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Using the weak scattering approximation and the Van Hove correlation-function technique,
it is shown that the scattering function for a binary alloy (solid or liquid) is quite generally
expressible in terms of three structure factors S&N(q), Sz&{q), and S&z{q) constructed from
the Fourier transforms of the local number density and concentration in the alloy. These
structure factors have the property that at, temperatures above the Debye temperature and in
the long-wavelength limit {q 0), S~~(0) and Szz(0) represent, respectively, the mean square
thermal fluctuations in the particle number and concentration, and Szz{0) the correlation be-
tween these two fluctuations. Thermodynamic formulas for these fluctuations are given and
their concentration and temperature dependence examined for various types of mixtures (reg-
ular, order-disorder type, athermal, etc.). It is concluded that the present formalism,
because of its ready link with the thermodynamic properties of the alloy, can be helpful in
interpreting the various experimental data and provides useful insight into the partial str«-
ture factors introduced in the Faber-Ziman theory of liquid alloys.

I. INTRODUCTION

In the current treatment of the problem of elec-
trical conductivity of metals (liquid or solid), the
relevant scattering function describing the scattering
of electrons is given by the product of two factors:
a structure factor which depends only on the rela-
tive positions of the ions in the metal, and the atom
form factor or the pseudopotential matrix element
which describes the scattering due to the individual
ions in the metal. ' The method depends on as-
suming that the total potential, responsible for
scattering, in the metal may be written as the sum
of the potentials due to individual ions in the metal
and that it can be regarded as weak. Faber and
Ziman' (FZ) have generalized this approach to dis-
cuss the electrical resistivity of liquid alloys. For
a binary alloy the scattering function depends upon,
in general, three independent partial structure
factors which completely describe the structure of
the alloy and the two form factors.

The transport properties of alloys have also been
discussed on another, and seemingly unrelated,
approach which is valid in the long-wavelength limit
and which attributes the scattering of electrons-
in analogy with the well-known theoriesv' of light

scattering in liquids and liquid mixtures —to the
local thermal fluctuations in the density and con-
centration of the alloy. In particular, Krishnan
and Bhatia showed that the observed strong tem-
perature dependence of the resistivity of an order-
disorder type of alloy near its critical point may
be attributed to the corresponding temperature de-
pendence of the concentration fluctuations. A some-
what similar approach has been recently suggested
by Takeuchi and Endo' for liquid alloys; see also
Tomlinson and Lichter. "

The work of the present paper may, in a sense,
be regarded as constituting a generalization of the
above fluctuation approach so that it is applicable
at shorter wavelengths and low temperatures. It
is shown that in the aforementioned weak scattering
approximation, the scattering function for a binary
alloy (solid or liquid) is quite generally expressible
in terms of three structure factors S~„(q), S~c(q),
and Scc(q), which are derived from the Fourier
transforms of the local number density and concen-
tration of the alloy. For liquid alloys and for solids
above the Debye temperature, these structure fac-
tors have the property that in the long-wavelength
limit (q-0), S~~(0) and Scc(0) represent, respec-
tively, the mean square fluctuations in the particle
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number and concentration, and S~c(0) the correla-
tion between these two fluctuations. Since all these
three quantities are readily calculated from the
thermodynamic properties of the alloys, the present
formalism provides useful insight into the various
structure factors. This is illustrated in the text
by consideration of various types of solutions.
namely, ideal, order-disorder, athermal, etc.

Using the Van Hove correlation-function tech-
nique, " the general expressions (and their high-
temperature limits) for the scattering function and
the structure factors S~))(( q), etc. , are given in
Sec. II. In the remainder of the paper we confine
our discussion to the high-temperature case only.
In Sec. III, we consider the long-wavelength limit
and use the appropriate thermodynamic formulas
to discuss the limiting forms of the structure fac-
tors S„))((q), etc. , for various types of mixtures.
Finally, a comparison between the partial struc-
ture factors of the FZ theory and the structure
factors introduced here is given in Sec. IV.

II. SCATTERING FUNCTION

In the weak scattering approximation, the func-
tion, here denoted by I'(q, (d), which determines
the scattering of an electron from the initial wave-

vector state k to the final wave-vector state k' in
the alloy, is given by

)'(«, ««)= fe "'d (A'( (0)A«(q, ()), ())

f(q) = („)r(q, (d)d(o, p=
8 —1 B

where kB is the Boltzmann constant and T the tem-
perature, then the resistivity p is given by

1
12m(m*)' N

p= . . . — I,„(q) x'dx,he k„V
where x=q/2k+, kr is the wave number of the elec-
trons at the Fermi surface, m* the electron effec-
tive mass, and V the volume of the system. In a
solid, f(q) depends, in general, on the direction of

q, and f„(q) in (4) represents a suitable average of
I(q) (minus elastic Bragg scattering, if any) over
all directions of q.

Consider now a binary alloy having N, a = 1, 2,
atoms of the type n, and let n =N„ /V be the mean
number density of e ions. We define the average
concentration c by

c = N, /(N, +Nz) = N~ /N = n q /( n, + n2) .

If n (r, t) denote the number density operator at
time t for the species a, then

{)n.(r, t) -=n„(r, t) -n.

= -n.+g,~{r- R; {t)).

Making the Fourier expansion

where

A(q, t)=Z;WJ(q)e" &"),
(2)

5n„( r, t) = (1/V) Z; N ( q, t) e "',
N„(q, t) = f e"'5n„(r, t)d'r

q=k-k', A(u =Eq-Ep.
0t

t
(8)

A~(q, 0) is the conjugate of the operator A(q, 0), N
is the total number of atoms in the crystal, R&(t)
the position operator of the atom j at time t, and

( ~ ~ .) denotes ensemble average in the equilibrium
state of the alloy. Further, W&(q) is the pseudo-
potential matrix element of the ion j in the alloy,
i.e. , if V&(r -R&) is the effective potential due to
the jth ion centered at R, ,

W&(q)= J e' '' ~' V&(r -R;)d x .

We take, for convenience, W&(q) to be real and a
function of q(= lql) only. For a pure metal, all
W&(q) are equal, and I'(q, (()) =

I W(q) ) ~S(q, &()),

where S(q, u&) is the dynamical structure factor in-
troduced by Van Hove. '

I'(q, &u) is related to the resistivity of the alloy
in the same manner as it is for the case of a pure
metal. " " Remembering our defimtions of q and
(d, if we set

The reality of 6n (r, t) requires that Nt(q, t)
= N ( - q, t). Similarly, if N(q, t) denotes the Fou-
rier transform of the local deviation 5n(r, t) in the
total number density

n(r, t) =n, (r, t)+n, (r, t),
then

N(q t) = Z e"' &
' N5"-

j,0, =1,8

=N, (q, t)+N, (q, t) .

We next define the local deviation from the mean
concentration c by

6c ( r, t ) = (V/N) [(I -c) t' n, ( r,)t) -c Dna( r, t) ],
so that if 5n, and 6n2 change in proportion to their
respective mean concentration, namely, c and

(1 -c), then 5c(r, t) =0, as it should. If we make
the Fourier expansion
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8c(r, t) =Q; C(q, t) e "', C (q, t) = C(- q, t),

then

C(q, t) = (I/V) f 5c(r, t) e ~'d r
= (N ')[(1 c-) N, (q, t) c-N, (qt, )] . (12)

With the help of (8), (9), and (12), the expression
(2) for A(q, t) may be written as

A(q, t) = W, N, (q, t)+W, N2(q, t),
or as

to derive. It is valid at all temperatures and ap-
plicable to both solids and liquids. In accordance
with the remarks made in Sec. I, we confine further
discussion in this paper to the case of high tern-
peratures only.

At temperatures above the Debye temperature,
the scattering may be considered to be elastic,
i.e. , Pm(=ha/kaT) «1, for a,ll u for which

S~„(q, &u), etc. , are significantly different from
zero. Then the factor P&u(e

" —1) ' in (17) may be
replaced by unity, and since

f e '"'d(~=2ae(t),

A(q, t) = WN(q, t)+ (W, —W, )NC(q, t),
where

(14) we see from (18) and (17) that the structure factors
S~„(q), etc. , may be written as

Wq=—Wq(q), etc. ,

W=cW, +(1-c)W, .

S..(q) =N '(N*(q) N(q)),

Scc(q) =N« "(q) C(q)), (19)

In (13) and (14), we have ignored terms involving

6; 0, since they contribute to the scattering in the
forward direction only, and their presence or ab-
sence does not affect the resistivity.

Substituting (14) into (1), we may write I'(q, &u)

in the form

1(q, ~)=(W)'S (q, ~)+(W&-W2)'Scc(q &)

+2w(w, -w, )s„,(q, &o),

where

S ~~( q, +) = (1/2') f e '" ' dt (N ( q, 0)N( q, t)),

S„,(q) =Re(N*(q) C(q)),

where all the N(q) and C(q) now refer to the same
time and hence need not be considered as quantum
operators, and the asterisk represents the complex
conjugate. For a liquid, from symmetry, all the
structure factors S»(q), etc. , depend on the mag-
nitude q of q only.

It is interesting to note that the structure factors
defined in (19) obey certain sum rules. We have
from (19) and (9)

S»(q) =N '(
~
Q e"' ~ -N8e, o I )

S (q, Id)=(N/2z) f e '"'dt(C (q, 0)C(q, t)),

2S„c(q, &u) =(I/2a) f e '"'dt(N~(q, 0) C(q, t)

+c'(q, o)N(q, t)) . (18)

m$ tf

=N 'f e"'( 2 5(r —R +R„))d'r-N5; 0
m, n

The functions S„„(q,~), etc. , ma. y be called the
dynamical structure factors for the alloy. Qf these
SN„(q, &u) is similar to the S(q, e) for a pure metal
since it is, like S(q, &u), associated with the fluc-
tuations in the number density of the ions.

If one now introduces

Hence,

= 1+N ~ fe'~'( Q 5(r —R +Rg) d r —N5~ o .
m& ff

S„(q)= J [p(o/(e'" —1)]s»(q, (g)d~, (17)
y( Z 5(r -R +R„))d'r, (2o)

with similar expressions for Scc(q) and S~c(q), the
expression (3) for f(q) becomes where we have used the relation

f(q) = (w)'s»(q) + (w, —w, )'s«(q)

+2W(W, —W2)S„c(q) . (18)

—Ze"' "'= e"""d'q

This is the expression for f(q) that we had wished = f(r-r'). (21)
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The integral on the right-hand side of (20) is ob-
viously zero. Hence,

P [S~n(q) 1]= ~ [S~v(q) —1)]d q=—

(22)

Similarly, one may show that

f [Scc(q) -c(1—c)]d'q =0,

f s„(q)d'q=o .

III. LONG-WAVELENGTH LIMIT OF STRUCTURE
FACTORS

(23)

(24)

S„(0)=((r N)')/N, S (0) =N((&c)'),

S„,(O) =(~Nnc) . (25)

In (25), ((&N)~) is the mean square fluctuation in
the number of particles in the volume V of the me-
dium, ((&c) ), the mean square fluctuation in the
concentration, &c being defined by

&c = N '[(1 —c) AN, -c&N, ],
and (nNnc) is the correlation between the two fluc-
tuations &c and &N= ~N, + ~N2.

The expressions for the fluctuations in any set of
thermodynamic variables are readily derived from
standard arguments in statistical thermodyna-
mics. '6'7 For the right-hand sides of (25), one
obtains (the derivation is outlined in the Appendix)

Q2Q
Scc(0)=NksT/

C T,P, N
(26)

From the definitions (9) and (12) of N(q) and C(q),
respectively, it is easy to see that as q- 0, the
structure factors defined in (19) have simple phys-
ical meaning, namely,

may be neglected (S„c=0). As might be expected
intuitively, we see from (29) that the condition for
this is that the partial molar volumes v& and v2 of
the two species be equal. For a solid solution
whose constituents are miscible in all proportions,
5 is usually small so that S„~=0 is a reasonable
approximation for such solutions. It may be noted
that when 5=0, S„„(0)has the form corresponding
to a pure metal, namely,

S~~(0) = (N/V)ksTvr .

We shall see later that when 5= 0, S~c(q) may be
expected to be zero for all q; hence, for this case,
only two independent structure factors are needed
to describe the structure of the alloy completely.

Next it is instructive to examine the forms of
Scc(0) on the basis of some simple theoretical ex-
pressions for 6 for different types of solutions.
First we recall that for a solid or liquid solution
G, to a good approximation (except, perhaps, near
the critical point of a phase transition), may be
written as'

G =N[cV, O(f, T)+(1 -c) q,'(~, T)]+~.G, (3O)

wher e p, , and p, ~ are the chemical potentials of the
two pure species and & G is the free energy of
mixing (arising from the entropy and energy of
mixing). Further, n G= C F, where n F is the
Helmoltz free energy due to mixing —which is the
quantity that is usually evaluated theoretically. %e
note that the terms in the square brackets in (30)
do not contribute to Scc(0).

First we consider the class of solutions known
generally as regular solutions. A regular solution,
by definition, is one in which 5 is sma. ll [l(vz —v, )/
v, I not more than 0. 3 or 0.4]. For such a solution
with no superlattice structure & I' in the zeroth
approximation is given by'

S~~(0)= (N/V)ksTgr+ 5 Scc(0),

s „(o)= —5S„(0), (28)

& G= & F=NksT[c inc+(1 —c}ln(1 —c)]

Nc(1 —c) w, -

where ~T is the isothermal compressibility, G is
the Gibbs free energy, P is the pressure, and 6 is
a dilatation factor defined by

Vy —Vp N= —(v, -v,),cv)+ (1 —c) vp V
(29)

where v, and v2 are the partial molar volumes per
atom of the two species.

For 5 =0, Eqs. (26)-(28) reduce to those given
by Krishnan and Bhatia who assumed at the outset
that in a solid solution the correlations between the
fluctuations in particle number and concentration

where so is an interchange energy such that if we
start with two pure metals A and B and exchange
an interior A atom with an interior B atom, the
total dec~ease in the energy of the metals is 2'.
(Note that our w is negative of the w defined in
Chap. 3 of Ref. 18.) Using (30) and (31}in (26),
one has

(0)c(1-c}
1+2c(1-c)w/(ksT)

' (32)

For an ideal solution (w=o), Scc(0)=c(1-c). This
corresponds to random solutions and gives the re-
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sistivity due to alloying as proportional to c(1 -c)
and independent of temperature (Nordheim's rule' ).

If so is negative, the solution has a critical point
of mixing, the critical temperature T, being given

by T, = , lacy—/ka. Near this point Scc(0) and hence
the fluctuations in concentration become very large.
Although the expression (31) for free energy is too
simple to adequately describe partially miscible
liquids and the thermodynamic theory of fluctuations
breaks down near the critical point, the above ar-
gument nonetheless suggests that the resistivity-
versus-temperature curve should, in general, show
a cusplike rise near T,„in such alloys.

In a regular solution with superlattice structure
(order dis-order type of alloy), the expressions for
& E are more involved. For an AB type of super-
lattice (as in CuZn alloy), Krishnan and Bhatia
have given expressions for Scc(0) both in the zeroth
and next higher (quasichemical) approximations.
For illustration, we quote here two results. In the
zeroth approximation, Scc(0) above the critical
temperature is given by just (32). Below the critica]
temperature and for c =-,", Scc(0), in the zeroth
appl'oxlmatlon~ ls

where q is the usual long-range order parameter
which is unity in the perfectly ordered state (T «T,)
and zero for T & T,. The temperature variation of

q is given by q = tanh(0T, /T). One may then verify
that S«(0) =0 for T «T, . As the temperature
rises, Scc(0) at first increases slowly and then

sharply as T approaches T,. Above T„g=9 and

(33) reduces to (32) with c =-', . As mentioned in
Sec. I, this type of variation of resistivity with
temperature is in qualitative agreement with
experiment.

%hen the partial molar volumes e1 and e2 differ
considerably from each other, a more valid ap-
proximation, in a similar vein to (31), is given by
Flory's formula, (see also p. 229 of Ref. 18)

( )
c(l -c)

1+c(1—c)8a +c(l -c)g "(c)av/)'aaT,

where a prime denotes differentiation with respect
to the argument. We see from (38) that, unlike
the case of regular solutions (f) «1), Scc(0) now

also depends on 6. In particular, even when the
interchange energy a) = 0, Scc(0) is not just equal
to c(l —c) as for a truly random (ideal) solution.

IV. COMPARISON KITH FABER-ZIMAN THEORY AND
DISCUSSION

Starting from the high-temperature limit of the
expression (3) for I(q), namely,

(37)

Faber and Ziman show that for a liquid binary al-
loy, I(q) may be written as

I(q) = c,W, +ca Wa + c, W, (g» —1) + ca W a()aaa 1)

+ 2c&ca W& Wa(a&a —l.), (38)

where, in terms of previous notation, c,=e, c2=1
-c, and a, a[=a a(q)], the partial structure factor
for the species o. and P, (n, P = 1, 2), is defined a,s
follows:

Let P„t)(r) denote the pair distribution function
defined as the probability of finding an n ion in a
unit volume at a radius x from the center of a P
ion, normalized in such a way that it tends to unity
for large x. Then

30

a„a =1+— [P.a(a.) -1] q 4&a'dr . (39)
V " qx

We have P a(r)=Pa (r) and a„a=aa
The most straightforward way to obtain corre-

spondence between the FZ formalism and the pres-
ent work is to compare the coefficients of W„R'8
in the expressions (38) and (18) for I(q). This
shows that the S«(q), etc , de. fined in (19), are
related to a & by

E=ÃkaT[c lug+ (1 -c) ln(l —Q)]+i)Ig(c) ao,

where the last term is the energy of mixing whose
concentration dependence we have not written ex-
plicitly and Q is the concentration by volume of
species 1, i.e. ,

= c+c(l —c)5 .
O'Uy + 1 —c)5a

From (34) and (26) we have

S)))a)(q) = c snss+ca&aa+ 2c& ca~ia )
2 2

S)))c ( q) = cg ca [cl(c» —01a) —ca(Qaa —Cia)],

Scc(q) =cgca[1+csca()ass+)aaa 2)aia)] )

and, conversely,

1~11 C I SNN+ 2C1SNC + ~CC C1 C2 s
2

2 = 2
C 2~22 C2~NN 2c2~Nc +~cC C1C2 y

c g ca g ).a
= c g ca S«+ (ca

—c g ) S)))c
— cc + c g ca ~

(41)
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It will be clear from the definition (39) that all
the FZ structure factors a 8 would have more or
less similar variation with q. This is not the case
for the S(q)'s. For example, the simplest approxi-
mation in the FZ formalism is to take'

=07

=06

11 22 12 (q)

say, which gives

(42)
NN

SN„(q) =a(q), S„c(q)=0, Scc(q) =c,c, . (43)

Evidently (42) and (43) refer to ideal solutions
with 5=0.

Again, if one integrates (39) over all q, using
(21) and the fact that I' 2(r) = 0 at r = 0, one finds
(Enderby ef al. ")

C(-c)

(2v) 'J [a 2(q) —1]doq=-zjV, (44)
5 10 15

for all the partial structure factors a 8. We recall
that the sum rule (22) for S~N(q) is just the same
as (44). In contrast, the sum rules (23) and (24)
for Scc(q) and S11c(q), respectively, are different
from that for S~„(q) or a o. We note that for alloys
in the liquid state the sum rules (22)-(24) can be
obtained by using (44) in Eq. (40).

A useful insight into the structure factor S„c(q),
which describes N-C correlations, is obtained if

FIG. 2. Number-concentration structure factors de-
rived from the hard sphere Percus-Yevick model cal-
culations (Ref. 22) with c&

——0.6 and 0&/0.2
= 0.7. The

function 0(q) is denoted by the broken curve.

we rewrite its expression from (40) making use of
(39). We obtain

N sinqx
S11c(q)=c,c2 — ( +o1(r) ~'22(r)] 4mr dr,

V qx

(45)
where

08 ~ 0I8+ 8 88

C(1-r3
0—

~cc

CN

I

5
l

10 15

FIG. 1. Number-concentration structure factors
fS&N(q), Sxc(q) Scc(q)], derived from the hard sphere
Percus-Yevick model calculations (Ref. 22) with c~
= 0.2 and 0.&/a2 = 0. 9. Note that for this case Scc(q) has
no significant variation with q. Further, the function
0(q) f =S&&(q) —fS&c(q)] /Scc(q)] cannot be resolved from
S~N(q) in this figure.

Clearly, Zoo (P = 1, 2) is the probability of finding
any ion (n or P) in a unit volume at a distance r
from the center of a P ion, normalized in such a
way that it tends to unity at large x. If the two
types of ions have the same volume (v, = v2, 5= 0)
and are of similar shape, then one may expect that
+o,(r) = +o2(r) for a.ll r. Hence, for this case,
S„c(q)= 0 for all q and, as mentioned earlier, only
two structure factors are sufficient to describe the
structure of the alloy completely. Scc(q) would,
of course, be just c&c, only if the interchange en-
ergy sv defined in Sec. III is also zero, as for an
ideal solution.

In order to illustrate the variation of S~„(q),
S„c(q), and Scc(q) with q, we have plotted these
functions in Figs. 1 and 2 for two cases. They are
constructed from the theoretical calculations of the
structure factors S 2(q), defined below, by Ash-
croft and Langreth' for the hard sphere model in
the Percus-Yevick approximation. S 8 are given
by (o. , P= 1, 2)
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S ~(q)=(2N) '(c c8) "'(N,"(q)N8(q)+N, (q)NB (q)) dips down and gradually approaches nearly zero
instead of tending to the value

= 5, + (c„c,)"'(a„—1), (46)
S„c(0)= —5scc(0) = 0.8scc(0),

which would have occurred in the expression of
f(q) if we had used (13) instead of (14) into (1).
Figure 1 is for a smaller value of the dilatation
factor 5 than Fig. 2, as indicated by the ratio of
the molecular diameters o, /o'~ in the figures.

We first observe that, as expected, S„„(q)varies
with q in a manner similar to the S(q) for a single
component liquid. However, S»(0), unlike S(0),
is not just (N/V)ksTxr. In particular, S„„(0)in
Fig. 2 is considerably larger than in Fig. 1, which
is to be expected from the long-wavelength limit
formula (27) for S„„(0).Scc(q) and S„c(q) oscillate
about the values c,c, and zero, respectively.
Again, due to the dilatation factor, the oscillations
of S„c(q) are larger in Fig. 2 than in Fig. 1. A
point to note is that the amplitude of oscillations
in Scc(q) is quite small. From what we have said
previously, one expects this result for solutions
for which (w/keT)c(1-c) and 5'c(1-c) are both
much less than unity.

As far as the authors are aware, the only ex-
perimentally determined partial structure factors
a z which are available are those for liquid Cu6Sn,
(Enderby et al. '~'). S„~(q), etc. , determined
from these are given in Fig. 3. We see that S»(q)
and Scc(q) for all q and S„c(q) for q &2. 2, behave
roughly in the same manner as the corresponding
functions in Fig. 2. For q& 2. 2, however, SNc(q)

expected from (28) and the fact that for CueSn„
6= —0.8. We believe it not unlikely that this dis-
crepancy is due to extreme difficulties in disen-
tangling a z from the neutron scattering data, parti-
cularly at low values of q.

To have some idea of the values of a„z(0) expected
thermodynamically, let us take, as an illustration,
in expression (36) the quantity c(1 c)g "-(c)w/keT
to be 0. 5 (for c = —,'), a value not untypical for a,

50-50 alloy which exhibits short-range order. Then
from (36) and Eqs. (26)-(28), we obtain Scc(0)
= 0. 16, S„c(0)= 0.13, and S„„(0)= 0. 14, where we
have taken 5 = —0.8 and (N/V)k~Tgz= 0.04. Hence,
from (41), one obtains

a»(0)= 0. 3, azz(0) = —0. 8, and a,z(0)= 0. 5,

the index 1 referring to copper. If we take u = 0,
the corresponding values of a„~(0) are

a»(0)= 0. 7, azz(0)= —0.7, and a~3(0)= 0. 3 .

We note that 5 and c for Cu6Sn~ are quite close to
those for which S„„(q), etc. , are given in Fig. 2

on the basis of the hard sphere model calculations
by Ashcroft and Langreth. The values of S~N(0),
etc. , in Fig. 2 imply

a„(0)=0. 7, a~&(0)= —0. 8, and a,z(0)= 0. 1 .

The three sets of values of a ~(0) given above may
be contrasted with the experimental set in Ref. 21,
namely,

a»(0)=0. 05, azz(0)=0. 0, and a,z(0)=0.35.

SNN
Finally, it is of interest to mention that the

long-wavelength limit formulas (26)-(28) for S»(0),
etc. , suggest the introduction of two related func-
tions. Let

Q1-c)—
~cc

0

I

2
I

6 g(A-')

FIG. 3. Number-concentration structure factors de-
rived from the experimentally determined FZ partial
structure factors in Cu6 Sn5 (Ref. & j.).

~(q) = s„,(q)/s«(q),

e(q) =S„,(q) -[~(q)]'S (q) .

(47)

(48)

Since n(0) = —5, h(q) may be called the dilatation
function. 8(q) has the property that e(0) = (N/V)
~ kgTK z . We note that since by definition
S„„(q) and Scc(q) are positive for all q, and since
SN„(q)sec(q) -[S~c(q)]' must be greater than or
equal to zero if f(q) is to be positive for all real
values of IV, and IV„ it follows that 8(q) ~ 0 for all

The difference between e(q) and S„~(q) is il-
lustrated in Figs. 1 and 2.
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In terms of 8(q) and &(q), the expression (18)
for I(q) may be written as

I(q) = (W)' 8( q) + (W ( —W,')'S„(q), (49)

where

W,'= W, [1+en(q)], W2= Wz[1 —(1-c)&(q)] .

o (0) = —5 = —(v, - v2) /v, for c «1

and is similar to the function n(q).
The form (49) for I(q) may be useful in interpret-

ing experimental data on the resisitivities in some
alloys. This is because, first, 5 and consequently
&(q) and W ', —W2 may be considered practically
independent of temperature. Second, if the mixture
is near ideal or athermal (ge =0), S«(q) will
also be independent of temperature, so that all the
temperature dependence of I( q) would be concen-
trated in the single function 8(q).

V. CONCLUSION AND SUMMARY

In this paper, it has been shown that in the weak
scattering approximation, the scattering function
I(q), occurring in the expression for the resistivity
of a binary alloy, may be quite generally written
in terms of three structure factors, S»(q), S~c(q),
and S«(q), constructed from the Fourier trans-
forms of the local number density and concentration
of the alloy.

At temperatures above the Debye temperature,
these structure factors have the property that in
the long-wavelength limit (q -0), S„„(0),and
Scc(0) represent, respectively, the mean square
fluctuations in the ion number and their concentra-
tion, and S„c(0)describes the average of the cor-
relations between these two fluctuations. Thermo-
dynamic formulas for these averages and hence for
S~~(0), S„c(0), and Scc(0) are given, and their con-
centration and temperature dependence are ex-
amined for different types of mixtures. For liquid
alloys, the expression for I(q) given here is, of
course, formally equivalent to that of FZ, and the
FZ partial structure factors are linear combina-
tions of S»(q), Scc(q), and S~c(q). Our work
shows that the present formalism provides rather
readily some additional information on the struc-
ture factors which can be useful in interpreting the
various experimental data. This is desirable, par-
ticularly since both the theoretical and experi-
mental (via neutron and x-ray scattering) techniques
for determining the structure factors are, as yet,

(50)

Such a form for I(q) is reminiscent of the treatment
given by FZ for the case of low concentration.
The function o (q) introduced there is such that

Let N, and N2 denote the mean number of atoms
of the two types in a given macroscopic volume V
(in thermal bath with the rest of the medium) and
let &N, and &N, denote the instantaneous deviations
from the mean. The probability for these devia-
tions is given by ' (i, j = 1, 2)

~ F]~ &N) ~N~
so =svaexp —Z.

f,j B
(Al)

where sea is the normalization constant and

eN ~NJ eN&

=F)], (A2)

8N~ r,v, w' »& z,g, g
(As)

In (A2) and (A3), E and G are, respectively, the
Helmholtz and Gibbs free energies, p. , is the chem-
ical potential for the species i, and the subscript
N ' indicates that a N& with respect to which differ-
entiation is not being carried out is held constant.
From the property of the Gaussian distributions,
one has

(&N( &N~) = ks T(E ),~, (A4)

where (E ),&
is the i jelement of-the inverse

matrix of F&&.

Now

(
Bp, g ep, g VgVy (A5)

where v, = (SV/SN, )r p „. is the partial molar

of limited applicability.
At low temperatures, where the inelastic nature

of the scattering has to be considered, the evalua-
tion of S»(q), etc , .requires the knowledge of the
dynamical structure factors S„„(q,&s), etc. , in-
troduced in Eqs. (16). We may note that the ex-
pression for the inelastic scattering, per unit solid
angle, per unit energy range, of thermal neutrons
by the alloy may also be written in terms of
S„„(q,&u), etc. , it is essentially F(q, &o), Eq.
(15), with appropriate W's. Hence it is, in princi-
ple, possible to determine them experimentally.
It is hoped that the low-temperature formalism
given here may be useful in such problems as' the
calculation of electrical resistivity of alloys where
the two types of ions have different ' atomic radii,
masses, and force constants.

APPENDIX
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volume, per atom (molecule), for the species i
and V =N, v, +N2v2. Hence

nN= nN, +nN2 and Nn. c = (l —c)AN, —cnN2, one
obtains

1Z &&&&N& &Ng —— (v, nN, +v2nN2)
k, j VZT

+L 6N; n.N; . (A6)
T, P, W'

Using the Gibbs-Duhem relations

Z. N;( ') =0, j= 1, 2

to simplify the sum in (A6) and remembering that

N2 N1 T P~N C TPN
(A8)

8ubstituting (A7) in (Al) and using expressions of
the type (A4) for the averages, one immediately
obtains the relations (26)-(28).

p E,&
nN, nN~=, [n N+N(hc)6]'+B(&c)

(A7)

where 6 is given by (29) and
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