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The self-consistent treatment of correlations in the electron liquid recently given by Singwi
et al. is applied to calculations of the lattice dynamics of alkali metals. With the Ashcroft
form for the pseudopotential, in which the only parameter is the core radius, good agreement
with the measured dispersion curves is obtained for the four metals for which such data exist.
For Na and K the fitted values of this parameter are close to those derived from Fermi-sur-
face and liquid-resistivity data; for Li and Rb the fitted values lie between those obtained
from the other physical properties. Phonon lifetimes due to the electron-phonon interaction
are calculated for K. Finally, the cohesive energy, lattice parameter, and compressibility
are derived; agreement with the measured values of all three quantities is obtained with a not
unreasonable adjustment of the Hartree energy. The relation between the compressibility
sum rule and the long-wavelength limit of terms containing third and fourth powers of the elec-
tron-phonon matrix element is evaluated for the case of Na within the same framework.

I. INTRODUCTION

Since the pioneering work of Toya, ' there have
been many attempts to calculate phonon dispersion
relations in the alkali metals starting from first
principles. Such work has been stimulated by the
experimental data from inelastic neutron scatter-
ing ' and also by the development of pseudopotential
theorys which has largely justified, at least for the
alkali metals, Toya's use of plane-wave states to
derive the electron-phonon matrix elements. The
essential ingredients of these calculations are the
form of the pseudopotential and the treatment of the
screening. The calculations published hitherto
have used a variety of forms for the pseudopotential,
including Bardeen's, """different types of self-
consistent orthogonalized-plane-wave (OPW) calcu-
lation, ' '"'6 the Heine-Abarenkov model potential
fitted to atomic spectroscopic data, ' and param-
etr ized forms such as those suggested by Schneider

and Stoll, "by Ashcroft, ' by Brovman et al. ,
' and

by Harrison. " Different forms of screening have
been used also, ranging from simple Hartree
screening random-phase approximation (RPA}"0'"
to more complicated forms incorporating exchange
and correlation effects, such as Slater's, '"Hub-
bard's modified form ' ' ' and those of Bailyn,
Kohn and Sham, "Robinson et al. ,

"Geldart and

Vosko, '" 's and Geldart and Taylor. ' Most
authors assume a local pseudopotential, although sev-
eral attempts have been made to include nonlocal
corrections. ' ' Most of the calculations are taken
to second order in the electron-ion matrix element;
while two groups have discussed the formalism for
carrying the calculations to higher order, ' ' no
results are available at the time of writing.

The frequencies are generally within 10 to 20% of
the observed ones for the first-principles calcula-
tions, somewhat closer for those containing adjust-
able parameters. The physical information derived
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from these calculations is limited by the fact that
the discrepancies can be due to inadequacy on any
one or more of the following five points: (i) pseudo-
potential, (ii) screening, (iii) local nature of the
pseudopotential, (iv) restriction to second-order
perturbation theory, and (v) use of the harmonic ap-
proximation. Similar difficulties apply to the in-
terpretation of effective interionic potentials derived
from inversion of the neutron data. 9

Singwi et a/. have recently given a refinement
of their earlier ' self-consistent treatment of cor-
relations in the electron liquid which is more satis-
factory than previous treatments through the entire
range of wave vector and electron density. We now
have, therefore, a reasonably reliable form for the
screening that should remove most of the discrep-
ancy (ii) in the list above; discrepancies resultina
from calculations with this form can therefore be
largely attributed to one or more of the other four
items. To investigate the effect of the self-consis-
tent treatment, we have calculated yhonon disper-
sion relations in the alkali metals with this and three
of the earlier forms of screening. The object has
been to isolate this one effect rather than to attempt
a comprehensive treatment. We have therefore
adopted the simplest possible course with respect
to items (i), (iii), (iv), and (v) using a one-param-
eter local form for the pseudopotential suggested
by Ashcroft, the usual second-order perturbation
theory, and the harmonic approximation. Calcula-
tions of the effective interionic potentials and elas-
tic constants with the same parameters will be de-
scribed in a separate paper. 3

In Sec. II we give the basic formulas for the
phonon dispersion relations, the pseudopotential,
and the four forms of dielectric function used. Sec-
tion III describes the calculation of the dispersion
relations and discusses the results obtained. Sec-
tion IV describes a calculation in the same frame-
work of phonon lifetimes due to the electron-yhonon
interaction. In Sec, V we discuss the cohesive en-
ergy of the crystal and its first derivative with re-
spect to volume, which should be zero in equilibrium
at zero pressure. Section VI is concerned with the
second derivative, which gives the comperssibility;
this can be compared with the compressibility ob-
tained from the long-wavelength limit of the phonon
dispersion relation. This provides information
about the magnitude of the third- and fourth-order
perturbation terms in the long-wavelength limit.
Section VII summarizes the conclusions.

P~ D,~(q)e~~= v&e~, j= 1, . . . , 3

For a simple metal, D can be expressed' as the sum
of three terms

D=D +D +D

(3)

where h is a reciprocal-lattice vector and v~ is the
ion-plasma frequency given by

v~=Z e /vMQ (4)

Z, M, and Q are, respectively, the number of con-
duction electrons, mass, and volume per ion. For
a local pseudopotential, G(q) is related to the bare
electron-ion pseudopotential w(q) and the dielectric
function e(q) which describes the conduction-electron
screening,

( )
' w(q) ' e(q)-1
—4vZe'/Qq' e (q)

As stated in the Introduction, we use a form for
the pseudopotential due to Ashcroft, 22 containing
only one parameter x„given by

D~ represents the direct Coulomb interaction be-
tween ions of charge + Ze immersed in a uniform
compensating negative charge, and can be evaluated
by standard methods. D is the ionic interaction
via the conduction electrons with which this paper is
concerned. D" is a repulsive interaction due to core
wave-function overlap which is insignificant for the
lighter alkali metals '; while it might introduce
small effects for Rb and Cs, we have no estimates
of these and will therefore neglect this term here,
since, in any case, our object is to investigate the
effects of screening.

The term D can be related to a scalar function
G(q) introduced by Cochran, '9 which is equal to the
Fourier transform of the effective interionic po-
tential due to the conduction electrons divided by
—4vz e /Qq . Second-order perturbation theory
gives

=0 (6)

II. DISPERSION RELATIONS: THEORY

The phonon dispersion relation between frequency
v and wave vector q for a Bravais lattice is given
by the eigenvalues of the dynamical matrix D ~(q),

where ao is the Bohr radius. Physically, r, repre-
sents the radius of the ion core; Eq. (6) assumes
that the effective repulsive potential arising from
the orthogonalization of the conduction-electron
wave function to the core wave functions exactly
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cancels the Coulomb potential inside the core. In
this picture r, is a property of the ion, and thus is
independent of environment. Fourier transf orma-
tion of Eq. (6) gives the simple result

n)(q)
p

= cos(rqgoq)

Four different forms of dielectric function were
used in the calculations.

In this approximation, the electrons respond as
free particles to the influence of the Hartree poten-
tial. The dielectric function is

e(q) = 1+ q, (q),

q, (q) = (k'„/q') ~(q/k, ),
where

2

S(x)= -+ ln
4-x 2+x

kr is the Fermi radius (3w Z/Q)'~', and k» is the
Thomas-Fermi screening constant given by

kr F = (m*/m)4kr /mao

Here we have included band-structure effects by
introducing an effective electron mass m~. Only
in this average sense do we include the effects of
the lattice on the conduction electrons; detailed
consideration of these effects requires a higher
perturbation theory than we wish to use. '7'8

B.Hubbard's Modified Expression

Hubbard has attempted to include the effects of
exchange between electrons of parallel spin. His
expression for the dielectric function is~'

&(q) = 1+ Q, (q)/[I —f(q)QO(q)]

where

f(q) = rq'/lq'+kr'+ k'T. l .

(i2)

C. Geldart and Vosko

The long-wavelength limit of the dielectric func-
tion for the interacting electron gas leads to an ex-
pression for the compressibility. In a consistent
theory this should agree with the value obtained by
double differentiation of the cohesive energy with
respect to volume. This compressibility sum rule
is not obeyed by the above two dielectric functions.
Geldart and Vosko modified the Hubbard expres-

where Qo is the Lindhard expression for the electron
polarizability times —4ve /q . Explicitly,

sion to obtain agreement by introducing a parameter
replacing Eg. (13) by

y(q) = ,' q'/—(q'+ ~k,') .
The various theories of the electron liquid give
similar values for the cohesive energy. If the in-
terpolation scheme of Nozieres and Pines is used,
$ is given by

t. = 2/(i+ O. O26r,*),
where

r;= (~*/m)r,

and r, is the parameter defining the interelectronic
distance through

0/Z = ~ vr, aos

Similar considerations for the crystal as a whole
are discussed in Sec. VI.

D. Self-Consistent Screening Theory

The dielectric function of Geldart and Vosko sat-
isfies the compressibility sum rule but has the un-
satisfactory behavior of the other forms for large
values of q, i. e. , small values of r, in that the pair
correlation function goes negative, a physically
impossible result. Singwi et g/. have derived a
self-consistent screening theory which is satisfac-
tory in both limits. The method consists essentially
of assuming a certain pair correlation function,
using this to derive the local-field corrections for
Coulomb and exchange effects expressed by a func-
tion f(q) in Eq, (12), and relating the dielectric
function in the standard manner to the structure
factor and hence back to the pair correlation func-
tion; this cycle of equations is solved iteratively on
a computer until a self-consistent form is obtained.
The dielectric function is obtained in tabular form;
however, it is found that the expression

y(q) =A.[i e'""r"]— (13)

gives, at least for alkali metals, a rather good ap-
proximation to the self-consistent f(q); it diverts
from the latter only for q& 2kF where Q, (q) becomes
small and hence &(q) is less sensitive to the exact
form of f(q). The constants A and 8 have a weak
dependence on r„ they are tabulated for integral r,
in Ref. 20, and the values appropriate for the re-
levant value of r~ can be obtained by interpolation.

The treatment of screening in Ref. 20 differs
from that in an earlier paper by the same authors '
in the Introduction of a screening factor in the Cou-
lomb potential entering the local-field corrections.
The earlier theory, while violating the compres-
sibility sum rule, gave somewhat better results for
small r, leading to a pair correlation function more
nearly zero at r= Q. In Ref. 20 an interpolation is
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attempted between the large q behavior of the earlier
theory and the small q behavior of the later one;
both this interpolated dielectric function and the
earlier one were also tried in the dispersion-rela-
tion calculations. Prakash and Joshi" have recently
reported phonon-f requency calculations using,
among other dielectric functions, one said to be de-
rived from Ref. 21. Unfortunately, the formula
they used applies not to the self-consistent theory
but to a recalculation of the original theory of Hub-
bard with the integrals evaluated exactly (see Sec.
III of Ref. 21).

III. DISPERSION RELATIONS: CALCULATION

AND RESULTS

Phonon dispersion relations were calculated for
three symmetry directions and two zone boundaries
for the five alkali metals, with a program written
for the IBM 360 computer. The calculations followed
Eqs. (1)-(7) of the text, with Eqs. (8) and (12), (18)
and (12), (14) and (12), (18) used in turn for the
four dielectric functions.

Due to the large discontinuity of the potential
given by Eq. (6), the form factor of Eq. (7) is re-
latively long ranged and caused some convergence
difficulties in the sums over reciprocal-lattice
vectors. Rather than introduce some arbitrary cut-
off or damping factor, the procedure used to handle
this was to cut off the sum at successive nodes of
the form factor. It was found that satisfactory con-
vergence was obtained at the fourth node; in Na, for
example, this corresponded to (ha/2v) =68. A
check was provided by calculations at points which
differ by a reciprocal-lattice vector where frequen-
cies were found to agree to I /p or better. Values of
the parameters used for the results shown here are
given in Table I. For the four metals for which ex-
perimental data is available, the core radius x, was
adjusted to give the best fit to the experimental data

for the self-consistent dielectric function. For Na
and K, the optimal values were not too different
from values derived by Ashcroft' from other phys-
ical properties, and calculations were also per-
formed for Ashcroft's values. The values for the
effective mass m*were taken from published band-
structure calculations. For Li, Rb, and Cs, there
is a wide spread in the values in the literature, so
m+ becomes in effect a second parameter. For Li
and Rb, the calculations were repeated for a number
of published values, varying r; in each case. Since
there are points such as (1,0, 0) where the frequen-
cies are extremely sensitive to x, but rather insen-
sitive to m~, in contrast to, e. g. , the long-wave-
length longitudinal branches which are sensitive to
both parameters, there is a definite set of values
which gives the best fit. Again, the set giving the
best fit for the self-consistent dielectric function
was chosen. It turned out that the values of m*
giving the best agreement were the ones recently
published by Shaw and Smith.

Since the calculations are performed in the har-
monic approximation, low-temperature values were
used for the lattice constant a and so the calculated
frequencies represent harmonic values for the
metals. The experimental data, of course, contain
anharmonic effects. Calculations of such effects in
K have been performed by Buyers and Cowley, '
who use a pseudopotential obtained by fitting to the
neutron data. 3 However, in view of the other un-
certainties in the theory mentioned in the Introduc-
tion, we do not make any anharmonic corrections
here. Buyers and Cowley calculate anharmonic
frequency shifts in K to be around 4%, usually neg-
ative, at 90 K.

The calculated dispersion curves for Li, Na, K,
and Rb are shown as solid lines in Figs. 1-8. For
greater clarity, two graphs are plotted for each
direction; the top graph shows the longitudinal and,

TABLE I. Values of parameters used in the calculations.

M(amu)
a(A)
'c

m*
's

H$

A
I3

Ll

6.94
3.478
1.40
1 27
3.236
4. 10
1.84
0.999
0.258

22. 99
4. 225
l. 69 (1.66)
1.0
3.931
3.931
1.81
0.995
0.2625

39.1
5.225
2. 226 (2.13)
0 93
4.862
4.519
1.79
l.007
0.249

Rb

85.48
5.585
2.40
0.89 ~

5.197
4. 625
1.79
1.008
0.247

Cs

132.91
6.045
2. 62b

0.86"
5.625
4. 84
1.78
l.Oll
0.242

The bracketed values for x~ are those of Ashcroft (Ref. 12).
Values obtained by extrapolation.

'See Ref. 30.
See Ref. 31.



LATTICE DYNAMICS OF ALKALI METALS IN THE 2987

L ITk IUM

I I I

IO
kz

IO t

IO
kid

)

IO

FIG. 1. Dispersion curves
for Li. The notation is as
followers: C, Coulomb inter-
action only; R, RPA dielec-
tric function; H, Hubbard's
modified dielectric function;
6, Geldart and Vosko dielec-
tric function; 8, self-consist-
ent (Singwi et al. ) dielectric
function; and open points, ex-
perimental data.
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where it exists, the lower transverse branch; the
bottom graph shows the higher transverse branch.
The directions [$00] and [f/'] are given in the odd-
numbered figures, the directions [F00], [—', —25], and
[it'I] in the even-numbered ones. The four disper-
sion curves are labeled R, H, G, and S referring to
the RPA, modified Hubbard, Geldart and Vosko,
and self-consistent (Singwi et al. ) dielectric func-
tions, respectively. The curves labeled C refer to
those calculated for a lattice of bare ions in a uni-
form negative charge, given by the Coulomb con-
tribution D alone in Eq. (2). In Figs. 3-6 the
dotted curves represent calculations with Ashcroft's
values for z, and the self-consistent dielectric func-
tion. The open circles refer to the data from neu-
tron scattering; the experiments for Li, 4 Na, a K, s

and Rb ' were ca,rried out at 98, 90, 9, and 120 K,
respectively.

The following conclusions can be drawn from Fig.
1-8:

(a) With certain exceptions, the dispersion curves
calculated with the optimized values of x, and the
self-consistent dielectric function agree with the

measurements to within 5%. Some of the exceptions
represent isolated experimental points which may
be in error; the Li data, in particular, were taken
with a double crystal and might plausibly contain
some erroneous points. Other discrepancies, how-
ever, are with systematic trends in the data which
must be real effects; especially noticeable are the
[/&0]Z~ branch in Li, the [/f0]Z~ branch in Na and

Rb, and the [-,' 2$]D, branch in K and Rb. Also, all
the metals show evidence of very slight discontinu-
ities in slope in the [$00]h,, branch which are not
matched by the calculated curves. These may be
caused by anharmonic effects.

(b) For the values of r, and m* used, the self-
consistent dielectric function leads to much better
agreement than the other three. The question
whether it is absolutely superior could only be con-
clusively answered by optimizing r, (and m" in the
case of Li and Rb) separately for each dielectric
function. However, in certain cases the lowering
of r, which would be necessary to bring modes for
one of the other dielectxic functions into agreement
with experiment would obviously worsen the agree-
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ment at places such as (1,0, 0) which are almost in-
dependent of the screening used; this is borne out
by the experience with the two values of r, used in
the Na and K calculations. The experimental data
for Li in the [$00] direction have the interesting
property that the transverse branch crosses the
longitudinal about half-way to the zone boundary.
With the parameters used for the Li calculations,
the curves calculated with the self-consistent dielec-
tric function also show a crossover, although it is
less dramatic; the calculated longitudinal frequen-
cies are at most l%%uo below the transverse at cor-
responding values of f, whereas the experimental
ones are as much as 10/o lower; also the calculated
crossover takes place at (=0.7 rather than 0. 5.
Here again anharmonic effects may be playing a
significant role. 3'

The three branches for which agreement is espe-
cially poor, as noted above, are transverse branches
which are rather insensitive to the screening; this
is because the electronic term D is relatively

small compared with the bare Coulomb interaction,
which can oe seen to yield frequencies not far from
the measured points (in some cases nearer than the
full calculation). The discrepancy, therefore, can
be ascribed to the pseudopotential rather than to the
screening. In fact, it is remarkable that a one-
parameter pseudopotential should perform as well
as it does.

(c) The calculations are very sensitive to the
value of r,. The dotted curves for Na, for example,
are calculated with a value of r, reduced by only
2/o, yet the agreement is markedly poorer. The
dotted curves for Na and K are in reasonable agree-
ment with those calculated by Ashcroft' with the
same values of r, and the Geldart and Vosko dielec-
tric function. The frequencies obtained by Ash-
croft are slightly higher because the Geldart and
Vosko screening reduces the negative component
D, and because he cuts off the sum over reciprocal-
lattice vectors much sooner [(PPa/2w) & 22].

Calculations for the earlier form of self-consis-

L I THIUM

I I I I I I

l5— 15

f IO Io f

Ng' Ng'

FIG. 2. Dispersion curves
for Li. Notation as for Fig. l.

I II; I

I I I I

I I I I

10— IO

~vx'
I-

5

Ol I

Oo1 Oo2 Oob Oe4 Oo5 0
I

0.2 0.4 0.6
I I I I I

0.8 I,O 0,5 04 OB 0.2 0, 1 0
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FIG. 3. Dispersion curves for Na. Notation for the solid curves as for Fig. 1. The dotted curves represent
calculations with Ashcroft s value of x, and the self-consistent dielectric function.

tent theory ' mentioned in Sec. II gave dispersion
curves for the longitudinal branches which were far
too low for smaller values of q. This is consistent
with the fact that the compressibility sum rule is
not obeyed. The dielectric function interpolated
between the two forms gave a similar but less
marked behavior; the interpolation thus goes over
to the old theory at too small a value of q to be
satisfactory.

The optimal values of r, for the four lightest al-
kali metals fall approximately on a straight line
plotted against r, (see Fig. 10). This fact was used
to extrapolate a value of r, for Cs; a value for m*
was similarly extrapolated. No experimental pho-
non data are available for Cs, and the dispersion
curves were calculated only for the self-consistent
dielectric function; these are shown in Fig. 9. The
heavy lines represent initial slopes derived from
the, measured elastic constants of Cs at 78 K."
These are in rather good agreement with the initial

~, =0. 53r, —O. 35 (19a)

A linear relation between r, and x, seems plausible
for the following reason: In the expression for the
energy of the crystal derived in Sec. V, the terms
which depend most strongly on r, are found to be
the electrostatic term E„and the Hartree term EH
(see Fig. 12). The energy can therefore be exp-
pressed by

slopes of the calculated curves. However, not too
much importance should be ascribed to this agree-
ment in view of the neglect of certain higher-order
terms which violates the compressibility sum rule,
as discussed in Sec. VI. In Cs this effect is accen-
tuated by the fact that the self-consistent dielectric
function does not itself satisfy the compressibility
sum rule as well as it does for smaller values of x~.

In Fig. 10 the optimal values of x, are plotted
against r, as open circles. The straight line is an
approximate fit to the points given by
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E= —1.792Z' '/r, + 3Zr, /r,

+ (terms weakly dependent on r, )

The equilibrium condition at zero pressure then
gives

8E 1.V92Z~~3 9',
Qy

= 0, r, ™0.45', (19b)

The difference between (19a) and (19b) can be
ascribed to the terms neglected above and the mod-
ification to the Hartree term discussed in Sec. V.

The crosses in Fig. 10 represent values which
Ashcroft has found to fit other physical proper-
ties. ' ' ' 6 The two values given for Li are alter-
native fits to liquid-resistivity data; the values for
Na and K are in good agreement with both Fermi-
surface and liquid-resistivity data. Of the pairs of
values given for Rb and Cs, the lower fits the
liquid-resistivity and the upper the Fermi-surface

measurements. In the latter case, however, non-
local terms in the potential may be influencing the
Fermi surface. ' The spread in the values of r,
fitted to different properties of the same metal is
an indication of lack of validity in the Ashcroft po-
tential, and perhaps, also in the 1ocal pseudopoten-
tial concept; if it is not really valid, the value of x,
represents an average property of the potential
which will be different for different types of mea-
surement. Thus, the Ashcroft pseudopotential ap-
pears to be rather a good concept for Na and K but
less so for Li, Rb, and Cs. In this respect, the
phonon calculations are consistent with the conclu-
sions derived from the other physical properties.

A different approach to the problem of correla-
tions in the electron liquid has recently been given
by Geldart and Taylor, "who attempt to calculate
the lower-order Hartree-Fock terms exactly and

approximate the higher-order terms with an inter-
polation scheme. The resulting dielectric function
is used in a subsequent paper' to calculate the
phonon-dispersion relations in Na with a single

SODIUM

(]o z~

p{THz)
l5

0
5

)$0 Xs
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R
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0 OI 0.2 0.5 0.4 0.5 0 02 0,4 0.6 0.8 l00,5 0.4 03 0.2 O. l 0

FIG. 4. Dispersion curves for Na. Notation as for Figs. 1 and 3.
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as for Figs. 1 and 3.
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OPW pseudopotential, leading to rather good agree-
ment with the experimental frequencies. Since the
dielectric function is, at least for Na, considerably
higher then the self-consistent one, one would need
a larger value of x, with the Ashcroft potential as
used here. There does not, however, appear to be
any criterion based on the lattice dynamics for pre-
ferring either this approach or the self-consistent
treatment.

IV. PHONON LIFETIMES DUE TO ELECTRON
PHONON INTERACTION

There are three processes limiting the lifetime
of the phonon in a metal: scattering by defects, by
other phonons, and by the conduction electrons.
The first two are beyond the scope of this article;
the last, however, is related to the imaginary part

le~ hl l(A))
2h

(20)

where

( )
~k G(q)
q S(q/k~)e '(q)

G and 5: are defined in Eqs. (5) and (10), and e is
defined as

(21a)

of the dielectric function, the real part of which was
described in Sec. II. With the notation used there,
the el.ectron-phonon contribution to the phonon width
21' (full width at half-maximum) is given by"

(q
m "(vv )'

p leg (tt+ h) I'
(Iq+ hI)@a' „- Iq
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e'(0) =1+ [1-f(C)]qo(e) (»b)

Calculations of 2I' for the [$00] direction in K
were performed with the parameters used in the
dispersion- relation calculation. The results are
shown in Fig. li, where it is seen that the use of
diff erent dielectric functions l~ads to differences
of the order of 10%%uq in 2I' in the range of I where it
is largest. However, at the zone boundary the
values differ by nearly a factor of 2 for the extreme
cases. Unfortunately, it is at present impossible
to measure such quantities with neutron scattering,
since they are masked by anharmonic effects. Even
at 0 'K, the anharmonic widths due to zero-point
motions are of the same order of magnitude. 3~

Further, it is very difficult to measure absolute
widths since this requires accurate knowledge of
the instrumental resolution, and the usual proce-

dure is to measure changes with temperature. The

change of the electron-phonon widths with tempera-
ture is, according to Buyers and Cowley, extremely
small.

V. COHESIVE ENERGY AND EQUILIBRIUM

On the basis of the theory described in Sec. II,
the total energy of the crystal can be written ""

E= Eg+ E„+E~+ Eb,

where the energies are measure in Ry per ion. The
terms on the right-hand side signify the energy of
the interacting electron gas, the electrostatic en-

ergy of the lattice of positive ions in a uniform
compensating negative charge, the Hartree energy
representing the interaction of the conduction elec-
trons with the nonelectrostatic part of the bare po-
tential, and the band-structure energy representing
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FIG. 6. Dispersion curves
for K. Notation as for Figs. 1
and 3.
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For a bcc lattice the electrostatic energy is

E„=—1.V92Z /&,

The Hartree term is given by

(24}

4mZe 282
EH=Z llm zp + 2 4, (}

' Aq me
(25a)

which for the Ashcroft potential of Eq. (7) simplifies
to

2 3E„=3Zr, /r, (25b}

The band-structure term is given to second-order
perturbation theory as

the ionic interaction via the conduction electrons.
As discussed earlier, the different theories of the
electron liquid give rather similar values for E~.
The interpolation scheme of Nozieres and Pines29

gives

E~ = 2. 21Z/r, —0. 916Z/r, —(0. 115—0.031 1nr, )Z

(23}

E"=~ Ea

where

E„=—(4vZ ao /Qh )G(h) (2V)

Figure 12 shows the results of calculations for
m*= 1.00 and r, = 1.69, the parameters used for Na
in the dispersion-relation calculations. (The energy
is calculated for the static crystal, so that the
atomic mass does not enter. The zero-point mo-
tions of Na are expected to have an energy around
0. 001 Ry/atom. "}The band-structure energy was
calculated using the same four dielectric functions,
but the energy is not very sensitive to the screening
used and only the extremal results are shown—
those with RPA and self-consistent screening.

A correct calculation of E should have the deriva-
tive 8E/8x, zero at the observed value of r, (3.93
for Na). As seen from Fig. 12, this is not satisfied
by the calculated energy, nor is the energy at r,
= 8. 93 in agreement with the observed cohesive en-
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ergy of 0.459+0. 002 (heat of sublimation, plus
first-ionization energy). '3 Ashcroft and Langreth
in a similar calculation ' assert that the least ac-
curate part is the assumption that the form of Eq.
(7) for the pseudopotential is still valid in the long-
wavelength limit. Since the pseudopotential param-
eter is fitted to short-wavelength data such as band
gapa (by Ashcroft) or phonon frequencies (by us),
this seems plausible. We therefore follow Ashcroft
and Langreth's example and adjust E„by multiply-
ing Eq. (25b) by a constant factor to make BE/Br,
=0 at x, =3.93. The necessary constant is 1.218
(for the self-consistent screening calculation —it
is not too different for the calculations with the
other dielectric functions) and the results of the
modification are shown as dashed lines in Fig. 12.
It is seen that not only is the equilibrium condition
satisfied, but also, the total energy is brought into
agreement with the observed cohesive energy.

Brovman, Eagan, and Holas' have made similar
calculations with a pseudopotential that has a form
similar to Eq. (7) but with an additional parameter.
The equilibrium condition and the observed value

of the elastic constant c44 are used to fix the two
parameters, and reasonable agreement with mea-
sured cohesive energy and dispersion curves are
obtained. The second parameter thus appears to
have an equivalent effect to that produced by mod-
ifying Eq. (25b).

VI. COMPRESSIBILITY

The inverse compressibility B is given by double

differentiation of the crystal energy

—sr, . (2S)
2'dE 1' 8 eg

The evaluation of the contributions B„B„andB~
is straightforward. The contribution B~ is more
complicated because Eq. (27) depends on x, ex-
plicitly through Q and implicitly through k (which is
proportional to 2v/a) and k~, the latter in the di-
electric function. We ignore the weak volume de-
pendence of parameters such as k», $, and A, B in
the various expressions for f(q/kr). By applying
the operation
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8 Q 8 8
3Q

8Q h8h k~8k (29)

to Eb, in Eq. (26), we obtain

+ 4hz, tanhx, +,„-6 & h F b, 30
2

OB„,= jP 4 —12hr, tanhr, + 2(hr, ) (tan~hr, —1)
Pl

neglected by later workers, it has been conclusively
answered by Lloyd and Sholl" and by Wallace" and
considered in greater detail by Brovman and Kagan,
by Brovman, Eagan, and Holas, and by Pe-
thick. ' These authors show that if the electron-
phonon interaction is treated to second order in per-
turbation theory, Eq. (28) leads to the same result
as Eq. (28 ) only if the dielectric function obeys the
compressibility sum rule and the term in kr is left
out of the differentiation in Eq. (29). Explicitly,

B 3(C11+ 2012) (28')

where e is defined in Eq. (21b).
The question may now be asked: Is the compres-

sibility evaluated from Eq. (28) equal to that eval-
uated from

QB = QB —Q~,
where

8 8

8k 9 F 8k 'F
8k

(81)

where the elastic constants are evaluated from the
dispersion relation by the method of long waves?'
This question for the crystal is analogous to that of
the compressibility sum rule for the electron gas
discussed in Sec. IIC. Considered by Toya' but

2 8 8
+9kF 8k

h —
h

Ebs (32)

represents the terms arising from differentiation
with respect to kF. In the notation of Sec. II, Q4
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FIG. 10. Optimal values for ~c (open circles) plotted
against ~, ; the straight line is an approximate fit to these
values. The crosses represent values fitted by Ashcroft
to other physical data.

is given by

Qd, = —g —4hr tanhr 1 —~ —Q f1 g F Fp

9 c c P 0»

9 '

Qo q 5Q0»+ 8

-Qo» 3 Qo»

(33)

The subscripts 1 and 2 refer to single and double
differentiations of the form kz 8/&@~. Table II
shows the quantities AB and M, evaluated for Na
from Eg. (28), (30), and (33), and QB evaluated
through Eq. (28 ) from the long-wavelength limit of
the dispersion relations calculated as described in
Sec. III. It can be seen that Eq. (31) is satisfied
for the Geldart and Vosko dielectric function and
approximately satisfied for the self-consistent one.
This is because the Geldart and Vosko screening
is adjusted to obey the compressibility sum rule for
the electron gas; the discrepancy in the case of the
self-consistent screening is consistent with the

small violation of the rule shown in Ref. 20, Fig. 4.
However, while QB is in reasonable agreement

with the measured inverse compressibility (ob-
tained by extrapolating ultrasonic measurements
to low temperature ) —which we expect because
the calculated dispersion curves agree quite well
with the neutron data even at smaller q —the full
inverse compressibility QB is much too low. If
we take account of the modification to the Hartree
energy introduced in Sec. V to satisfy the equilib-
rium condition, we see from the last two lines of
Table II that we then get reasonable agreement for
the full compressibility. We have no estimates
of the effect of terms beyond second order in E~.

If the same modification is applied to the cal-
culation of QB, the result of course will be too
high. This is due to the neglect of the (nega-
tive) term Qd which arises from terms in the dy-
namical matrix involving the electron-ion interac-
tion to third and fourth order which contribute to
second order in the long-wavelength limit. These
terms arise when one takes into account the influence
of the periodic lattice on the electron response func-
tion. "'" Thus, we have an estimate, within the
limits of our formulation, of the effects of third-
and fourth-order terms in the dynamical matrix at
long svavelengths. If their contribution is much
smaller further out in the Brillouin zone, our fitting
of the parameter x, to the dispersion curves as a
whole on the basis of second-order perturbation the-
ory will not be too seriously in error. An increasing
contribution of the third- and fourth-order terms
as q decreases would mean that, if we were to in-
clude them, we would have to modify the potential
at small q to maintain agreement with experiment.
This modification could be done either by introduc-
ing a second parameter'3 or by an ad Aoc adjustment
as we made in Sec. V, and which we showed brought
the observed lattice parameter and cohesive energy
into agreement with observation.

However, the situation is different if the third-
and fourth-order terms remain significant over the
entire Brillouin zone. In that case, our use of
second-order perturbation theory in fitting to the
observed dispersion relation will lead to an effec-
tive value of x, which attempts to allow for the ef-
fects of the higher-order terms. If these terms
have the same sign for larger q as for small q, i.e. ,
negative, the effective value of x, will be lower than
the true one. The true value however should be
used in the Hartree and band-structure terms in the
cohesive energy. This would be consistent with the
fact that we had to use a higher value of r, in the
Hartree term (which is much more sensitive to r,
than the band-structure term) to bring the equilib-
rium value of the lattice parameter into agreement
with the observed one. However, a value increased
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FIG. 11. Phonon widths due to the electron-phonon interaction for the [&00) direction in K.

by this amount —about 10% —would be in consider-
able disagreement with the values fitted to Fermi-
surface and liquid-resistivity data. Our first ex-
planation is thus perhaps more satisfactory in that
all the data which refer to wave vectors of the order
of the distances to the zone boundary are consistent
with roughly similar values of the Ashcroft param-
eter.

agreement with the values of x, used. None of the
other dielectric functions would give as good agree-
ment even if ~, was adjusted, since varying r, has
a very different effect from using another dielectric
function, as is evident from the results shown in
Figs. 3-6. However, in view of the uncertainties
about the other items in the theory (see Sec. I), it

VII. CONCLUSIONS

We have shown in Sec. III that the self-consistent
dielectric function (used in conjunction with the har-
monic approximation, second-order perturbation
theory for the electron-ion interaction, and the Ash-
croft pseudopotential) gives reasonable fits to the
dispersion relations in the four alkali metals mea-
sured so far. For Na and K, the metals where a
local pseudopotential is expected to be most applic-
able, the fitted values of the core radius parameter
r, are near those fitted to other data; the discrep-
ancies, a few percent, are however significant
since the dispersion relations are highly sensitive
to x,. For Li and Rb, where band effects are ex-
pected to play a greater role, there is aconsiderable
spread in the values fitted to other data and ours lie
somewhere in between.

In order to decide which of the dielectric functions
gives the best agreement with the measured disper-
sion curves, one should look at the cases of Na and
K where band effects are small, and so rn* must be
approximately 1. Here we find that the self-con-
sistent dielectric function gives considerably better

+G5
EH~
E~

m = l.00
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FIG. 12. Total crystal energy E and it components
[Eqs. (22)-(27) of text). The labels R and S for E~ re-
fer to evaluations with RPA and self-consistent screening,
respectively. The dashed curves show the modification
of E~ necessary to achieve the right equilibrium lattice
parameter and the resulting total energy. The open circle
shows the observed lattice parameter and cohesive energy.



2998 P RIC E, 8INGWI, AND TOS I

TABLE II. Evaluation of inverse compressibility for Na (in Ry/atom).

Dielectric
function

QB[Eqs. (28) and (30)j
QA[Eq. (33)]
QB- QA

QB[Eq. (28'))
QB' (modified E,)
QB (observed~)

0.058
—0.052

0.110
0.224
0.115

Hubbard

0.056
—0.054

0.111
0.166
0.114

0. 129

Geldart and
Vosko
0.055

—0.056
0.111
0.111
0.114

Self-
consistent

0.052
—0.060

0.112
0.118
0. 113

See Ref. 14.

is impossible at present to use phonon dispersion
curves in these metals as a rigorous test of a di-
electric function.

Agreement with the observed cohesive energy,
lattice parameter, and compressibility is, at least
for Na, only achieved by means of an adjustment to
the Hartree energy. This corresponds to an in-
crease of about 10/q in the value of r, effective in
the long-wavelength limit of the pseudopotential.
Since the Ashcroft potential has generally been used
to explain data involving shorter wavelengths, it is
not too surprising for it to be somewhat inadequate
at long wavelengths. It is satisfactory that a single
adjustment brings all three quantities into reason-
able agreement with the experimental values.

The difference between the values calculated for
the compressibility by static and dynamic methods
is quite large —nearly a factor of 2. Such discrep-
ancies have been recently shown to be due to terms

in the dynamical matrix involving the electron-ion
interaction to third and fourth order which contrib-
ute to second order in the long-wavelength limit.
We have no estimates of the contributions of the
higher-order terms at shorter wavelengths. If
these are significant, the values of r, fitted to the
measurements on the basis of the second-order
theory will be effective rather than true values; this
would contribute to the modification of x, necessary
in the cohesive energy calculation.

In conclusion, the self-consistent dielectric func-
tion appears to give a satisfactory formulation of
the lattice dynamics of alkali metals as far as
screening effects are concerned. It would be rea-
sonable to use this formulation in calculations tak-
ing a more fundamental approach with regard to
the pseudopotential and including higher-order
terms in the electron-phonon interaction and an-
harmonic effects.
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Magnetization Measurements of 0, 5, 10, and 20 at. /c Al- Substituted
First-Transition-Series Alloys
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Precision measurements on saturation moments of Cr-Fe, Fe-Co, Fe-Ni, and Co-Ni alloys
with 0, 5, 10, and 20 at. % Al substitutions are reported; they show linear decrease of the mean
atomic moment M at low Al concentration c. The negative slopes -dM/dc vary with the
electron to atom ratio $ of the transition metal: They show a maximum near 8 =8.3, as does
the Slater-Pauling curve, and decrease to —dM/dc —3.0p~/(Al atom) near pure nickel. At
concentrations close to pure Fe, there is a sharp drop to -dM/dc= 2.2' /(Al atom). The
moment decrease due to the Al solute is found to be in qualitative accord with M=MD(1 —c)
—c(V —n~) p~, where —(V -n, )pI3 is the moment induced by an impurity atom with valence V
in the surrounding transition matrix with free-electron density n, . This law takes for Ni as a
particular case the known form M=M0-cVpz. In the (Fe-Cr)-Al series the observed magnetic
behavior is correlated with electronic-specific-heat data and critical concentrations for ap-
pearance of ferromagnetism.

I. INTRODUCTION

It is well known that if Ni is alloyed with a non-
transition metal which has V outer electrons, the
mean atomic magnetic moment M decreases with
the concentration c of the solute according to M =M0
—c Vp~. Thus in the ¹ialloys with Al, which has
three valence electrons, dM/dc = —3. Op~/(Al atom).
On the other hand, if Fe is alloyed with Al or Si,
the observed moment is known to decrease indepen-
dently of the solute valence as dM/dc = —2. 2 = -Mo, so
that the effect on M seems to be only one of dilution.
These two different kinds of behavior were also re-
cently observed by neutron scattering measure-

ments. '3 These observations would seem to indi-
cate that a magnetic defect of roughly —Vp& is
formed in a ¹imatrix around an Al impurity where-
as an iron matrix is nearly unaffected by substi-
tuted Al atoms, which in this case behave as mag-
netic vacancies. On the other hand, magnetic in-
vestigations of several (Fe-Ni)-Al series lead to
dM/dc values ranging from -2. 5 to —4. Ops/(Al
atom). " In some series of these alloys, the mo-
ment decrease due to the Al impurity has values
which are smaller than the expected valence value
of —3. Oy. ~/(Al atom) observed in ¹i-Al alloys.

Complementary conclusions indicating the com-
plexity of the situation were reached by Srinivasan


