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the first 13 reciprocal-lattice vectors for fcc and
14 for bcc. The resulting energy levels are re-
markably insensitive to the choice of splitting pa-
rameter '6 Only the few levels near the bottom of
the d band for which approximation (6) becomes
important are noticeably P sensitive. However,
these levels have converged to within about Q. QQ2 Ry
for the value of P= 0. 9 used in the present calcula-
tions. Table I lists the resulting values of the TB
overlap parameters and their energy derivatives.
It is seen that we need only retain out to second

nearest neighbors for fcc and third for bcc.
The model Hamiltonian reproduces the energy

levels' below X4, to within a rms accuracy of
0. 006 Ry for fcc (Bl levels) and 0.006 Ry for bcc
(74 levels). This success of the simple resonance
parameter scheme should make it extremely useful
in providing accurate transition-metal band struc-
tures and wave functions, under change of volume
or structure, ' once the good physical parameters
E~ and W have been found.
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Investigations of the dynamical properties of metallic crystals with free surfaces have been
performed on the basis of a. Born —von Karman model with atomic interactions up to second
nearest neighbors including noncentral forces. The effect of a variation of the force constants
near the surface on the surface-mode dispersion relations is analyzed. The calculations
were based on a nonstandard Green's-function technique. Results are presented for the (100)
surface of nickel. Surfac~ modes are shown to, exist below and above the cyclic frequency
band as well as in a gap within the bulk region. The consequences of the fulfillment of the
conditions of rotational invariance for the surface-mode dispersion relations are demonstrated.

I, INTRODUCTION

Within the last year several theoretical studies
of surface vibrational modes of crystal lattices
have been published. For example, Tong and Ma-
radudin have investigated a NaCl crystal slab us-
ing the rigid-ion model introduced by Kellermann.
Allen et g/. ' have performed extended calcula-
tions for monatomic crystal slabs with atoms inter-

acting through a Lennard-Jones (12, 6) potential,
thus gaining a realistic description of noble gas
crystals.

In investigating localized surface modes another
topic has also been of great interest, namely, the
effect of isotopic surfaces, i. e. , of surface layers
consisting of atoms with masses different from the
mass of the bulk atoms, but with no changes in the
forces between atoms near the surface. ' ' It is
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evident that an analysis of the influence of changed
atomic force constants near the surface on surface-
mode dispersion relations is of similar importance
in connection with adsorbed or chemically bound
surface layers. LEED experiments have shown
that a change of force constants has also to be tak-
en into account near clean crystal surfaces. How-7

ever, to the author's knowledge, no systematic study
in this direction has been carried out. Therefore
we want to present in this paper results of our in-
vestigations concerning surface-mode frequencies
of crystals with changed forces between atoms near
the surface, but without considering surface atoms
with changed masses.

Besides, we show that the fulfillment of the con-
ditions of rotational invariance imposed on the atom-
ic force constants near the surface is of importance
for the exact description of surface-mode disper-
sion relations not only in the long-wavelength limit
but also through nearly the whole Brillouin zone.

II. LATTICE MODEL

In the papers cited above' the calculations have
been based on models restricted to central forces
and therefore the validity of the Cauchy relations
is assumed implicitly. These relations are well
satisfied for the alkali halides and the noble gas
crystals. For metals, however, there are strong
deviations from the Cauchy relations and a model
with central forces only cannot yield correct re-
sults. But since the great difficulties in the theory
of lattice dynamics of metals prohibit first-princi-
ple calculations of dynamical surface effects, we
think that a method for computing surface-mode
frequencies on the basis of a realistic Born —von
Karman model is of interest. The importance of
such calculations is particularly emphasized by

the fact that the progress in LEED experiments
may soon provide data about the properties of sur-
face modes of metal crystals.

In our calculations of the vibrational modes of fcc
metallic crystals with free (100) surfaces we have
used a force constant model with central forces be-
tween first and second nearest neighbors (coupling
constants C, and C,) and with angular forces of the
DeLaunay type' between first nearest neighbors
(coupling constant A). The introduction of these
three coupling constants makes it possible to.match
exactly the elastic properties of the bulk. ' Further-
more, it is known from neutron scattering data,
that the phonon dispersion relations of the bulk
modes of various fcc metals are reproduced by our
model with rather good accura. cy (Ni, Cu, Ag,
Pt, and Au ").

At the surface the angular forces are modified
in order to ensure the fulfillment of the conditions
of rotational invariance. A detailed description of

this modification is given in Ref. 7 (surface model
SURF 1). As has been proved by Ludwig and Len-
geler, ' the fulfillment of the conditions of rotation-
al invariance for the atomic force constants for at-
oms near the surface is necessary for consisten-13 ~

cy between the long-wavelength limit of the acoustic
surface modes and the Rayleigh modes of the con-
tinuum theory.

To study the influence of the rotational invariance
conditions on all parts of the surface-mode disper-
sion relations, we have performed additional calcu-
lations using a model with unchanged coupling con-
stants near the surfa, ce. This model SURF gf is
not rotationally invariant. We have based our cal-
culations upon a model with angular forces of the
DeLaunay type, because a model with angle bending
forces as described by Clark et al. ' leads auto-
matically to a rotationally invariant surface model
and therefore prohibits the study of the influence of
rotational invariance on surface-mode frequencies.

A comparison between the mean square displace-
ments of surface atoms measured by LEED experi-
ments and those computed from force constant
models shows that the interactions between atoms
near the surface are different from those in the
bulk of the crystal. In our computations this fact
has been taken into consideration by a variation of
the central force coupling constant between an at-
om in the surface layer and its nearest neighbors
in the second layer (surface coupling constant C,').
Since the values of the coupling constants C1 are
much larger than the values of the coupling param-
eters C2 and A, our assumption seems to be a good
approach to reality.

For bcc metals a calculation of surface-mode
frequencies from a rotationally invariant Born —von
Karman model including angle bending forces ac-
cording to Ref. 14 has been performed already by
Gazis and Wallis. ' However, these authors did
not allow for modified coupling constants between
atoms near the surface.

III. THEORETICAL PROCEDURE

In order to make the problem of calculating sur-
face-mode frequencies amenable to computation,
we consider a slab-shaped crystal of finite thick-
ness. We assume the customary cyclic boundary
conditions with respect to translations parallel to
the surfaces. Thus all vibrations of the slab may
be classified by a two-dimensional wave vector k„
with components parallel to the surfaces. Using
two-dimensional Fourier transformation we can
reduce the dynamical matrix of the crystal slab to
matrices of lower dimension. These matrices dis-
play the same structure as the dynamical matrix
of a crystal with a point defect. Consequently, a
Green's-function method analogous to that used in
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the theory of defect modes is applicable for the
computation of surface-mode frequencies. For the
problem under consideration, we used a modifica-
tion of the standard Green's-function method.

As is well known, phonon frequencies are deter-
mined by the classical time-independent equations
of motion (given, for instance, in Refs. 16 and V).
We start from a short-hand matrix formulation of
these equations:

6L{(d ) are proportional to the difference

we define"

6L((d ) = hC& 6L ((d ) .

By inserting 5Iss (0&') into Eq. (7) we get

(6)

L{0&')tt = 0 . eigenvalue [G,',"((02)6Lg, ((d2)] = —1/aC, . (10)

L((0') =I, (') (0&')+5L((d'), (2)

where 5L{(d') can be written in the following parti-
tioned form:

0

0 5L00(0&'}j

Under these assumptions the phonon frequencies of
Eq. (1) are more easily obtained from another ma-
trix equation formed by submatrices belonging to
the defect space [lower right-hand corner of the
right-hand side of Eq. (3)]:

[1+G„(0&(0&2)5L,„((d')]u, = 0. (4)

L((d') is the coefficient matrix, u the vector formed
by the atomic displacements of all atoms of the
crystal. In the case of a crystal with a point de-
fect, I ((d ) can be replaced by a sum of two matri-
ces

This relation renders immediately the desired
functional dependence (0 = (0'(C&2) between the sur-
face-mode frequencies and the surface coupling
constant C,' .

For evaluating Gs(00& ((d2) an inversion of the coef-
ficient matrix I ' '((0 ) is necessary. This is per-
formed by applying the matrix partitioning technique
described in Ref. 7 to the following decomposition
of I (

&((t& )

L (0)
( 2) Loyol(&2) + 6Lsurt( 2)

The crystal slab with two free surfaces (and C,"
= C, ) is thus considered as a defect of the slab with
an additional cyclic boundary condition perpendicu-
lar to the surface [coefficient matrix I'""((0')].
The nonvanishing elements of the defect matrix
5L'""{(d')are confined to the defect region given
in Eq. (3).

Our problem may also be solved from Eq. (6) by
using the standard Green's-function technique

Gs(„'(0&') denotes a submatrix of the Green's func-
tion

Det [1+G;,"'(~') 6L,to™((0')]= 0. (12)

G(0) ( 2) L (0&( 2)-1

The necessary and sufficient condition for nontriv-
ial solutions of Eq. (4),

(lef. [~1+Gss {(t& ) 5Lss((t& )]= 0
p

is for our purposes replaced by the equation

eigenvalue [Gs(s)((0 }~I ss(0& )] = —1

For the use of Eq. (7) the summands of,the left-hand
side of Eq. (2) are defined in the following way:
I ' )(0&2) represents the coefficient matrix of the
crystal slab with free surfaces, but with no central
force constant changes at the surface (C, = Cl).
5L{(d ) is the perturbation matrix resulting from the
replacement of the coupling constant C, by the sur-
face coupling constant C,' . Since all elements of

G'""(0& } is the Green's function of the slab with an
additional cyclic boundary condition perpendicular

is the sum of the defect
matrices defined in Eqs. (9) and (11},

6Ltotsl((02) 6Lsurf(~2) + 6L(0&2)

If we would have used Eq. (12) for evaluating the
dependence of the surface-mode frequencies on the
surface coupling constant C,", we would have been
forced to select values for C", and to solve Eq. (12)
for each choice independently.

Owing to the localized character of surface modes
(perpendicular to the surface), their frequencies
approach asymptotic values when the thickness of
the crystal slab increases. Since both surfaces of
the slab are equivalent, etch branch of the corre-
sponding semi-infinite crystal is split into two
branches with frequencies nearly equal, if the thick-
ness of the slab is sufficiently great. In evaluating
the asymptotic frequencies of the surface modes
we could restrict ourselves to a 20-layer crystal
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is limited to wave vectors near the Brillouin-zone
boundary. With decreasing ratio C', /C, the range
of wave vectors for this branch spreads from the
zone boundary M towards the center of the zone
while the frequencies of the modes decrease. For
C,' /C, =1 the branch S2 degenerates into a single
bulk mode at the zone boundary with the frequency
of lowest inband mode.

The importance of the fulfillment of the conditions
of rotational invariance for the correct determina-
tion of the dispersion relations of the surface modes
below the cyclic region is demonstrated in Fig. 3.
Contrary to Fig. 1, as ordinate scale a reduced
phase velocity v~ is chosen, which is defined by
the ratio between the phase velocity v» of the sur-
face modes given by'

0,5- v,„=-,' a(u(h„)/h„

and the sound velocity

v, =(c4c/p)' '.

(14)

0,3 ' I

1,0
I I

2,0 3,0x

WA VEV E CTOR k))

FIG. 3. Reduced phase velocity of surface modes be-
low the cyclic region and lower boundary of the cyclic
region versus wave vector k„. Solid lines correspond
to the model SURF 1, the dashed lines to SURF Q.

the full lines correspond to the model SURF 1, the
broken lines refer to SURF Q.

Above the cyclic region surface modes (S4) can
only appear for coupling constant ratios C~2/C, &1.
For C,"/C, = 1.3 surface modes exist only for a lim-
ited range of wave vectors (see Fig. 1). Their fre-
quencies lie very close above the upper boundary of the
cyclic region. With increasing ratio C,"/C, the range
of wave vectors increases and the frequencies of
the modes are shifted towards higher values. The
model SURF Q shows similar results, the frequen-
cies of the surface modes lie close below those
derived from SURF 1.

The dispersion relations of surface modes in
the gaP (S3) are shown in detail in Fig. 2. For each
of the three coupling constant ratios plotted there
exist two branches. The dispersion relations ob-
tained with the model SURF Q display the same struc-
ture, though with somewhat different frequency values.

Belozv the cyclic region one surface-mode branch
(S,) exists for all wave vectors, yielding the Ray-
leigh modes in the long-wavelength limit. A second
branch (S~) appears only for ratios C,'/C, &1 and

It can be seen from Fig. 3 that the rotationally
invariant model SURF 1 yields a much larger value
for vn at the zone center I" than the model SURF @.
The discrepancy between the two models gradually
disappears when k), approaches the zone boundary
M.

The results of our lattice dynamical calculations
of the value of v~ at the zone center F should be
compared with the values derived from calculations
ba, sed on the theory of elasticity as well as with
experimental values. However, as we found in the
literature experimental data only for copper, we
have also calculated with both of our models the
long-wavelength limit of v& for copper. Again the
model SURF Qf yields an essential lower value of
0. 53 than the model SURF 1, from which we de-
rived the value 0. 73. The latter value is in very
good agreement both with the value of 0. 69 calcu-
lated by Gazis et al. from elastic data and with
the value of 0. 68 measured by Lim and Farnell. '

At the point M, for modes with odd parity, lattice
symmetry has two consequences, which are inde-
pendent from a special force constant model: (a.)
Disregarding accidental degeneracy, modes vibrate
either parallel or perpendicular to the surface.
(b) For modes perpendicular to the surface two

groups of layers parallel to the surface vibrate in-
dependently —those with the layer numbers n = 1, 3,
5, . . . and those with n=2, 4, 6, . . . . At this special
point the surface modes S, and S~ vibrate perpendi-
cular to the surface, S, is the surface mode of the
even layers, S, that of the odd layers.
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We have obtained a systematic expansion for the trace of the Green's function of electrons
moving in a disordered alloy. In our expansion, the terms are classified by a path length
which, for some models, takes on discrete values. The expansion is strongly convergent for
large complex energies, but seems to be surprisingly useful even for nearly real energies.
We present numerical calculations of the density of states for a one-dimensional system.

I. INTRODUCTION

Imagine emitting a pulse of sound from a point
into some inhomogeneous environment and then
waiting a short time t for the echoes. The result
may be calculated exactly, knowing the properties
of the environment within an influence sphere of
radius —,ct about the initial point, where c is an
appropriate sound velocity. We contrast this solu-
ble problem with the very difficult one of reliably
calculating the exact sonic dispersion relation in
an inhomogeneous medium.

A qualitatively similar situation occurs for elec-
trons in a disordered (or partially disordered) al-
loy. Of course, there is no strict limit on the vel-
ocity of motion of an electron (in a nonrelativistic
theory). Nevertheless, over short time intervals,
the motion is still essentially confined within an

influence sphere, and this suggest the possibility
of making a local calculation of some aspect of
the electron dynamics. In this paper, we explore
this possibility. The results are quite simple and
interesting.

First, we have obtained a perfectly systematic
and convergent "echo" expansion of the trace of the
electron Green's function for complex energy z:

TrG(e) =Zz fz, (e) e ~~ k —= We

We consider noninteracting electrons moving in the
presence of many "atomic" potentials V„, with
kinetic energy Ho = p /2m. In the present paper,
we limit ourselves to one-dimensional problems
with 5-function potentials on the sites of a fixed
lattice. None of these limitations are essential in
the present method. We define the Green's func-


