
PHYSICAL REVIEW B VOLUME 2, NUMBER 8

Photoemission Properties of Simple Metals*

15 OCTOBER 1970

Richard Y. Koyamaf
Stanford Electronics I-aboratory, Stanford University, Stanford, California 94305

Neville V. Smith
&ell Telephone I-aboratories, Murray Hill, Nezo Jersey 07974~ and

Stanford University, Stanford, California 94305
(Received 22 June 1970)

The predictions of the nearly free-electron model for the photoemission properties of simple
metals are derived and applied to the available data on K, Ag, and Al. The optical transitions
are taken to be direct. The energy distribution curve (EDC) of photoemitted electrons is then
related to the energy distribution of the joint density of states (EDJDOS). In the one- and
two-orthogonalized-plane-wave (OPW) approximations, the EDJDOS is predicted to be rec-
tangular in shape with a width which increases quadratically with photon energy. The experi-
mental data on K and on the "I2.—1.&" transitions in Ag show some agreement with this re-
sult. In the case of Al, the EDJDOS has been calculated numerically using Ashcroft's four-
OPW band structure. The over-all rectangular features can still be discerned, but there is
much additional structure due to the inclusion of the extra OPW's. The EDC's for Al at
several photon energies are calculated by introducing appropriate threshold factors and are
found to agree reasonably well with the data of Wooten et al. Only the three uppermost peaks
in the theoretical EDJDOS are presently accessible to experiment, and these correspond fairly
closely in energy with the three peaks in the density of states. The implications with regard
to the alternative nondirect interpretation are discussed.

I. INTRODUCTION

The nearly free-electron model has proved quite
successful in explaining many of the electronic
properties of metals. In this paper we survey the
extent to which the model can account for the pho-
toemission properties of simple metals. The pre-
dictions of the model for the optical absorption
have been derived by Wilson, ' and have been applied
to the alkali metals by Butcher. Since the advent
of the pseudopotential formalism, there has been
renewed interest in the nearly free-electron inter-
pretation of optical experiments as a means of de-
termining the magnitudes of pseudopotential coeffi-
cients. The work of Golovashkin, Kopeliovich, and

Motulevich is particularly relevant. This paper
represents a systematic attempt to extend the fore-
going ideas to a prediction of the photoemission
properties of a nearly free-electron metal. The
extension is straightforward but is believed to be of
some importance in view of the rapid growth of the
photoemission technique as a means of determining
band structure. It is desirable to test the reliability
of the photoemission technique on simple metals,
i. e. , materials where one thinks one knows the
band structure in advance.

We will work within the prevailing "three-step"
model, in which the photoemission process is en-
visaged as three independent steps: (1) optical ex-
citation of electrons in the interior of the material,

(2) transport of some of these electrons to the sur-
face, and (3) escape of some of these electrons
across the surface to be detected as photoelectrons.
Steps (2) and (3) have been treated elsewhere '5 and

our concern will be with step (1), the optical exci-
tation. Within the one-electron approach adopted
here, the optical transitions will be considered to
be direct, i.e. , the initial and final states must lie
at the same point in k space in the reduced zone
scheme. The alternative nondirect approach ' in
which conservation of k is regarded as unimportant
would take us beyond any simple theory, although
it will be discussed briefly in Sec. V.

In Sec. II, we introduce the key concept of the
energy distribution of the joint density of states
(EDJDOS) and discuss its relation to the experimen-
tal energy distribution curves (EDC's) of photo-
emitted electrons. We then go on to consider cases
of increasing complexity. Section III is concerned
with the EDJDOS for perfectly -free-electron bands,
or what, in Harrison's terminology, would be
called the one-orthogonalized-plane-wave (OPW)
approximation. It will be shown that the EDJDOS
in this case is rectangular in shape, i. e. , at a
given photon energy h~, the EDJDOS is constant
between an upper and lower energy cutoff and is
zero outside. The rectangular box shape will be a
recurrent theme throughout the paper. The predic-
tions for perfectly free-electron bands will be corn-
pared with recent data on K taken by Smith and
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Aq,.(k) = S~(k) —$,(k) —h(u = 0.

A quantity related to the optical absorption is the
joint density of states (JDOS) defined by

,'j(h(o)=(2m) ' 2 f d'k6(Q~;(k)). (2)

Spice r.
Section IV deals with the two-OPW approximation.

It is found that the EDJDOS is once again rectangu-
lar-box shaped. The results are applied to experi-
mental EDC's on Ag. While Ag does not strictly
classify as a simple metal, the energy surfaces in
the vicinity of the L2,-L, band gap can be expressed
fairly well with two OPW's. We will therefore con-
sider only transitions in the vicinity of L2,-L, .
Transitions from the low-lying d bands fall beyond
the scope of our present discussion.

Section V treats the four-OPW approximation and

applies it to Al. The algebra becomes too cumber-
some at this stage and so we have resorted to nu-
merical techniques. The gross features of the
EDJDOS for Al are similar to those for the one-
and two-OPW methods in that over-all rectangular
shape can be discerned. However, there is inuch
additional structure due to the inclusion of the ad-
ditional OPW's. This structure will be compared
with the experimental data of Wooten, Huen, and

Stuart. It will be seen that there is reasonable
a,gree ment.

II. DEFINITION OF TERMS

A. Joint Density of States

Conventional interband transitions can take place
only between initial and final states which lie at the
same point in k space in the reduced zone scheme.
These are known as direct or vertical transitions.
If 8;(k) and $&(k) denote energies in an initial band
i and a final band f, respectively, then transitions
between these two bands at photon energy A~ are
restricted to the surface of constant interband en-
ergy given by

The extra 6 function picks out those transitions
whose initial states lie at energy S. Note that in
Eqs. (2) and (3), each transition is counted with

equal weight. If we wish to relate to any physically
observable quantities, we should weight each transi-
tion with the square of a momentum matrix element.
In what follows, however, we will be working in a
constant matrix element approximation, so that
we may use Eqs. (2) and (3) as they stand.

It is possible to integrate over the 6 functions in

Eqs. (2) and (3) and express the JDOS and the
EDJDOS in more elegant form. The JDOS of Eq.
(2) reduces to the well-known form'

.I(5(u) = (2m)-' Z f '
(dS~;/iv)-, $~ —

vugh;i),

(4)
i,f

the integral being carried out over the surface
0&;(k) = 0. By an exactly analogous manipulation,
the expression for the EDJDOS may be converted
to a line integral:

n(S, h(u)=(2v) ' Z f (dl~, /iv-„g~xv;g, . ~). (5)

The integral is performed around the line of inter-
section of the two constant energy surfaces 8; = 8
and Sf = 8+5(o.

B. Photoemitted Electrons

In a constant matrix element approximation, the
EDJDOS, &(h, h&u) represents the energy distribu-
tion of photoexcited electrons referred to initial-
state energy S. Of course, the photoelectrons
emerge with energy equal to the final energy E = 8
+5~. To obtain the EDC for photoemitted elec-
trons, we must take account of the transport to the
surface and the escape across it. Following Berg-
lund and Spicer, ' we simply multiply the EDJDOS
by an appropriate escape probability T(E, h~). The
EDC is then given by

.X(E, k&u) = C T(E, 8&v) S(E —hu, k&u).

The prime on the integral denotes that the integra-
tion is to be performed only over those portions of
k space for which 8f &F-& & 8;, where F~ is the
Fermi energy. The summation is performed over
all pairs of bands. The JDOS therefore represents
the total number of direct transitions which can
take place at the photon energy A(d.

Photoemission experiments, however, measure
not just the total number of transitions, but also
how the optically excited electrons are distributed
in energy. We therefore introduce a quantity called
(EDJDOS) defined by the energy distribution of the
joint density of states

C is a normalizing constant and T(E, h~) is given
by

To(E) = —'(1 —[(Ep+erp)/E]''aj, E &E~+ey,

E &&+earp.

In these expressions, E is measured from the bot-
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/v-„hy&V„"Sg( =4p /K&6 [.
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If &&;(S, k&u) denotes the contribution to $($, N~)
from this pair of bands, it follows, using the no-
menclature of Fig. 1, that

FERMI
SURFACE

I
i

T

By cylindrical symmetry about the line I'N, 8 and
k are constant around the line of integration, so
that

(2v) '2vk sin8 (2v)-'
4PakG sin6 4P G

(13)

FIG. 1. Geometry of the constant energy surfaces for
optical transitions at photon energy I'~ between perfectly
free-electron bands. I is the origin of k space and N is
the center of the zone boundary generated by the vector
G. The vertical dashed line represents the plane of con-
stant interband energy, and the spheres 1abeled i and f
correspond to the surfaces $; = $ and bf = 8+boo. Di-
rect transitions are permitted only for states lying
on the disk whose diameter is represented by ECE'.

tom of the free-electron band, and ey is the work
function; a is the optical absorption coefficient and

depends on &; / is a mean free path which takes
account of loss of electrons by inelastic electron-
electron scattering and varies strongly with E.

III. ONE-OPW: ALKALI METALS

E „=(Ku —PG')'/4PG', E =E~. (14)

Summing over all equivalent G vectors, we obtain

const, E,„&S&E ~

It is seen that the k and 8 dependence cancel out,
leaving a constant height for X)($, hv). There are,
however, upper and lower bounds on 8. The maxi-
mum value E ~ is fixed at E~ by the Fermi cutoff
(the Fermi surface is indicated as a dashed curve
in Fig. 1). Only those initial states on the portion
of the plane of constant interband energy lying in-
side the Fermi sphere satisfy 8;&Ez. This con-
stitutes a disk of permitted states whose diameter
is represented by the line FCF' in Fig. 1.

The minimum initial energy E,„corresponds to
the situation where the sphere 8;=8 and Sf= 8+he
just touch. This occurs at the point at the center
of the plane of constant interband energy, labeled
C in Fig. 1. The energy at C is readily evaluated.
The extremal energies are given by

For simple monovalent metals such as the alkali
metals, the occupied states lie well within the first
zone. We may ignore the gaps at the zone bounda-
ries and use the perfectly free-electron (or one-
OPW) form for the initial and final energies

$,(k) = Pk', 8,(k) = P (k+G)',

where P =5~/2m and G is the reciprocal-lattice
vector which generates the fth band. The surface
of constant interband energy at hw is the plane

P(2k ~ G+G ) —h&u =0. (10)

The surfaces $&=8+A~ and 8;=8 are simply
spheres indicated, respectively, by the circled f
and i in Fig. 1. The integral of Eq. (5) is performed
around the circle of intersection of these two
spheres. The vector product in the denominator of
the integral is given by

0, elsewhere.

This is the predicted rectangular-box shape for the
EDJDOS. The result has been derived previously
by Methfesselia and by Mayer and Thomas in a
way which avoids the line integral.

An important result is that E ~ is constant,
whereas E,„ is quadratic with photon energy. The
width of the energy distribution (E —E „)is
therefore expected to vary with photon energy. This
prediction is tested against experiment in Fig. 2
which shows some recent EDC's on K taken by
Smith and Spicer. A peak is observed at the high-
energy end of the experimental EDC's. The theo-
retical EDJDOS is represented by the dashed rec-
tangles. It is seen that the experimental peak falls
within the correct energy range and increases in
width with increasing photon energy; the full circles
on the experimental curves represent the estimated
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position of the valley in the EDC's. For conve-
nience, we will define this as the low-energy de-
marcation of the peak.

The results for K at a number of photon energies
are summarized in Fig. 3, where we have plotted
the position of the valley as a function of photon en-
ergy. Here, we have chosen to refer the electron
energies to the initial states of the optical transi-
tions. In other words, if E„represents the elec-
tron kinetic energy at a valley position in Fig. 2,
then the full circles in Fig. 3 represent F.„—Sco

+eQ. This choice of scale places the zero of ener-
gy at the Fermi energy. The open circles in Fig. 3
represent points of inflection in the experimental
EDC's at low photon energies where the valley is
not fully developed. Also shown in Fig. 3 are the
predicted curves for E;„for the (110) and (200)
reciprocal-lattice vectors calculated from Eq. (14).
The valley positions fall close to the curve for
E „(110), indicating that the variation of the width
of the leading peak is well understood in terms of
the nearly free-electron model. Returning to Fig.
2, however, we see that the shape of the leading
peak is not so successfully explained. It remains
to be seen whether this is due to a deficiency in the
experiments or a breakdown of the model. The
behavior in Na, ' and Rb and Cs ' has been found
to be very similar to that in K.

IV. TWO OPW: l2 ™l
1 TRANSITIONS IN SILVER

If the band gaps at the zone boundaries are not
smalI, we must take explicit account of the distor-
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FIG. 3. Comparison of the theoretical values for Em;„
for K (fu11 curves) with the positions of the valley minima
in the experimental data (full circles). The Fermi level
is taken as the zero of energy.

2$~(k) = P[(k+ G) +k ]+(P [(k+ G) —k ] +4Vg]

(16)

where t/~ is the Gth Fourier component of the pseu-
dopotential. The surface of constant interband en-
ergy is given by

P(2k G+G') —[(h~)' —4Vo]'i'=0 .

tions of the energy surfaces from sphericity. In
the two-OP% approximation, Eqs. (9) are simply
replaced by"

2$~(k)= p[(k+ G) +k~] (p Nk+ G) k ] +4VG]

X
OI-0x~ 2—

5 XI
CI
O
X

%u =5.S eV POTASSIUM

v, ~~(k)xv„S (k)I =4p'(1 —y) IkxC

where

(16)

y = 1 —[(h~)' —4V~ ] 'i'/h(u. (19)

As in the one-OP% approximation, this surface is
a plane which lies parallel to the zone boundary.
The geometry of this plane and the surfaces 8;=8
and 8f = 8+Su is illustrated schematically in
Fig. 4. Elementary differentiation of Eq. (16)
leads to

K
Lal I-
Cf)
X
O
IX

4J

LLI

4 5 6
KINE TIC ENERG Y (eV)

7 8

FIG. 2. The high-energy end of the experimental EDC's
on K plotted against kinetic energy E —(Ez+ecp) of the
photoe1ectrons. The dashed rectangles represent the
EDJDOS for perfectly free-electron bands referred to
final states. The heights of the rectangles have been ad-
justed to match the heights of the experimental peaks.

Proceeding as before, we may invoke cylindrical
symmetry about the line I L in Fig. 4 to obtain

&~;(8, h(u) = (2v) '/4P'G(1 —y) . (20)

E,„= [(her —PG ) —4Vo] /4PG

F-max = F-~ ~

(21)

This is once again a rectangular-box-shaped dis-
tribution with the height modified by the factor
(1 —y) '. The low-energy cutoff corresponds to the
point C in Fig. 4. The extremal energies are,
therefore,
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As in the one-OPW case, the width of the box varies
quadratically with photon energy.

A word here on optical matrix elements would be
appropriate. If g; and g& denote the wave functions
associated with the eigenenergies of Eq. (16), the
optical transition strength is given by ~(g,. ~

V IP&) I

the square of the momentum matrix element. It is
easily shown'6 that

SILVER (BAUER)

4~ =io. aev

(22)

Note that the matrix element is independent of 8;,
8&, or k, insofar as VG is independent of these
parameters. This provides useful justification for
our use of constant matrix elements.

Let us apply these results to Ag. Taking G as
the (111) reciprocal-lattice vector, we have PG'
= 27 eV. The Lz, to L, ba.nd gap is known from
piezoreflectance work by Morris and Lynch' to be
4. 15 eV. This gives us our value for 2V~. Morris
and Lynch also find that L2, is 0. 30 eV below the
Fermi level. We therefore have all the parameters
required to determine the form of the EDJDOS from
Eqs. (20) and (21). Figure 5 shows an experimen-
tal EDC taken by Bauer' on heat-cleaned bulk Ag.
The rectangular box represents the calculated
EDJDOS (the height was chosen arbitrarily). It can
be seen that there is some structure in the experi-
mental EDC which corresponds quite well to the

FERMI
SURFACE

FIG. 4. Geometry of the constant energy surfaces for
optical transitions in the two-OPW approximation. The
labeling is similar to that in Fig. 1. Transitions are
permitted only on the disk whose diameter is given by
zcz'.

O
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FIG. 5. The experimental EDC at Su =10.2 eV ob-
tained by Bauer (Ref. 18) on heat-cleaned Ag. The en-
ergy scale is the kinetic energy E —(Ez+ey) of the photo-
electrons. The dashed rectangular box represents the
theoretical EDJDOS referred to final states.

theoretical rectangular box. The large peak with
its edge near 1.5 eV is due to electrons from the
d bands. These lie beyond the scope of this paper.
We confine ourselves to the conduction-band —to-
conduction-band transitions at the high-energy end
of the EDC.

The same rectangular box can be seen in the
EDC's on cesiated Ag taken by Berglund and
Spicer. ' In Fig. 6 we show the high-energy end
of the EDC's on cesiated Ag for several photon en-
ergies. Again we plot the electron energies with
respect to their initial states. The dashed lines
represent a somewhat conjectural estimate of the
background. The cross-hatched areas produced
in this way exhibit the characteristic rectangular
shape. Also, the width of the box increases with
photon energy, as expected. The full circles in-
dicate the estimated position of the valley minima
and the open circles represent the peak maxima.
The actual position of the low-energy edge F-,„
presumably occurs somewhere between.

Theory and experiment on Ag are summarized in
Fig. 7. The full curve represents the variation
with photon energy of E,„given by Eq. (21) using
the parameters of Morris and Lynch. '7 The full
circles denote the positions of the valley minima
shown in Fig. 6 with some obtained at other photon
energies and from different samples. The open
circles correspond to position of peaks; the open
squares correspond to position «peaks in Bauer's
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data. " As with K, the nearly free-electron model
seems to account well for the systematics of the
observed structure. The same analysis has been
performed on Cu with similar results.

V. FOUR-OPW: ALUMINUM

A. Band Structure

For the extension to the four-OPW case, we con-

sidered Al which is regarded as quite free-electron-
like and whose band structure has been calculated by
a number of authors. " ' We shall use here the
fit to the Fermi surface data by Ashcroft. " The
energy eigenvalues at a given point in k space are
obtained by solving the secular determinant

O
O

CL

o
0)

O

Cl

V200

where

V111 V111 200

T2 —8 V200 V

V200 Ts —S U 11

V 1 V111 T4 —8

=0 (23)

lA

O

O—I X IO
0 -3
0)

o 0.8—
UJ

0.6—

T, = Pk, To= P(k —Goop),

To= P(k —Gu() T4= P (k —Gggj)

(24)

0.4—

0.2—

0—
and where V»1 and V200 are appropriate pseudopo-
tential coefficients taken from Ashcroft.

Since the maximum photon energy in photoemis-
sion experiments is quite high (11.3 eV in current-
ly available data on Al ), it was found that these
four bands were insufficient. We therefore in-
cluded three additional higher bands of the simple
free-electron from, namely,

I

-2
INITIAL ENERGY (eV)

FIG. 6. The high-energy end of the experimental EDC's
on cesiated Ag taken by Berglund and Spicer (Refs. 5 and
19). The curves are plotted against E —h(d —Ez, i.e. ,
the initial-state energy, taking the zero of energy at the
Fermi level.

ho= To = P (k Goop)

h, = T, = P (k- G;;, )',

8, = T, = P (k —Gqf, )'.

(25)

B.Numerical Procedure

In numerical calculations, we have found it more
convenient to work from the original definition of
the EDJDOS of Eq. (3) rather than try to evaluate
the line integral of Eq. (5). We have therefore
evaluated B($, h&u) for Al by sampling k space at
about 289000 points arranged on a cubic mesh in
the ~48 symmetry sector of the Brillouin zone. At

The algebra involved in the evaluation of the EDJDOS
now becomes too cumbersome, sowe have proceeded
by numerical techniques. The method is essential-
ly the same as that used by Brust" in calculations
on Si.

each point, the seven energies described by Eqs.
(23)-(25) were calculated. As pointed out by Ash-

croft, it is more economical in computer time to
expand the determinant of Eq. (23) and solve the
resulting quartic. We adopted this procedure.
Having obtained the energy eigenvalues at this point
in k space, the permitted optical transitions were
deduced and dumped into "bins" which had been
labeled according to photon energy and intial-state
energy (the electron and photon energy scales were
divided into intervals a.bout 0. 1 eV wide). Each
transition was properly weighted with respect to the
symmetry of the point in k space. After all points
had been sampled, histograms were constructed
from the contents of the bins. The density of states
and the joint density of states were also computed
by a similar histogram technique.

The reliability of the program was tested by first
computing the EDJDOS for the case of perfectly
free-electron bands. The results obtained numer-
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ically can then be compared with those expected on
the basis of the simple formulas derived in Sec. II.
Figure 8 shows the free-electron EDJDOS for Al
at her =10.7 eV. The upper histogram of Fig. 8
corresponds to the internal distribution &(h', her).
The lower historgam includes the escape factor as
given in Eq. (7), and therefore represents the EDC
of photoemitted electrons. (For this calculation
the work function was taken to be 4. 0 eV; the ab-
sorption coefficient was taken to be 10 cm ' for
photon energy range of interest; the electron mean
free path was taken to vary as (Z —Z~) "and nor-
malized at 50 A for Z =Z~+ 8. 5 eV. ) The EDJDOS
clearly shows the rectangular-box shape discussed
earlier. There are, in fact, two distinct boxes.
One arises from the (111)reciprocal-lattice vectors
and the other from the (200) set. The low-energy
steps correspond to the respective values of Z „
defined by Eq. (14). The steps are of similar
height, which is a consequence of attaching equal
weight to all transitions. Because the EDJDOS is
flat, the shape of the photoemitted EDC simply rep-
licates the shape of the escape function.

The calculation was then repeated with the poten-
tial "switched on. " The EDJDOS and EDC for Sco

=10.7 eV are shown in Fig. 9 and can be compared
directly with Fig. 8. The over-all double-box fea-
ture is seen to persist but there is now significant
additional structure. There are two prominent
peaks of electrons labeled I and II at the high-ener-
gy end of the EDC, and a third (III) group of elec-
trons at an intermediate energy. The low-energy
group of electrons (IV), which is a, remnant of
the low-energy step of the free-electron box (one-

EA

L
O

K
O
KI-
O
ILI

UJ
O
OX
LL

O

Emin(20o)

Emin(I II)

4u = I0.7 eV

I . I I

0 2
I I I I

l2 l44 6 8 IO

FINAL ENERGY, E —EF (eV)

FIG. 8. The upper histogram is the free-electron
EDJDOS for Al at S~ = 10.7 eV obtained by numerical
methods. The lower histogram includes the escape fac-
tors and therefore represents the EDC of photoemitted
electrons. The distributions are plotted against final-
state energy taking the zero at the Fermi level. The
vertical scale of the lower histogram has been magnified
by an arbitrary scaling factor.

OPW), occurs below the vacuum level and is there-
fore inaccessible to experiment.

A series of photoelectron energy distributions is
shown in Fig. 10 for a range of photon energies.
The widths of the rectangular-box envelopes are
seen to increase with increasing photon energy as
expected. The substructure also shows some mino
changes. However, only the three uppermost
peaks emerge clearly above the vacuum level as
can be seen in the EDC curves of Fig. 10 which
include the escape factor (Figs. 8, 9, and 10 have

0
FERMI LEVEL

~4
0

2VG

I I I

4 6 8
PHOTON ENERGY (eV)

I

IO I2

FIG. 7. Comparison of the theoretical values for Em&„
in Ag {full curve) with the positions of valley minima
{full circles) and peaks {open circles) taken from Fig. 6.
The open squares correspond to peaks in Bauer's clean
Ag data.
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FIG. 9. The EDJDOS and the EDC of photoemitted
electrons for Al at 6~=10.7 eV in the four-OPW approxi-
mation. The scales are the same as in Fig. 8.
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FIG. 10. The EDJDOS (upper
histograms) and the EDC of photo-
emitted electrons (lower histo-
grams) for Al at various photon
energies obtained in the four-
OPW calculations. The scales
are the same as in Fig. 8.
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been broadened slightly by allowing a finite spread
in the exciting photon energy with half-width of ap-
proximately 0. 2 eV. )

C. Comparison with Experiment

In order to make a better comparison with exper-
iment, the calculated EDC's have been smoothed by
convolving them with a I orentzian broadening func-
tion whose width at half-maximum was 0. 28 eV.
The smoothed curves are shown in Fig. 11 plotted
against the initial-state energies. There are three
pieces of structure labeled I, II, and III which are
seen to superpose when referred to the initial
states. This is just the behavior shown by the ex-
perimental curves of Wooten, Huen, and Stuart
which are plotted in Fig. 12. We conclude that the
main features of the photoemission EDC's of Al can
be successfully explained in terms of direct trans-
itions using the known band structure. This is so
in spite of our assumption of constant momentum
matrix elements.

D. Relation to the Density of States

The two main features of the theoretical EDC's
illustrated in Fig. 11 may be summarized as fol-
lows: (I) structure in the EDC's superposes when
plotted against initial-state energy, and (2) the peaks
show no abrupt changes in strength on varying the
photon energy. These two features have previously
been regarded as the prerogative of nondirect tran-
sitions, or direct transitions from very flat bands.
Indeed, the previous interpretations of the experi-
ments on Al, and on the related metal In, have
invoked the nondirect model. Our calculations
furnish an important counterexample of this rule
since the bands of Al are quite wide.

In the nondirect model, the EDJDOS in Eq. (6) is
replaced by a simple product of an initial and a
final density of states

(26)

The density of states for Al obtained in the present
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FIG. 11. Smoothed theoretical energy distribution
curves of photoemitted electrons from Al, calculated
from the four-OP% model. The curves are plotted against
E —br' -Ez, i.e. , the initial-state energy with zero taken
at the Fermi level.

calculation is shown in Fig. 13. It is seen that there
are three pieces of structure in the density of states
below the Fermi level. These are due to distortions
of the energy surfaces at the zone boundaries.
Above the Fermi level, the density of states is
smooth and essentially free-electron-like.

If we calculate the EDC's using the nondirect
Eq. (26) we inevitably obtain curves showing three
peaks which superpose when plotted against initial-
state energy, and which show no abrupt changes in
strength on varying the photon energy. Moreover,
these peaks coincide in energy location with the
structure obtained using the direct-transition model.
This is illustrated in Fig. 14, where we show the
EDC at S~ = 10.7 eV calculated according to the di-
rect and nondirect models. The experimental EDC
of Wooten et al. is also shown. Both the direct
and the nondirect curves show the major features
of the density of states, and agree reasonably well
with experiment. Technically, therefore, the di-
rect and nondirect models are indistinguishable.
%e are inclined to give the more conventional direct
model the benefit of the doubt in such circumstances.
Also, there is no theoretical reason to suppose that
the transitions in a free-electron metal like Al
should be nondirect. It has been argued by Spicer
and more recently by Doniach 6 that any nondirect
behavior requires flat bands and the associated
heavy mass. ~~

It is seen from Fig. 13 that the density of states

—2 -I
INITIAI ENERGY (eV)

FIG. 12. Experimental energy distribution curves of
photoemitted electrons from Al measured by Wooten,
Huen, and Stuart (Hef. 9) and plotted against initial-state
energy as in Fig. 11.

is smooth for energies below the three peaks. The
EDJDOS, however, is rich in structure in this re-
gion as ean be seen from Figs. 9 and 10. If we
were able to probe this low-energy region, there is
a good chance that we could distinguish unambiguous-
ly between the direct and nondirect models. One

Lij

O

I I i I I I I I ~ I I I

4 6 8 10 12 14

ELECTRON ENERGY (eV)

FIG. 13. Density of states of Al calculated from the
four-OP% model. The zero of energy is taken at the bot-
tom of the band.
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FIG. 14. Comparison of the direct and nondirect pre-
dictions with the experimental EDC at S~ = 10.7 eV. The
energy scale is the same as in Figs. 8-10.

approach would be to lower the work function by
cesiation. This has been attempted but was un-
successful since the original EDC structure of the
clean Al was severly distorted by the Cs. Another
possibility would be to perform experiments at
higher photon energies, and thus excite the low-
lying structure to energies above the vacuum level.
Although we already opt for the direct-transition
interpretation, it would be highly desirable to have
this experimental confirmation.

VI. CONCLUSIONS

The predictions of the nearly free-electron model
for the photoemission behavior of simple metals
have been found to work encouragingly well for Na,
K, Rb, and Cs, for the conduction-band-to-conduc-
tion-band transitions in Ag and Cu, and for Al.
An analysis similar to that on Al has been per-
formed on In with comparable success and will be
reported elsewhere.

An interesting result has been the similarity be-
tween the predictions of the direct and nondirect
models for Al. The differences and similarities of
the direct and nondirect models are summarized
very concisely by the following two equations:

Equation (28) is derived from (26) by expressing
the densities of states as integrals over the sur-
faces S; and S& of constant energy 8; and 8&, respec-
tively. In the direct model, the EDC depends on
the EDJDOS, which in turn is given by the line in-
tegral in Eq. (27). The zeros of the denominator
in the integrand give rise to singularities. It is
tempting to do as Phillips does for the JDOS' and

try to categorize these singularities. We divide
them into two types.

TyPe A. Suppose that the line integral samples
a portion of k space in which either t

V'„-8; j or
~V&Sfl vanishes or is very small. This will tend

to give rise to a peak in the EDJDOS. Since the
surface integrals of (28) must sample the same re-
gion of k space, there is likely to be a peak also
in the density of states. In these circumstances,
the direct and nondirect pictures might look rather
similar. Clearly, there is no exact correspondence
here since the line integral constitutes a much more

P
restrictive sampling of k space than the surface in-
tegrals.

Type B. In this category, the gradients do not
vanish individually but their vector product does:

iv;h, xv„-g,. i=0, v, 8,~0, v„-g,. x0. (29)
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It is to be noted that Al is a good candidate for
structure of type A. The Fermi surface is large and
overlaps into several zones. The energy surfaces
in the vicinity of the Fermi level are therefore in-
tersected by many zone boundaries, so that there
are many regions of k space for which I V„-8& I and

~Vf, S;~ are small. The direct and nondirect pre-
dictions might therefore be expected to be similar
expecially at the high-energy end of the EDC's.
While the foregoing argument is far from exact, it
does provide some retrospective insight into simi-
larities which can occur between the direct and non-
direct models.

EDC (direct) ~ dlf;
;I

(27)
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