
PHYSICAL REVIEW B VOLUME 2, NUMBER 2 15 JULY 1970

Alternative Augmented-Plane-Wave Technique: Theory and Application to Copper

Dale Dean Koelling*
Magnetic Theory Group, Physics Department, Northwestern University, Evanston, Illinois 60201

(Received 16 February 1970)

An alternative augmented-plane-wave (APW) method based on the matching of both the
function and derivative across the APW sphere boundary is presented. This matching is
accomplished by expanding the basis function inside the sphere using two sets of functions
for each l: One set consists of the solutions with zero derivative, and the other of those
with zero value at the APW sphere surface. The method is then applied to the Chodorow
copper potential as a test case. In addition, the relativistic formulation and the extension
to include non-muffin-tin potential terms are presented.

I. INTRODUCTION

The basic concept of the augmented-plane-wave

(APW) method is the joining of an atomiclike func-

tion close to the nuclei (inside the APW spheres)
onto a plane wave in the "outer regions" of the

unit cell (outside the APW spheres). These APW

functions are then used as a basis set for a vari-
ational calculation. There are, however, two dis-
tinct approaches to the construction of this basis
set arising from the impossibility of both satis-
fying the radial equation inside the APW spheres
amf matching onto a single plane wave. Slater 1

originally chose to satisfy the radial equation, '
and this is the standard form of the APW method

in use today. Using this basis set, the variational

quantity is not unique but provides a very useful

technique. Slater and Saffren4'5 later investigated

the alternate approach of matching the solutions

exactly. The resulting procedure was found to be

harder to carry out than the original procedure.
It was shown to be equivalent to the earlier meth-

od,
' and now has fallen into disuse. Bross has

considered a procedure which uses a "well-chosen"
logarithmic derivative. The procedure to be de-

scribed here is similar to the approach of Bross
differing principally in that two well-chosen log-
arithmic derivatives are used instead of just one.

Schlosser and Marcus' have considered a pro-
cedure where one merely expands the functions

inside and outside the spheres and allows each to

vary independently since the properly formulated

variational principle must result in the correct
continuity conditions for the resulting trial func-

tion. Marcus' has also examined in great detail

the full range of the nonuniqueness observed by

Leigh as well as considered a number of ways

that one can augment the plane waves. 10

The method described in this paper is another

approach obtained by focusing on the continuity

conditions at the APW sphere radius. This alter-
native APW method (AAPW) has in common with

all the above-mentioned APW methods, as well as
the various OPW methods proposed, "the use of
the energy-variational formalism. '2 Therefore,
what is actually being sought is a prescription for
setting up a set of basis functions in which to ex-
pand the trial function. The prescription to be
discussed in this paper is based on the (truncated)
expansion of the radial function inside the APW
spheres in the following two sets of functions, u„'

and e~, defined by being a solution to the radial
equation and satisfying the boundary conditions

u„'(8,) = p, —u'(Z ) -=l (»)

vI, (R,) =- ], —v,'(ft ) = P (lb)

at the sphere radius 8,. Obviously, the matching
of the radial function at the APW sphere boundary
is easily done using these functions for each /.

The clue that the use of these functions will be
useful is found by examining the d bands. In the
standard APW calculations, these bands occur a
few tenths of a Rydberg below the asymptote in the
logarithmic derivative, that is, just below the en-
ergy of one of the u functions. The usual APW
procedure demands that one matches the almost
zero function onto the very finite spherical Bessel
function. The result is that the convergence is
slower for the d bands and that numerical accuracy
is difficult to obtain. The AAPW procedure can be
viewed as something in the spirit of the tight-
binding scheme of Lafon. ' Lafon takes atomic
functions and then joins them to Gaussian functions
at large radii to form his tight-binding basis func-
tions. The AAPW scheme involves taking the u
and v functions, which are solutions for a finite
muffin-tin sphere, and joining them onto plane
waves. One might expect that this would improve
the convergence for d bands and it does. Further-
more, one no longer must keep a set of functions
for each star as in the Saffren and Slater ' pro-
cedure used by Howarth.
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The formalism required to apply the procedure
to a muffin-tin potential is described in Sec. II.
In Sec. III, the small modifications necessary to
apply the method to non-muffin-tin potentials are
discussed. A test application of the method to the
Chodorow potential used by Burdick is described
in Sec. IV. In Sec. V, the possible usefulness of
this approach is discussed along with its relative
advantages and disadvantages.

II. AAPW METHOD

The basis functions for the standard APW meth-
od are formed by joining continuously for each /

the radial function (of given energy E) inside the
spheres onto the spherical Bessel function of the
plane wave outside the spheres. This leaves one
with a discontinuous slope which leads to the pres-
ence of the logarithmic derivatives in the secular
equation. This prescription works well except
near the energies where for some l a node of the
radial function occurs at the sphere radius R,.
Then one is trying to join a radial function which
is zero onto a very finite spherical Bessel function
of the plane wave. This shows up as an asymptote
in the secular equation resulting from the asymp-
tote in the logarithmic derivatives. The AAPW
method is designed to avoid this difficulty by
matching both the radial function and its derivative
a,t the sphere radius 8,.

To set up the basis function corresponding to the
plane wave with% vector

k] ——k+K; (2)

it is necessary to construct the radial functions
satisfying the following relations:

f x'u„v~ dh=R, /(E~ —E„) .
0

(5c)

To formulate the variational procedure, the quan-
tity

))'=(c„', d„')[G '](„",)+2h, Z„c„'+2x,Zd„' (())

is defined with

[G ']„„=6„„(E„—E)A„,
[G-'],„=~„„(Z,—Z) a, ,

R2

p n

(»)
(Vb)

(7c)

(0„) (l
i) (s)

The I agrange multipliers are determined by the
conditions

Q O' = -Z (X)Z„G~„+X2Z„G„„)=j[(kR,) .

Defining 'Y„„=—Z G„„,

(Oa)

(9b)

(1Oa)

The matrix has been written as G ' to point to the
Green's-function nature of this development; G '
will be singular for E chosen as an eigenvalue of
the system. It is instructive to first assume G ~

nonsingular and obtain the solutions. Then one can
consider the singular points. The variational re-
quirements 5lV= 0 yield the result

w, (k;, ~, E) =Z„c„'(k,)N„'+Z„d, (k,)v„', (Sa) (lob)

(Sb) (1Oc)

Z, d,'(k, ) =j,(lk, lR, ) . (Sc) this yields

As this is not a unique prescription for gg, (k), the
requirement that

5 (gg, l
H —z

l ao, ) = 0

d 2

2d
&2= W„„j)—r„—,j)aX

(lla)

(11b)

f~s
+ +m+ n d+ = ~n&nm i

0
(5a)

f

�as

I' v+v„df'= B+Q»,
0

(5b)

be satisfied using a truncated expansion with N u
functions and M v functions is also imposed. This
is to be done by a Rayleigh-Ritz variation using
two Lagrangian multipliers to satisfy (Sb) and

(Sc). The normalization and overlap integrals
required are

It is important to note that although G ', and thus
G, depends on the energy E, it does not depend on
the plane-wave k vector %& . Thus, as one would
expect, the only way the k dependence enters the
c„' and d~~ is through the spherical Bessel functions.

Returning to the case that G ' is singular, one
can no longer find G but there is still a solution
which can be found using the eigenvalue-eigenvec-
tor decomposition of G '. However, there is a
simple trick which can be used such that these
special cases.need not be treated as a special case.
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The matrix 6 ' is expanded by adding to rows and
columns to construct the matrix Q

' of the form

|1 0

4 1

I
~ ~

0

I

l0

l e

(
4

)0 1

1. . . 10. . . 0]0

0 ~ ~ ~ 01. . . 1i0

The resultant matrix equation is now

(15a)~, (u, , p. , E)= ~, (u, , p„,E) q,-(h,ft,),

p~= r —R~ ) (15b)

i ={i,m], (15c)

where the R„are the lattice sites and N, is the
number of unit cells with volume A. 9(r, It,) is
the step function such that it is one for x less than

8, and zexo for x greater than 8,. The sum on /

is truncated at a fairly low / ~. This is done be-
cause even for U{Z= 92), the radial functions are
very nearly the free-electron solutions for E «4.
Although this would mean that the radial function
should be j,[rg(E+ Vo)], it will be much more con-
venient to use j,(kr) implied in Eqs. (15). This
involves "degrading" the basis function for the
higher /'s, but since they contribute only a very
small factor to the matrix elements, it will cause
only a small error —one which will be at least
partially accounted for in the variational calcula-
tion.

This set of basis functions is used to expand a
trial function and a second Bayleigh-Ritz variation
leads to the secular problem

d/d~j,

det(M) = 0,
W, =&f;Iffy-Elf, &

In atomic units the matrix elements are

(16a)

(16b)

where the first (K+M) rows yield the variational
expressions for 5R'= 0 and the additional two rows
are an explicit writing out of the boundary con-
ditions. Equation (13) can now be solved, as Q

'
will be QOQslngulRl. This fol"m of the VR11RtloQ ls
what one would get if one were to include the (d/
dh)j, and j, in the variational quantity and then also
do the VR11Rtlon oQ the Lagrange Multlpllel s. The
solutions obtained for the coefficients are

&„'(&) = Q, nr+e+s ~& j (~~ )

+ Q.,x ~ 3A (&W

d„'(k) = Qg+~, &+~+i ~~ A(+~8)

+ Qg+p, peg+p2 l(~~s~

The (unnormalized) basis functions are now defined

RS

(N,A)"'f(k;, r, E)

$k~'F+4 P iraq'ftme(p ft )

e Z i'I'*, P;) I;{p.)~,(i„p.,E),

M] =H)~ —EN)~,

a, , =u,'. ~, + V(k, -k, )

+s(k,. -k, )g, p,($,. u, )G, (i, j),
&,(i; j) = (4v/n)(2I+ I)

(1Va)

(IVb)

{[,(') lff, l,(j)]—[j,(i) lff, b, (j)]),
(IVc)

x. =~. +s(k. -k,)Z, s, (k, k.)z,(i j) {lvd)

F, (i, j) = (4m/Q)(2l+ 1)

{[,{i)l,(j)]-[j,{ )Ij,( )]],
s(k, -k, )= Z e'I'" "',

0
(1Vf)

where the square brackets [] in Eqs. (1Vc) and

(1Ve) indicate that only the radial integrations re-
main to be done. The structure factor, Eq. (1Ve),
appears because the atoms are assumed to be
equivalent. (It is pointed out in Appendix A that
the relativistic version of this procedure is also
easily written. )

It should be noted that the matrix element M has
been broken up into the Hamiltonian matrix H and
the overlap matrix ¹ Besides making it easy to
use the resultant trial functions for further cal-
culations, this permits an alternative calculational
procedure for finding the eigenvalues. One can
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construct the matrices H and N separately. Then,
from N, a triangular matrix is constructed (via
the Schmidt orthogonalization procedure in matrix
form) such that U'NU=I. Thistransformation can
be applied to II and the resultant matrix diagonal-
ized, yielding a variational set of eigenvalues for
the basis set constructed with the energy E as a
parameter. One then chooses the eigenvalue of
interest, constructs the matrices for E equal to
that eigenvalue, and again repeats the process.
This is continued until the used E and obtained
eigenvalue agree to within the desired tolerance.
This then is a self-consistency-type approa, ch.

III. COMMENTS ON THE NON-MUFFIN-TIN
POTENTIAL CASE

For any APW basis set, it is convenient to break
up the crystal potential' as

V(r) = V„(r) + V,(r) + V,(r), (IS)

where V is the muffin-tin approximation"' to

V(r). V, is the difference between V (r) and V(r)

in the region outside the spheres and V, is the dif-

ference inside the spheres.
It is now easily seen how the basis set is to be

defined. One merely uses V to create the basis
set as in Sec. II. Furthermore, if V,(r) is neg-

ligible, then the extension to a non-muffin-tin po-
tential is quite straightforward: The V(K) in Eq.
(17b) now must be the Fourier component of the en-

tire potential instead of just the muffin-tin part.
There are a number of materials where V,

must be included and V~ not be needed. After all,

V, is defined in the region "close to" the nucleus
where the atomic effects are expected to dominate.

When it is necessary to include V~, then it must

be expanded in spherical harmonics or some com-
bination thereof; thus,

V,(r)=Q, V', (r) I;(r) .

The general treatment of the nonspherical po-
tential is notationally complex but logically
straightforward. It need not be discussed here
since the primary objective of this section has
been merely to indicate that just as is the case for
the standard APW technique, "the AAPW is not
limited to a muffin-tin potential.

IV. APPLICATION TO Cg

The proposed AAPW method can only be a use-
ful calculational tool if the expansions used con-
verge conveniently and rapidly. This can only be
tested by actually using the method for performing
a calculation on a known material. In the past,
the two favorite test cases for testing calculational
techniques have been Lj. ' and Cu. Cu is
preferred as a more severe test because it has d
bands and low-lying core states. Thus one can
study the application of the AAPW method to both
the tight-binding-like and the plane-wave-like
bands, while at the same time checking that there
is no difficulty of convergence to a core state
(orthogonalization problems).

The Chodorow potential —obtained by copying
the values given by Burdick' and interpolating on-
to a logarithmic mesh —was chosen for the test
case. The energies and normalization integrals
of the u„' and v~ functions were then determined.
These are shown in Table I. The indices ~ and p,

were chosen to be the number of nodes inside the
muffin-tin radius and all energies are measured
relative to the "muffin-tin floor" so that the bands
of interest lie in the range —0. 1-1.0 Ry.

One feature of Table I which should be noted
immediately is the very large values of the nor-

TABLE I. Energies and normalization integrals for
the Nt and vt functions of the Chodorow potential.

Several of these V~ =-0 because of the symmetry of
the crystal.

In addition, V2 (r) will only be of sufficient size
to be of interest "near" the APW sphere surface.
The higher the l, the more pronounced this will be.
But in the region near the surface, the trial func-

tions deviate only slightly from the Bessel function

to which they were matched. This would imply
that the most important feature to include is
V~(K) —the plane-wave matrix element. The next
part of the matrix element to be included is (sv, —j,)

with a (se, .—j,.). In all likelihood, one could omit
the matrix element of a (m, —j,) with the higher l

valued Bessel functions without appreciable error.
Then one would need only the Fourier components
of V~ and a, few radial integrals to adequately deal
with the nonspherical potential V&.

l (n, p)
0 2

0 3
0 4
0 5

1 1
1 2

1 3
1 4

2 0
2 1
2 2

2 3

3 0
3 1
3 2

4 0
4 1
4 2

F.p
7. 435 37
0. 146 09
6. 229 06

18.152 47

4. 504 80
0. 561 48
7. 384 49

19.12121

0. 129 01
2. 208 33
9. 312 86

20. 245 80

2. 970 56
9. 702 46

19.207 56

5. 099 55
14. 654 39
26. 757 11

Bp
1907.587

4. 307 26
5. 121 86
5. 86492

426. 709 6
3.940 46
5 47335
6. 093 04

16.713 29
4. 297 33
6.301 73
6. 643 82

3.459 48
6. 969 58
7. 19993

2. 947 25
6 25577
6. 84817

En
7. 428 02
2. 576 74

12. 068 60
26. 145 91

A~
366. 778 9

1.766 00
0. 465 62
0. 233 087

0. 463 68
5. 749 55

14.69439
27. 497 30

6. 586 98
14.410 80
25 614 46

10.275 30
20. 717 96
34. 407 61

23. 105 41
1.278 05
0. 477 10
0. 255 71

1.43458
0 578 54
0. 305 85

0. 820 14
0. 384 75
0. 225 70

4. 479 21 135.4347
3.698 87 1.513 93

13.147 29 0. 459 24
26. 931 69 0. 236 82
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TABLE II. Results for the Chodorow potential (units
are millirydbergs).

State Present stork AP% (Ref. 18)

I'( (- 105) (- 104)
~2) 404 403

465 461
X( 268 271
X3 306 304
Xg 507 503
X5 522 516
X4s 815 804
I g 269 268
L3 399 401
I3 519 505
L,2 620 605

Korringa-Kohn-
Rostaker
(Ref.. 17)

(-104)'
399
459
262
296
502
517
819
265
395
504
621

The 1"& value is given relative to the inuffin-tin con-
stant potential. All other eigenvalues are given such
that the energy of the 1"& state is the zero of energy.

malization integrals of the core orbitals. This is
easily understood since they are expected to be
predominantly inside the muffin-tin sphere with a
very small value at the surface. But since one
would also expect the mixing in of a basis function
to depend roughly on the inverse of the normaliza-
tion integral times the energy difference, the con-
tribution of the core functions must be small in the
energy range of interest. In the initial calcula-
tions, however, they mere alternately kept and
omitted to check if they indeed were negligible.

In Table II, some representative energy eigen-
values found by the AAPW technique are compared
with those of other methods. ' '8 As can be seen,
the agreement is quite good for the lower-energy
eigenvalues where the number of AAPW's included
provided adequate convergence. For the higher
eigenvalues, the values found tend to be somewhat
high indicating that more AAPW's should be in-
cluded. However, there are at least two other
possible causes of the differences: (a) The
"Chodorom potential" used in these calculations
mas obtained by a four-point Lagrangian interpola-
tion onto a logarithmic mesh from the data given
by Burdick. ' (b) The choice of basis functions is
different. In that light, it is interesting to note
that the variations of the AAPW results are rough-
ly the same size as the variations between the
KKR and APW results.

As mentioned in Sec. II, it is possible to set up
the problem to use a self-consistent diagonaliza-
tion technique (DIAG) rather than using the more
standard process of plotting the determinant as a
function of energy (DET). Both the DIAG and DET
procedures are concerned with matching the en-
ergy used to construct the basis functions with the

eigenvalue found. However, since it is of interest
to determine the usefulness of the DIAG approach,
the AAPW computer codes were set up to use it in
addition to the more standard DET scheme. In
this way we are actually investigating tmo things
at once: (a) the applicability of the AAPW method
and (b) the usefulness of the DIAG approach. This
is clearly possible since the AAPW tests are con-
cerned with convergence whereas the DIAG tests
are concerned with relative computer times of the
two procedures. Most of the specifically calcula-
tional details are presented in Appendix B for the
interested reader.

It is instructive to look at one other result of
the calculations for the Chodorom potential. In
order to actually see hom the DIAG procedure
works and study the approach to self-consistency
one can plot the eigenvalues found as a function of
the energy parameter used to construct the basis
functions. Qf course, on such a plot the self-
consistent eigenvalues are to be found on a 45'
line passing through the origin. Figure 1 shows
such a plot for the high-symmetry points I' and I.
From the figure one sees that there are two quite
distinct behaviors for the eigenvalue dependence
on the energy parameter E. For the one type,
there is almost no dependence at all so the plot is
almost a horizontal line. These eigenvalues are
found very near the energies (k+k„)' and so are the
plane-wave-like states. For the second type, the
eigenvalue is found at the bottom of a very sharp
dip. These are the tight-binding-like d states.
It is therefore obvious that this differing behavior
is a result of the region of the unit cell in which it
is important to have the basis functions be a good
approximation to the wave function. That is, for
the nearly free-electron states, the solution is
fairly insensitive to mhat one does inside the muf-
fin-tin spheres. On the other hand, what is done
inside the muffin-tin spheres is extremely impor-
tant for the d states.

V. DISCUSSION AND CONCLUSION

This paper has presented an experimental study
of one of the many possible ways to construct a
set of basis functions for a variational calculation
of the energy bands in solids. Since all calcula-
tional methods currently in use are only marginal-
ly practical for the study of the more complex
materials with lowered symmetry and/or multiple
atomic constituents, it is imperative that such
studies continue.

The AAPW method has some very desirable fea-
tures to recommend it: (a) The asymptote prob-
lem no longer occurs as it does in the standard
APW method. This can be of considerable im-
portance when studying compounds where it is
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of the trial function is more conveniently obtained.
This facilitates k ~ p approaches as well as cal-
culations of other quantities requiring a knowledge
of the wave function. (c) The atomic-sphere data
appear in the calculation as only a few numbers
(see Table I) instead of a tabulated set of logarith-
mic derivatives. Hence small adjustments of
these data to correct for uncertainties in potential
are very conveniently accomplished. Further-
more, if one parametrizes the Bessel function
integrals of the potential, one can use this ap-
proach as an interpolation scheme. (d) The rel-
ativistic generalization of this method is no more
difficult than for the standard APW method.
Therefore, the high Z materials can easily be in-
cluded in the range of applicability of this method.

In order that this method be useful in the higher
Z compounds for which it was originally intended,
it will be necessary to use linear combinations of
AAPW's as basis functions in order to decrease
the size of the secular determinant to a more man-
ageable size. These combinations can be either
those dictated by symmetry (i. e. , a symmetrized
formulation) or a more general combination based
on a knowledge of the actual solutions at a given
k point (i. e. , an approach much in the spirit of
the k p method although no momentum matrix
elements would be calculated). This additional
sophistication requires a much more complex
computer program than the simple test routine
which has been used for these calculations. Such
a program is presently under construction.

.6

OJ

0
C
dP

LLJ

.4

ACKNOWLEDGMENTS

The author is grateful to Dr. A. J. Freeman
and Dr. F. M. Mueller for several valuable dis-
cussions. The programming assistance of Miss
Susanna Katilavas and David Deford is gratefully
acknowledged. Part of this work was done as a
visitor to the Argonne National Laboratory.

~ 2

.2 ,4
E t basis functions )

FIG. 1. Plot of eigenvalues found as a function of the
variationa1 energy parameter.

APPENDIX A: RELATIVISTIC MODIFICATION

To obtain the relativistic formulation, the Foldy-
Wouthusen transformed Dirac formalism will be
used as has been done for the standard relativis-
tic-augmented-plane-wave (RAPW) technique. In
the regions where the potential is "weak" such as
in the region outside the APW spheres, this will
yield

possible for more than one asymptote to occur in
the energy range of interest. In such a case, it
is very significant that the AAPW is far less sus-
ceptible to numerical errors in these regions than
the standard APW method. (b) The normalization

(Al)

The factor (E —V)/mc will be of order 10 in the
region outside the spheres so one can without ap-
preciable error use Pauli spinors in that region
with a Schrodinger equation. Since the normaliza-
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tion is not important at this stage, the basis func-
tions can be chosen as

S

(1 &. r) X e tk'9 (A2)

= ZD (A' ks)x" (AB)

where g~ is the central field spinor and

D„(fs'; ks) =4~2„C(j&2; 1),s') 1,' '( )~l.-,'-'*(k),

D„(~s'; ks) =(s'I(I~IF, (k ~ i)
+&S„f,(k. r)(~&&k) o)Is).

These functions have the properties

q'e"'" =~~, i'(kr)x8(k, ~ ), (A5a)

J dV x„"(k, , ~)'x,' (k, ~) = 4~~„, D„(k,s,. ; k,s, ) .
(A5b)

Throughout these expressions, v is the relativistic
quantum number and 8„ its sign. / and j are de-
termined by the relations

f = ~ + —.'(S„-l).
The basis function can now be defined as

(ABa)

(ABb)

—j,():;~ i.l)(," II
where I' is the Foldy-%outhusen transformation
operator. Now, of course, we want to join the up-
per component continuously and with continuous
derivative to the Pauli spinor which we have in the
outside the AP% sphere mith no concern about the
small components. One can easily see that, this is
a reasonable procedure from (Al) since the sur-
face of the AP%' sphere is a "nonrelativistic re-
gion. "

By inserting these basis functions into the vari-
ational quantity constructed with the Foldy-
%outhusen transformed Hamiltonian and then per-
forming the variation, one gets the secular equa-
tion

where y' is the usual two-component spinor quan-
tized along an axis.

To simplify the boundary matching problem, it
will be convenient to introduce the function

X'„(k, i) =- 4m+ C(jl-,'; tus) l", '*(k)))',„'

a„=(s, I s, ) [k,'?„+V(i7, —k,)]

+ S(k, -1,.)Q„G„(f,j)D„(k,.s„k,s,),
G. = (4/")([ I~.l &].-[j (f)I~ Ij (j)]]

NU = (sa I s;)~ o + S(k) —k;)

~ Z„&„(f,j )D„(k;s;;k) s(),
&,=(4 &&h[

I j],-l:j() j(j)]]

(ABa)

(ABb)

(ABc)

(ABd)

For the AAPW method, there are three conver-
gence-related questions to be considered: (a) To
what value l,„should one include the radial func-
tion u

&
instead of the spherical Bessel function of

the plane wave'? (b) For each /, how many u'„and
v ~ functions are to be used in the expansion of the
radial function xo, '? (c) How many AAPW's are
to be used in any calculation'P These convergence
questions are the basis for the evaluation of the
technique since they are merely a more specific
way to ask how much computer time is necessary
to perform a calculation.

The value of L,„chosen will affect the time re-
quired to set up the matrix in two ways. First,
one must perform the radial Bessel function inte-
gral of the potential in Eg. (1Vc) for each of the
1 „+l spherical Bessel functions. (There ls an
analytic expression for the Bessel function over-
lap integrals. ) Second, one must set up and invert
a, matrix for each / to determine the coefficients
of the se, expansion. Thus it is desirable to keepl,„as small as possible, unlike the standard AP%
technique where adding the higher / radial func-
tions costs virtually nothing in computer time.
However~ from expel lence with the RAP% and
self-relativistic-augmented-plane-wave (SRAPW) '
methods, one can predict that an /„,„=3 should be
most adequate for most metals (including Cu) if
one remembers that the higher / radial functions
are approximated as spherical Bessel functions
instead of being just left out. CÃ course, l,„=2
is the smallest value to be considered for Cu be-
cause of the d bands present. The value l,„=3
was used in all calculations reported here and
proved quite adequate.

If one uses NN„' and M g„' functions in the expan-
sion of nr„one mustsetup anidnevrt an(N+M+2)-

The x subscript on the brackets indicating a radial
integral means that a four-component sum must
also be performed. These integrals are done in
the Dirac formalism as Il~Il =I" 'E=1. Further-
more, these integrals are the only place where
the relativistic effects enter as would be expected.
Therefore the expressions in (AB) are the re-
quired result.

APPENDIX 8: CALCULATIONAL CONSIDERATIONS
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dimensional matrix as well as perform the neces-
sary coefficient manipulations in setting up the
matrix. Since this must be done each time the en-
ergy parameter is changed, it is very desirable
to truncate the expansion as rapidly as possible.
Although the computer codes allow M tN, for the
purposes of these tests M was always equal to ¹

This is approximately equivalent to expanding in
"bands" since the energy of the v function will be
slightly below an /-type band and the energy of
the I function will be slightly above the l-type
band. Furthermore, it was found that the best
truncation procedure was based on the energy of
the v functions as might be expected. A value of
cutoff energy equal to 15 Ry was found to do quite
well. This corresponds to using N = 2 for l = 0,
N = 2 for / = 1, N = 3 for / = 2, and N = 2 for l = 3.

The number of AAPW's included will affect the
time of the calculation by increasing the dimension
of the matrix which must be diagonalized (or have
its determinant evaluated). As this is the most
time-consuming operation of the entire calcula-
tion (taking up roughly 95% of the calculationai
time in an SRAPW calculation, for example), it
is important to choose the AAPW's included with
great care. Furthermore, for n AAPW's one
must perform n(n+ 1) —,'(I,„+1) spherical Bessel
function integrals of the potential (1Vc). Although
this is done only once for each k value, it does
take time. To select the AAPW's which are to be
used in the calculation, one makes the assumption
that all AAPW's with k vectors of magnitude less
than a given magnitude should be included. For

the standard APW method, a rule of thumb has
been developed for the fcc and bcc crystals that
l&,„IR,= 5+ t, for 0. 001-Ry accuracy in a band of

principally /, (i.e. , s, P, or d) character. " The
calculations reported here have Ik,„lR,~ 6.4.
Because of the limitations of the test yrogram, it
is not possible at this time to determine what level
of convergence this represents although one would
not expect the plane-wave convergence to differ
radically from that of the standard APW method.

The DIAG and DET approaches were both used
to test the usefulness of the DIAG approach. It
was found that the DIAG approach was somewhat
slower than the DET scheme for the application
to Cu. In part, this was due to the fact that it
takes roughly three to four times as long to per-
form a DIAG iteration as to evaluate a determi-
nant. Using an improvement of the DET approach
based on an observation made to the author by
Williams, it was still necessary to evaluate
on the average two to three times as many de-
terminants as diagonalizations to find an eigen-
value. Thus it would not take a tremendous im-
provement on the Householder-Givens diagonali-
zation routine used for the DIAG procedure to
match the speed of the DET scheme for cu.
Therefore, in more closely spaced bands the DIAG
scheme could have an advantage with the codes
px esently available to the author. And as it pro-
vides easy access to normalized trial (wave) func-
tions, it is certainly a desirable procedure to
maintain.
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High-frequency de Haas-van Alphen oscillations attributed to the second-zone Fermi sur-
face have been studied in aluminum. The results have been combined with the lower-frequency
values from the third-zone surface measured by Larson and Gordon in order to obtain a three-
parameter pseudopotential-interpolation model. The parameters in Rydbergs are V&j &

——0.018,
V2pp

= 0,062 and Ez= 0.8667. This model has been used to calculate energy bands and a den-
sity of states.

I. INTRODUCTION

In recent years many experiments, including
studies of the de Haas-van Alphen effect, '

magnetoresistance, ' magnetoacoustic effect,
cyclotron resonance, & and the Kohn effect, have

been undertaken in order to investigate the elec-
tronic structure of aluminum. These measure-
ments have been consistent with a nearly free-
electron Fermi surface. The simplest model of
this surface, the single orthogonalized-plane-wave
(OPW) or empty-lattice model, consists of three
contributions: (i) a large second-zone hole sur-
face (Fig. 1); (ii) a m'ultiply-connected third-zone
electron surfa. ce; (iii) small fourth-zone pockets
of electrons. ' A more realistic model is obtained
by rounding the sharp corners of the empty-lattice
model and eliminating the fourth-zone pockets.
Detailed experiments, especially de Haas-van

Alphen (dHvA) effect studies, have given a, rather
complete description of the third-zone surface.
As shown by Ashcroft" a consistent description is
obtained if this surface is no longer multiply con-
nected but consists of separated toroid-like sur-
faces (Fig. 2).

The second-zone surface, however, has been
much less completely investigated although ultra-
sonic attenuations and Kohn effect studies have
suggested that the surface approximates the single
OPW surface (Fig. 1). The only previous dHvA

measurements on this surface have been the pulsed
field measurements of Priestley limited to mag-

netic field orientations along [110]and [111]sym-
metry directions. Since extremely accurate
dHvA measurements are now possible and can be
reliably interpreted, we decided to study the high-
frequency dHvA oscillations in aluminum (4x10-
6x10 G), related to the second-zone hole sur-
face, and some intermediate frequencies resulting
from the third zone. Our measurements com-
bined with the low-frequency measurements of
Larson and Gordons have been used to obtain pa-
rameters for a four OPW interpolation model, '
the same type of model as used by Ashcroft. "

Even higher-frequency oscillations (1x10'-1. 6
x 10 G) have been observed at some orientations
and are pro/ably related to magnetic breakdown.
Parker and Balcomb' observed strong oscillations
in the magnetoresistance and suggested that these
were due to breakdown between the small pieces
of the third-zone surface and the large second-
zone hole surface. The highest-frequency dHvA
oscillations observed in this investigation have
been interpreted in a similar manner.

II. EXPERIMENTAL TECHNIQUES

Measurements of the dHvA effect were made
using the low-frequency modification of the field-
modulation technique first described by Shoenberg
and Stiles. ' These measurements were normally
made at the second harmonic of the 44. 3-Hz fun-
damental frequency. A carefully constructed notch
filter" (rejection about 80 dB per octave) was


