering by B atoms.

We easily obtain the equation of motion for G in
the alloy by putting Eqs. (8) and (6) into (2) to obtain

G=P+PVG

where V, = e~ —e~ on B-atom sites and zero other-
wise. Iterating and configurationally averaging we
formally obtain, in Wannier representation,

(G(n, m)) = P(n, m)+ g P(n, l)(Vr)P(l, m)

+ P P(n, l)(V, P(l, l )V, )P(l', m)+ ~ ~

(12)

where ( ) represents the configuration average.
The propagators P(n, f) of the perfect crystal are
independent of the average, and hence only serve to
connect scatterings V, by the B atoms. Thus, we
only must consider averages of the form (V, V, . )
which, for a random distribution of atoms, factor
into products of averages (V,") representing all the
scattering by each site. Therefore, we can construct
initial diagram rules" for representing the various
terms in the expansion. Typical diagrams are
shown in Fig. 1, where the horizontal solid propaga-
tor line represents P(n, m) and connects the scatter-
ing V„(dashed lines) which, if there is repeated
scattering by a single site, are drawn together at an
interaction site (solid circle) which is given weight
c, the probability of finding a B atom at that site.
We can define an irreducible part as a diagram that
can not be cut into disconnected parts by breaking
a single propagator line, so that the sum of all ir-
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These correction diagrams are shown in the higher
columns of Fig. 2 where the nth column contains
those corrections with (n- 1) irreducible parts.
The corrected self-energy, obtained by summing
all the columns, is given by the relation

cv z[r,]
1 —vG, 1 —zfI', ]G, '~)

where Z is treated as a functional of its internal
propagator, and I o= Go/(1-Z [I'0] Go) accounts for
all the insertions in the internal propagators. The
solution of this equation is

Z[ro] = c V/[1 —(1 —c)VGO]

FIG. 2. Irreducible diagrams involving only a single
site are shown in column 1 and sum to the value given
by Eq. (14), or (46) for the Bloch-state or localized-state
expansions, respectively. The nth column contains mul-
tiple-occupancy corrections with (n —1) irreducible parts.
The sum of all columns gives Z as in Eq. (17), or 0. as
in Eq. (50) for the Bloch- or localized-state expansion,
respectively.

reducible parts Z, the self-energy, is related to
(G) by the Dyson equation

(G) = P+ PZ(G)

A cluster expansion then results if one first in-
cludes all irreducible scattering by single sites,
then by pairs of sites, clusters of three sites, etc.
The simplest class with anything similar to the cor-
rect analytic properties for Z, the self-consistent
single-site scattering, is discussed here. These
terms correspond to the diagrams shown in the first
column of Fig. 2, where the double solid line rep-
resents the full propagator (G) inserted self-con-
sistently. This simple class of diagrams is local
or diagonal in Wannier representation since all
scatterings are by the same site. The sum of these
diagrams (the first column of Fig. 2) gives

or

Z = Z[G,]= cV/[1 —(1 —c)VG, /(1+ ZG, )],
which can also be written in the form

Z = cV/[1 —(V- Z)G, ]

(17a)

(17b)

III. BAND-STATE EXPANSION —TWO-PARTICLE

GREEN'S FUNCTION

This gives the result obtained in the so-called co-
herent-potential approximation in multiple-scatter-
ing theory by Soven and Taylor. In particular,
this formula is equivalent to Eq. (1S) of Ref. 4,
that is easily obtained by replacing p by Z —cA

everwhere in Eq. (17a), which just shifts the unper-
turbed energy by the proper amount.

A very physical way of rewriting Eq. (17), that
was pointed out in Aiyer et al. ,

' is

Z = cV/(1 —VG,"),
where Go" is the Green's function evaluated on A-
atom sites and gives (1 —c) times the density of
states on A-atom sites. Thus, it is G (n, n), aA

Green's function containing no scatterings by site
n, which must be substituted self-consistently
rather than the full Green's function Go which would

contain uncorrected multiple scattering by site n.

Z„„=cV/(1- VG,),
where

V= e, —e„, G, = (G(n, n)) .

(14) The configurationally averaged two-particle
Green's function is given by the relation""'"

G '(l, m;nP)= G(l, n)G(m, P)

We have, however, omitted important multiple-
occupancy corrections since in treating products
like (V, V,.)= c V in Fig. 1(b) we should have made
certain that the sites do not coincide, or l = l . This
can, however, be handled by substracting c V Go

from Fig. 1(c). The self-consistent procedure
developed previously ' is used here to make these
corrections. We substract from each diagram all
diagrams which can be obtained by breaking the
scattering lines away from the interaction site and

that yield diagrams alxeadyincluded exPlicitly.

+ P(VP ~ PV)P+ ~ ~ ~ (2O)

The same diagram rules as in Sec. II lead to dia-
grams of the type shown in Fig. 3, but with two

propagator lines. Self-energy corrections to each
line appear as for the one-particle Green's function
and also irreducible vertex parts (which can not be
cut into two diagrams by breaking each propagator

which, via the iteration of Eq. (11), can be expanded
in the form

(G"')=P'P+P(V)P ~ P+P P&V)P
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(b. ) (c.) The third column X3 is
I

+ +
I

(e.) (g, )

I I

+ I. + 1q + + ~ ~ ~

FIG. 3. Some diagrams appearing in the expansion
(20) of the two-particle Green's function &', GG) in terms
of the scattering by defects.

)), = -{A(r, )/[I - z(r, )c,]'-A(c, )/ (25)

cv' z(r, )
(1 —VG ) 1 —Z(I' )G„

since there can be any number of self-energy parts
on the four external corners and there must be at
least one self-energy part internal to vertex part
A if there are no external self-energy parts in the
correction. The sum of all columns gives the fully
corrected vertex function

A(c,)=P ), ,

line once) appear as in Figs. 3(d) and 3(e). The
sum of all irreducible vertex parts, the four-point
vertex function A, is related to G' ' by a Bethe-
Salpeter equation

&c"')= &G)
'

&c&+ [&c) &c)]A&c"'), (21)

which in the Wannier representation is

&G~ )(fm, np))= &G(l, I))& G(n, p))+ Z &G(l, r))
f')Sytpg

& &G(rn, s))A(rs, tu)&c")(tu, np))

(22)
The class of diagrams in A that is consistent with

the single-site self-energy diagrams discussed
above is the irreducible scattering of both particles
by the same impurity as shown in the first column
of Fig. 4.

The first column sums to the bare single-site
vertex part without multiple-occupancy corrections
(except those already included in the self-energy
Z) which is completely die.gonal in Wannier repre-
sentation with the diagonal element A„„,(nn, nn)
given by

G )r, )/)r —Z(r„)G,)'
1 A(—r,)r', (26)

which, by expressing Gp in terms of 1, and using
Eq. (17b), can be written

A(r, ) (1 —c) Z(r, )
t —G)G, )G', c & ~ G(r, )r„) (27)

z(v- z)
(1+ zco)[1 —(V- z)GO]

(28)

where the last equality follows from the relation

F
~ ah

The changing of variables I"o -Go to find the vertex
function of interest A(GO) is now trivial,

A(C, ) (1 —c) Z
1 —A(G)G c I+GG)

A„„,= c U /(1 —VG))) (23)
I4~ —r ~ q

I

~, = —{z(r,)/[I -z (r,)co]P, (24)

where rG= Go/[1 —Z(1G)co] as before and Z(I') is
treated as a functional of its internal propagator.

which is essentially the formula one would obtain by
the simple diagram rules of Edwards, ' Langer, '
or Verboven. " The multiple-occupancy corrections,
however, must be made and are obtained quite
easily according to the above rules by subtracting
those diagrams which are obtained by breaking
apart the vertices in all consistent ways, as shown
in Fig. 4 where the nth column (n ~ 2) corresponds
to those corrections with (n —2) irreducible vertex
parts. For example, column 2 contains those cor-
rections with no vertex parts and sums to A~, given
by

r'vf 4f 1 t 'V

— ~-lai

FIG. 4. Irreducible vertex diagrams containing scat-
tering byasingle site (column 1) which sums to the value
given by Eq. (23) for the Bloch-state expansion. The
nth column contains multiple-occupancy corrections with
(n —2) irreducible vertex parts. The sum of all columns
gives the irreducible vertex function ~ in Eq. (29) for
the Bloch-state expansion and p in Eq. (61) for the local-
ezed-state expansion.
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(1 —c)V/(1+ ZGO) = (V- Z) which is obvious from
Eqs. (17). The solution of this equation can be
simply written

[(1—c)/c][Z/(1+ ZG, )]'
1+[(1—c)/c][ZG, /(1+ ZG, )]'

z(v- z)
I - (v- 2z)G, (29)

+3

(1+ ZGO)
(31)

after a little algebra. The meaning of Eq. (28) is
not as simple as before for Z; essentially this
equation says that not only must one not rescatter
by the same site in the internal progagators on

each line separately, but also one must also handle
coincidences of the internal scatterings from each
line with the other properly.

Although Eq. (29) appears somewhat different, it
is essentially the same result as that obtained by
Velicky who worked in the coherent-potential ap-
proximation. ' In this technique, developed by
Soven, one sums the single-site diagrams for the
particular choice of unperturbed energy Z, called
the coherent potential here rather than the self-
energy, such that the average single-site t matrix
(t„) is zero, which in our notation gives

(1 —c)Z c(V- Z)
1+ ZGO 1 —(v- Z)GO

which immediately gives Eq. (IVb) above. In gen-
eralizing the technique to the conductivity or the
two-particel Green's function, Velicky concluded,
properly, that the consistent treatment was pair-
wise random-phase decoupling of the t„matrices
so that the two-electron t matrix A/(1 —AG0) was
(f„). That is, he calculated

(1 —c)Z' c(V- Z)'
(1+ zG,)' ' [1-(v-z)G,]'

8Z(&, n) 8Z(m, p)
8G(m, P) 8G(f, n)

(32)

In this case of only single-site contributions A is
completely diagonal with only the term

A = 5Z/6GO

for I = yn= n= p, so the second equality in (32) is
trivially satisfied. This will not be the case when

Z becomes nonlocal by the inclusion of other dia-
grams and in that case one must also be sure that
Z can be obtained from a certain sum of free-en-.
ergy diagrams as described by Baym. " (In our
case, that class of diagrams is simply the wagon-
wheel diagrams in Fig. 5 times the appropriate I/n
combinatorial factor. ) It is easy to verify that

&(cV /[1 —(V- Z)G,}
8GO

z(v- z)
1 —(v- Z)GO+ ZGO

which agrees with (29). One can see this result im-
mediately, since the diagrams of Fig. 4 (including
the multiple-occupancy corrections) can be gotten
by removing one internal Go from the Z diagrams
of Fig. 2 in all possible ways, which is just the ef-
fect of the operation 5Z/5Go. In fact, this procedure
is so simple that it is a useful tool for deriving the
consistent A for any class of diagrams.

Finally, we note that Velicky' has pointed out that
the contribution of the vertex corrections to the k= 0
conductivity vanishes by crys'tal lnvel sion symmetr y
for this simple class of diagrams with a local A. This
result holds for the two-particle correlation func-
tions in Eq. (5) when either C, or C, is odd under
inversion and A is correspondingly diagonal.
It will not hold for scattering by clusters of atoms
or in cases such as the k e0 response o(k, &o).

IV. LOCALIZED-STATE EXPANSION —ONE-PARTICLE
GREEN'S FUNCTION

where Eq. (30) was used to obtain last equality.
This result is identical to Eq. (28) so the two cal-
culations coincide and the coherent-potential ap-
proximation agrees with the diagrammatic technique
after proper multiple-occupancy corrections even
for the conductivity.

Also the vertex corrections above satisfy a
Ward identity (as shown in Ref. 11), and hence
the resulting transport coefficients maintain the
macroscopic conservation laws. The particularly
simple form of these conservation laws developed

by Baym" is also instructive and can indeed be used
to derive the vertex corrections from the self-en-
ergy. Baym's form of the Ward identity in this no-

tation becomes

The expansion in localized states for configuration-
averaged alloy properties, introduced by Matsubara,
and Toyozawa (MT) and extended by Matsubara and

Kaneyoshi is discussed here and modified to include
self-consistent multiple-occupancy corrections. A

brief clearly written outline of the MT technique is

FIG. 5. %agon-wheel free-energy diagrams multiplied

by the combinatorial factors 1/n. This class of diagrams
@' is related to the single-site self-energy Z by Z=~~'/~0
as in the discussion of Baym (Ref. 18).
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(b) (c) the diagram in Figs. 6(a) and 6(f) have the values

ok'

(j = (g) I Iw{f f')-I. I

+ i I

(e) (f ) (g)

I /

+ I i t+ /

~ ~ ~

FIG. 6. Some diagrams appearing in the localized-
state expansion (37) of the Green's function in terms of
the hopping from site to site.

given by Ziman. "
The technique seems obviously inspired by the

earlier expansion due to Anderson" who did not
configurationally ensemble average, but rather
studied the probability distribution within the en-
semble. The Anderson expansion for a particular
alloy in our notation is generated by

and

(g„)= (1 —c)/(~ —e„)+c/(e —as), (s6)

1 1 1 2 ...G +
( )2

W+
( )3

W + (40)

which can be immediately summed to the standard
result

P (g„)(g )W (n —m)
m

(1 —c) c 1 —c c
(e-~,)' '(~-~.)' (~-~ ) )~-~.))

xP W'(n —m),
39

respectively. Actually no diagrams like Fig. 6(c),
with a diagonal interactor appear, since W(n —m) = 0
as there is no hopping to the same site but we can
include them formally to make the calculation par-
allel to that in Sec. II even if their contribution is
zero. The reader should note that, even for a per-
fect A-atom crystal, the series must be summed
but in this case Eq. (37) is simply the geometric
series

(36)
G= (e —e„—W) ' (41)

where, in the Wannier representation,

1
g(n, m)= - - &„=g„6„ (s6)

which is the Green's function for localized states,
with no hopping, and takes on the values (e —e„) '
and (e —ee)-' on A- and B-atom sites, respectively,
and where W(n —m) represents the hopping as de-
fined in Eq. (1). We now iterate and configuration-
ally average this equation of motion as before to
obtain

&G(n, m)) = &g„&5„+&g„w(n —m)g„)

(G) = o+ a W(G)

so that

(G)=oi(1 —ow) =(o '- W)-' .

(43)

(4s)

The relationship between the true self-resolvent o

and the true self-energy Z according to Eqs. (13)
and (43) is

We can clearly define an irreducible part as we
did before; the sum of all irreducible parts o we
shall call the self resolvent -(by analogy with the
self-energy), since it represents the renormaliza-
tion of the localized-state resolvent operator g. The
pseudo-Dyson equation satisfied by o is

+ (2) g„w(n —l)g, W(l —m)g )+ ~ ~ (37) -1o' (44)
where in our model only g„depends upon the con-
figurations of the species. We can represent the
terms in Eq. (37) by topologically the same dia-
grams as in Sec. II but with no external lines, as
shown, for example, in Fig. 6. The transportation
from site to site, the solid line, is no longer pro-
vided by the propagator g which is local but is
provided by the interaction W(n —m) which in this
role we shall call the interactox as suggested by
Ziman. " An upright dashed line corresponds here
to the localized-site Green's function or resolvent
g. Upon averaging, the rules become only slightly
more complicated than before; a cluster of x re-
solvent g lines at the same site [for example, Figs
6(c) and 6(g)j have the value ((g„)'). For example,

I/= W+ W(G) W

Then, we find for the first column of Fig. 2,

(46)

lare
(1 —c)g„cge+

1 Uog/1 1 U()g~ 1 U()g~
(46)

where g„= (e —e„) ' which is analogous to Eq. (14).

so that if Z is local so also will be o.
The single-site self-resolvent will then be just

the same diagrams shown in the first column of
Fig. 2 with the same multiple-occupancy correc-
tions shown in the higher columns. The double
internal interactor line here represents U, the fully
renorma1. ized interactor
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The sum of all columns gives, in analogy to Eq.
(15), the fully corrected o,

where Po = Uo/[1 —o(go)Uo]. The solution of this
equation is

1 Uo g~ 1 P()gfi
(48)

or

(1 —c)g„cga0'=, + &- 0,'z, )

cga
&+ 40 ~ + &-4s)

(I - c)g~+ cga - log~go
1 —[cg„+(1 —c)g, ]yo

(49)

where go= Uo/(1+ CU, ). If we now eliminate Pt in
terms of Uo, we obtain

[(1—c)g&+ cga](1+ CUo) —Uo ga gs
(1+ o U, ) —[cg„+(1 —c)go]U,

(50)

which is analogous to Eq. (17) (it would be exactly
parallel if g„were zero). In order to see whether
this equation gives the same Green's function as in
Sec. II we must eliminate g„, g~, 0, and Uo in terms
of t/, Z, and Go. First we pull the term containing
o in the numerator on the right-hand side of (50)
over to the left-hand side, then divide by the coef-
ficient of o on the left, and substitute g„o= (&

—e „o) ' to obtain

6 —cEg —(1 —'c)eo —Uo

(6 —e~) (t—to)(l ' + CUo) —(2& —e~ —eo)Uo

(51)
Then, according to Eqs. (42) and (45), we can make
the substitution

sion and the lowest-order theorem is established.
We do not know whether such a theorem holds for
pair scattering or for higher clusters but it seems
likely. Clearly the multiple-occupancy corrections
and the self-consistency were essential in establish-
ing this equivalence.

In Sec. V we briefly outline the calcuation of the
two-particle Green's function by the localized-
state expansion and show that this equivalence holds
also there.

V. LOCALIZED-STATE EXPANSION —TWO-PARTICLE
GREEN'S FUNCTION

The proof of the equivalence of the two approaches
for the two-particle Green's function can be esta-
blished quite easily and quite generally whenever
the equivalence [Eq. (44)] holds for the one-particle
Green's function.

We first establish the condition required for
equivalence of the two approaches by defining the
vertex function. Typical two-particle diagrams are
shown in Fig. 7 where diagrams 7(b) and 7(c) con-
tain irreducible vertex parts. The sum of all ir-
reducible vertex parts we shall call y, the vertex
function which is related to the full two-particle
averaged Green's function by a pseudo-Bethe-
Salpeter equation

(W W)(G )(W ~ W) = (W(G)W W(G)W)

+(U. U)y(U U)[I-y(U U)] ',
(54)

where (G' ') has been multiplied on ea.ch side by
(W W) to add external interactor lines in each dia-
gram, and where U is ihe fully renormalized inter-
actor defined by Eq. (45). If this (G+') is to be the
same as that calculated by the iteration of Eq. (21),
then we must have the formula

(b)

U= c (G)c —o

~2 -1
Do=0 Go -0

(52a)

(52b)

since 0' is diagonal here. Then, to find the effective
Z which corresponds to c (i. e. , gives the same (G))
we substitute for o from Eq. (44), treating (44) as
the definition of Z. After these two substitutions
into (51), some algebra, and the identification
t/'= &~ —E„, we find enormous cancellations with the
result

&t+

(ej

I
I

I /
I /

I

~ ~ ~

Z = CV/[I —(V- Z)Go] (52)

which is Eq. (17b) so that indeed the effective Z
calculated via the single-site localized-state ex-
pansion agrees with that from the band-state expan-

FIG. 7. Some diagrams appearing in the localized-
state expansion of the two-particle Green's function
(GG) in terms of the hopping from site to site.
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(W(o)W W(G)W)+ (U. U)y(U U)[I y-(U U)] '

= (W(G) W W(G)W)[I A(-(G) ~ (G))] ' (55)

relating the two vertex functions. Using Eqs. (42)
and (45), we obtain

Green's function. It is, perhaps, worth pointing
out that, in the single-site irreducible scattering,
both A and y are completely diagonal on all four
indices and Eq. (57) relating them becomes the
scalar equation

-1
U= W&o)o (56) o y/(l-yU, ')=A/(1 —AO,') . (62)

which can be used to eliminate the (U U) factors in
the numerator of (55) and reduce it to the identity

(cr
'

o ')y(cr '
o ') A

I-y(U U) I-A((o& &G))
(57)

Upon substituting U= o '(G)o —o and solving for
(o o)A, we find

(cr' cr)A= —y [(o '
o ') —cr

'
(cr '&O)cr ')

— (o &O&o ) o '] y(o . o ') (56)

But we can eliminate A since, by Eqs. (32) and

(44), we know that

A= 5Z/5(G&= —5(o )/5(o&= (o o ')5o/5&O&,

—(o '&G) o ') o-']] '
or

(o o)A= 5o/5&O&,

and Eq. (58) becomes
-1

5o/5&o&=y{(o
'

o ')+ 5cr/5&o&[(o
'

o )

which reduces to

(o '(G&o ') —(o (G)o ') o ']],
(60a.)

5cr/5(G& = y[5(o '&O&cr —o )/5(o&] = y5U/5(G) .
(60b)

Thus we find

y(1m; nP) = 50(l, n)/5&U(m, P)) (61)

if the two calculations agree. But, this is just the
derivative of the self-resolvent with respect to its
internal interactor which clearly yields topologically
just the same diagrams as those for A = 5Z/5(o&,
which in the single-site case are just those shown
in Fig. 4.

This result could have been obtained slightly more
elegantly by going ba,ck to Baym s paper&8 and
noting that A = 5Z/5(o& followed from the argument
that G"' must be 5(o&/5V, where V is some exter-
nal potential. That same argument here, coupled
with the pseudo-Bethe-Salpeter equation (54), gives
Eq. (61) rather easily.

In summary, we have shown here that if the Ward
identity is satisfied and if the same diagrams are
included self-consistently in o and y as in Z and A
then the two techniques give the same two-particle

VI. D1SCUSSION

We have explicitly demonstrated that the two
techniques of expanding in localized and Bloch states
agree for the case of spin-independent single-site
scatterings, the first term in the cluster expansion.
We conjecture, however, that the theorem holds
for any order in the cluster expansion providing the
calculation is made with a self-consistent field and
multiple-occupancy corrections are made self-
consistently. Clearly both the self-consistent-field
and the multiple-occupancy corrections were es-
sential to obtaining the present result.

Basically the calculation in Secs. IV and V differs
from that of Matsubara and Kaneyoshi in that the
cluster expansion developed here was not the usual
one with the full cumulants or semi-invariants but
one with self-consistently evaluated partial cumul-
ants as discussed in Ref. 7. This self-consistent
technique was developed originally for the band-
state expansion to remove spurious and serious
divergences that resulted from the overcorrections
implicit in the cumulant technique. A detailed dis-
cussion of these divergences is given by Leath and
Goodman. ' In the localized-state expansion, sim-
ilar divergences must occur since the series is
formally the same, thus the same technique was
used here.

The formulas developed here are clearly valid in
both the virtual crystal (weak impurity scattering)
and the atomic (weak hopping) limits and thus form
interpolation formulas between the two extremes.
This feature has been pointed out by Onodera and
Toyozawa, Velicky et al. , and more recently by
Ziman. '3 Also, these equations form interpolation
formulas over the entire range of concentrations of
the atomic species.

It is also probably worth pointing out that not only
Ziman's speculations concerning the advantage of
expanding in localized states is apparently wrong,
but also his reason is wrong because a crucial er-
ror was made in his calculation of the "medium-
propagator approximation. " This error has to do
with multiple-occupancy corrections which are not
taken into account properly by his Eq. (39). The
correct result, as one can easily see from Eq. (17a)
above, is obcained by replacmg G by G /(1+ v G ),
in his Eq. (39). This would make his Eq. (50) be-
come
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~ W~Gm(E)

4c(I —c) -(1- 2c)WG (E)+4c(l —c)V'(ÃG (&)

(63)
The extra term 4c(1- c)v'(E)G (E) is crucial and
gives a splitting of the energy bands in a 50-50 alloy
whenever W& —,'B, in Ziman's notation. This result
also is easily obtained via the coherent-potential
approximation from Ziman's Eq. (39) by replacing
m, by (w, —v') and setting t'= 0. Thus, the correct
conclusion from this calculation should be that,
compared to the Anderson localization criterion as
discussed by Ziman, the medium propagator method
produces split bands too easily (rather the, n not at
all) since it does not exhibit impurity band tails.
Perhaps this feature can be corrected by consider-
ing other classes of diagrams. Clearly, the single-
site scattering (or the coherent-potential approxi-
mation) is a kind of molecular field theory which
might not be expected to predict details near the
transition from localized to band states properly.

It is also possible that the source of the difficulty
is in calculating the configuration-averaged Green's
function itself. Clearly, experiments are done on a
single sample, not an ensemble of crystals. If,
however, the Green's function dies out fast enough
withdistance, the energy levels in one part of the
sample might not be sensitive to the configuration
of impurities at a distance so that a single sample
would become effectively a loosely coupled ensemble
of samples and the ensemble average would be just-
ified. The answer depends upon how fast is fast
enough for the decay of the Green's function. The
ensemble average can be viewed as a coarse-grain
average of the Green's function or density of states
which gives a small width to each state (at least

this interpretation has been shown to be valid for
one-dimensionsl system by Matsuda'6). For mea-
surements of the density of states, or for typical
computer histograms in the literature, there is an
experimental resolution width which, if larger than
the coarse-graining width (it is for the case consid-
ered by Matsuda), makes these techniques insensitive
to whether the states are localized (but very close
together in energy) or whether they have merged to
form a conducting band. In these cases the con-
figuration-averaged Green's function is a quite
useful conceptas borne out, for example, in the
phonon density-of-state calculations of Taylor for
three-dimensional systems.

Near the critical percolation concentration, how-
ever, conductivity measurements are quite sensitive
to whether, e. g. , electrical shorts have developed
through the system and hence to the details of whether
the states are localized or overlapping. If one wants
to learn more precisely about the nature of the trans-
porttransition, itwould seem that one might have to
abandon the average value of the terms in the series
and look in detail at the distribution of values of the
terms as Anderson has suggested. ' Since the pres-
ent theorem as presented here relied on the con-
figuration average, it would be of interest to see if
such a theorem exists in general for the terms in
the series.
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