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The electrical conductivity for a system of electrons described by the single-band Hubbard
Hamiltonian is studied. An expression for the electrical conductivity that is applicable in the
narrow-band regime, i.e., the bandwidth A, much smaller than intra-atomic Coulomb re-

pulsion I is derived.
for one electron per atomic site.

1t is shown that the conductivity vanishes at T=0 to first order in A/I
For the non-half-filled-band case, the degeneracy of the

(atomic limit) ground-state wave function plays a crucial role in yielding a nonzero value for
the conductivity. The theory is used to analyze the expefimental data in Li-doped NiO. It is
demonstrated how, as a consequence of this theory, the contribution to the conductivity from
the narrow 3d® band is suppressed in the total conductivity, contrary to an ordinary band-theory

approach to the transport properties of this band.

I. INTRODUCTION

Many transition-metal and rare-earth compounds
are insulating despite the fact that elementary
theory predicts that they have partially filled bands.
It was originally suggested by Mott? that materials
with sufficiently narrow conduction bands are in-
sulating, independent of the fractional occupancy
of these bands. The failure of the Bloch-Wilson
theory of conductivity in this case must be attributed
to the neglect of electronic correlations. Mott?
showed that for narrow bands, such as the d and f
bands of transition-metal and rare-earth com-
pounds, correlations can be expected to be particu-

1

larly strong. Hubbard and others have discussed

a method for introducing the effects of electronic
correlations into elementary band theory in a par-
ticularly simple manner, by considering correla-
tions between electrons on the same ion cores only.
A model at least as sophisticated as this must be
used if we want to understand quantitatively the
electrical and optical properties of “Mott insula-
tors.”

In this paper we calculate the electrical conduc-
tivity of a system described by the Hubbard Hamil-
tonian® in the narrow-band regime. A formal de-
finition of the electrical current is presented and
the linear response to an external dc field is

3



2 ELECTRICAL CONDUCTIVITY IN NARROW ENERGY BANDS

studied. It is found that the zero-temperature dc
conductivity is finite to first order in the bandwidth,
except for the case of exactly an integral number
of electrons per site. The structure of the conduc-
tivity is analyzed in terms of the degeneracy of the
ground-state wave function in the atomic limit. The
resulting expression for the conductivity is then
compared with that obtained using the tight-binding
approximation of one-electron band theory. This
comparison quantitatively makes clear how elec-
tronic correlations suppress the conduction in a
material with narrow partially filled energy bands.

The expression for the conductivity is explicitly
applied to analyze the experimental data on NiO, a
material which optical experiments indicate has
extremely narrow 3d bands. A long-standing puz-
zle about NiO has been the absence of the small-
polaron hopping conduction that is expected in such
a narrow-band ionic compound. We demonstrate
how, as a consequence of our theory, this hopping
conduction is sufficiently small that it is dominated
by a bandlike contribution from the lower-lying
oxygen 2p band.

II. FORMULATION OF THE CONDUCTIVITY PROBLEM

The model Hamiltonian for a system of electrons
in a single s band in the presence of an external
scalar potential is

H= 2 tijciocjo+zlz> Mig My g + Z Vi . (1)
i, 4,0

The first two terms® describe the competing effects
of hopping between Wannier sites and intrasite
Coulomb repulsion I. The operator c}; is the crea-
tion operator for an electron on site ¢ and spin o.
7;s is the corresponding number operator in that
notation. The matrix element t 45 is related to the
single-band Bloch energies €(k) by

1 "
tuzﬁ %“ i (R’i-ﬁj)dﬁ) , (2)

where N is the number of sites and the £ summation
is over the first Brillouin zone.

The last term of Eq. (1) described a weak longi-
tudinal electric field with the potential coupled to
the local density in Wannier space. The potential
V,(t) is assumed to have the form

Vi) =eE(®- R, , (3)

where —Pf(t) is a spatially uniform time-dependent
electric field. The assumption used in obtaining
Eq. (8) is that the spatial variation of the potential
over the region in which a given Wannier function
is localized can be ignored. This condition is
fulfilled as long as the mean bandwidth is much
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larger than el Ela, where a is the lattice spacing.
This condition is consistent with our assumption of
a weak external field.

Since the spatial variables that appear in Eq. (1)
are the discrete Wannier-site coordinates, the
notion of a spatial derivative is at best ambiguous
and at worst meaningless. Consequently, one
cannot define a local current operator in the
straightforward way that one does in the continuum
space, i.e., by taking the time derivative of the
local density operator and then using the equation of
motion to reexpress this quantity in terms of the
spatial divergence of a second operator, which is
then identified as the current operator.

Rather than try to seek operations that are analog-
ous to differentiation we take the following approach.
The position operator in Wannier space is given by

ERi c,aci‘, . (4)

,U’

The velocity operator can be found by using the
equation of motion

~i[R,,, H] (5)

and then evaluating the commutator.
simply

The result is

\709=—1I Z} (ﬁl_ﬁj)tijCIonO‘ . (6)
iy4,0

Let us define
5 UE—i(Ei —ﬁj)t“ @)

and use Eq. (2) to write

1 (R, -

g“ ¥ Vke(ﬁ ik (R, ﬁj) . (8)
The surface term has been ehmmated by using the
property that €( k) is periodic in k space. Hence
Eq. (5) can be rewritten as

=23 1€ Cio= E vi e®) cleg, - (9)

iy 4,0

The latter expression is a very natural form for the
velocity operator to take, since Vye (T{) is just the
group velocity of the single-particle state of energy
e().

The current operator Tlop, is just evo,, where e
is the electric charge.

We calculate the induced current to first order
in the external field. A straightforward® calcula-
tion of the induced current at time ¢ yields

(Jop)y = Iop(®))y 20

+zf ([eER, (#)ny6(2), Jop(t)DV:odtl .
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Here the subscript V=0 denotes the expectation
value in the ground state of the system in the ab-
sence of the external field. The first term in Eq.
(10) is consequently zero. Thus, using Eq. (9) for
V,, we find that

(J®y=ie® T §i; Jrl [ @), clycs(®])

iy dy1,0,0'

xR, - Bt at’ . 11)

We define
Jw)= [ ate () (12)
Bw)=/_ dte’ EQ) , (13)

T;;(wﬁf_z d(t - 1) ettt -t"
x([elst)eso®), me ()]) 0@~ 1),  (14)

where 6(¢—#')=1 for ¢># and vanishes otherwise.
Since the expectation value on the right-hand side
of Eq. (11) is a function of #-# only, we can intro-
duce a factor of (¢ — #') in the integrand and extend
the upper limit of integration to plus infinity. In
terms of the Fourier transforms defined in Egs.
(12)-(14), Eq. (11) then becomes

2 su ()R, - Ew) . (15)

iy §s 1,0,0°

J(w)=ie?

The function @ ,(w) contains the information con-
cerning the microscopic behavior of the system
and is the quantity of central concern. The integral
representation of the 6 function,

dw eiw(t-t')
’? s 1
-t)= f°°2m w —i€e (16)

allows the reexpression of Eq. (14) a

o () = *dw _775(w)
i@ i W -w—ie€

° @ ,rcrc' (ZJ)

— 400" i 2 1
Ate)—ip | S8 B (17)
where
7?5;(‘*’):%[: d(t—f’)eiw(t- )
x { [e1s(@) cs6(t), Myee (E]). (18)

We readily derive the sum rule

[% A =4 [ au-060-1)

ADLER,

AND LANGE 2
X < [Cza(t) ng(t), nla'(t,)]>
=1 ([clo®) ¢;o0), m1 (D)])
=3 86,00 { Clo(t) €1g(®)) (85514 - (19)
The frequency-dependent conductivity o(w) is
defined by®
NE(w) - o(w)=J(w) . (20)

Comparing Egs. (15) and (20), we can identify the
conductivity as

olw)=ie® 25

iy 4y 1,0,0°

5;‘1 QY R, . (21)

Substituting Eq. (17) into Eq. (21), we find

(Jr(w):g'(w)—in:—‘%T2 %'(_wl , (22)
where
. 2 -
W= T §i, R, . (23)

N i34y 10,0

o’(w) is called the dissipative part of the conductiv-
ity and is related to the microscopic properties of
the system through Eq. (18). A useful sum rule,
obtained by combining Egs. (8), (19), and (23), is

J' o' (w )—— E [V vge®)] gz, . (24)

Here we find
nia:(c;a Cia> s (25)

with cg, the creation operator for an electron in
Bloch state k and spin o.

Equation (24) can be trivially applied to a single
band of noninteracting electrons. Since noninteract-
ing electrons in a perfect crystal do not dissipate
energy as they propagate Eq. (24) implies that

o' (w)= né(w E[Vk vz €(®)]ng, (26)

where #g, is just the ground-state momentum dis-
tribution function for Bloch electrons. Thus, in
this case, Eq. (26) can be written in the more fam-
iliar form

o' () =76(w) nre®/ Myaq » (27)
where we have defined the band-mass tensor as
(mband)-l = .Z) [Vi Vi €(E)] nﬁu/..z Ny (28)
k,0 k,0
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and used the expression

1
Ny =37 Z) Ny
N Ko

(29)
for the density of electrons. As an illustration, in
the effective-mass approximation, where €(k) =K/
2m*, it is readily seen that
1/ Migga=1/m™ . (30)

These results are quite familiar in solid-state
physics. We developed this formalism to facilitate
the analysis of the conductivity in the opposite limit
of strong correlation.

III. STRONGLY CORRELATED ELECTRONS

From Eq. (23), we see that the conductivity has
an explicit first-order dependence by virture of the
appearance of the factor 5; ;- This means that we
need only work out the microscopic details con-
tained in #{%;(w) in the zero-bandwidth limit in order
to obtain the conductivity to first order in the band-
width.

In this atomic limit, we write

Mg (') = exp[— it — ') 120 myy my, ] 1ygr (2)

X exp[+i(t - )1 20,m4ym;.] (31)

which governs the time evolution of n;,,. But
[15(8), m,0(£)]=0, so that n,e (') =n;, (£). Conse-
quently, we can set the times equal in the commu-
tator appearing in Eq. (18). This implies that the
conductivity is proportional to §(w) and the sum
rule, Eq. (24), then guarantees that it has the
form of Eq. (26). For this case, the ng, occurring
in Eq. (26) refers to the ground state for zero
bandwidth. In terms of Wannier operators,
n;q=21e‘i"ﬁi'ﬁl’ (clycye) (32)
For a half-filled band (one electron per site),
(c:f‘7 Cio) is nonzero only for i=j. Thus #ng, is inde-
pendent of k and the conductivity is zero [since
Vge(k) is periodic in k space].!

For other than a half-filled band, the expectation
value in Eq. (32) need not be zero for i#j in the
zero-bandwidth limit. It has been pointed out® that
this ground state has a high multiplicity. This
occurs in the zero-bandwidth limit because a given
state is degenerate with all states that can be ob-
tained from it by permutations of electrons on Wan-
nier sites with the one constraint that the total num-
ber of doubly occupied sites remains unchanged.
Thus the momentum distribution function can have
a nontrivial k dependence and the conductivity need
not be zero.

IN NARROW ENERGY BANDS
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It is interesting to carry out the calculation of
Eq. (32) in the context of the two-pole split subband
approximation obtained by Hubbard® and subsequently
treated by others.” In this approximation, it is
found that, for finite bandwidth, ng, takes the form

nEu=Zl?ae(lJ'o‘—El?o) ’ (33)
where u, is the chemical potential, which is de-
termined by the condition that the total number of
electrons is constant. It is assumed that the band
is less than half-filled and the subbands are well
split. Ej; is the renormalized pseudoparticle en-
ergy™" referring to the lower subband and Zz,~ 1
— N N.g={n;_,), as the bandwidth approaches
zero. The chemical potential and Eg, contain the
bandwidth linearly so that the 6 function is indepen-
dent of the bandwidth. Thus, in the zero-bandwidth
limit we find

nge=(1-n.y) 6(u, — Ez,) . (34)
A form for the conductivity that is similar to Eq.
(27) can be arrived at after a few manipulations:

o' (w) =n5(w)% EE [Vevze(®)] (1 —n.,) 6(1y - Ez,)

, 0

=m6(w)e L ZJ 1- n_,,)9(u,—E;o)>
R0

X <‘2 [VEVEi(E)] (1-n.,)0(u, - EEU)/

k,0

Z; (l —n;ﬂ)g(uU‘Eiu) .

R0 (35)

The term in brackets can be recognized as the elec-
tron concentration n,. Hence we can express the
conductivity as

nTez

o' (w)=m8(w) , (36)
mg
where
1 -
o f‘) [V vpe®)](L - ) 61, - Eg(,/
22 (1 -n,)0(iy— Eg,) . (37)

From Eq. (22), we define the dispersive part of
the conductivity by

Ull(w)z_ f dw 0”(5) .

o T W-—W

(38)

€]

This implies, from Eq. (36), that
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(39)

Hence, within the approximation that we made, the
narrow-band conductivity will exhibit free-acceler-

ation behavior with a mass
the electron correlations.

that is renormalized by

It has been pointed out? that an expansion in the

bandwidth does not give an

adequate description of

the low-frequency behavior of the Green’s function

and related quantities.

true for the conductivity as well.

We can expect this to be

Equation (39) is

applicable for frequencies larger than the band-

width, or, in the presence

of other scattering mech-

anisms, for scattering times much shorter than the

hopping time.

The theory of normal Fermi liquids predicts®
that the mass entering in Eq. (39) for the normal
interacting Fermi system is the same as the non-

interacting mass.

That our strong correlation

treatment predicts a different mass is not surpris-
ing inasmuch as we are doing our perturbation
theory about the atomic limit and not about the

noninteracting limit.

As a simple illustration of the behavior of the
band mass and the renormalized mass my, we ex-
plicitly calculate them in the tight-binding approxi-

mation in one dimension.!?
spacing so that

€(k)= - Acoska »

v, V. €(k) = Ad® coska .
Thus, 1/Myaq iS given by

1/Myaq = Aa® sinmn/mn .

We have taken »n,=n_,=n.

Let a be the lattice

(40)

(41)

(42)

Equation (42) yields the

expected result that a completely filled band (z=1)

is an insulator.

In order to obtain 1/mj for €(k) given by Eq. (40),

the corresponding E,, must be determined.

It is

easily verified from the appropriate forms given

in Ref. 3 or Ref. 7 that
E=a+Be(k),

(43)

where @ and 8 are momentum independent and cor-

respond to a band shift and

narrowing, respective-

ly. With E,, of this form, 6(u, - E,;) can be replaced
by 6(k;— |21) and the momentum integration is

easily performed:
1/mg = Aasinksa/k; .
From Eq. (34), we obtain
kra=mn/(1-n) .

(44)

(45)

Ino

Thus, we have

_Ad®sin(rn/(1~-n))

- mn/(1 -n) (46)

1

mg
This expression is valid for #< % and illustrates how
the conductivity vanishes as # approaches 3 and the
band becomes half-filled. Note that Eq. (46) is
independent of @ and 8. Thus, for €(k) given by
Eq. (40), and to first order in A, the electrical
conductivity is not altered by the corrections to

E,, that were introduced in Ref. 7.
In Fig. 1 we plot #/m versus = as obtained from

Eqs. (42) and (46), respectively. For =%, ordin-
ary band theory predicts a maximum in this quan-
tity, whereas the strong correlation theory pre-
dicts that this quantity is zero.

IV. APPLICATION TO EXPERIMENT

As discussed in the Introduction, many transition-
metal and rare-earth compounds are believed to
be Mott insulators. For these materials, electri-
cal-conductivity experiments cannot be analyzed on
the basis of one-electron-band calculations, even
if the crystal symmetry and electronic structure
are such that a real energy gap is obtained without
the introduction of correlations. For example,
although a recent spin-polarized augmented-plane-
wave (APW) band calculation for NiO!! did indeed
produce a semiconductor with a 1-eV gap brought
about by the cubic crystalline-field splitting, 10Dgq,
there is now sufficient experimental evidence!? that
the gap in NiO is not 1 eV and is not due to crystal-
line-field effects. Thus an analysis of the conduc-
tivity data on the basis of the usual band expression

1.0
-
~
7
— —— Band Theory e
Strong Correlation Theory ./
0.75 7
7/
/
/
/
/
€ osl- /
3
0.25(
1 [ | ! ! I ]
0 0.4 0.2 0.3 0.4 05

FIG. 1. n/m is plotted in units of Aa%/7 for 0<n < 3.
The dotted line represents the ordinary band-theory ex-
pression given by Eq. (42) and the solid line represents
the strong-correlation-theory expression given by Eq. (46).
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_1 2m kT) el e-Eg/ZkT (47)

R\

would give incorrect estimates for the effective
mass m* and the mobility u. Once it is known that
the material is a Mott insulator, the conductivity
should be analyzed only in terms of a model in
which the gap is due to electronic correlations.
The Hubbard model is the only quantitative model
presented thus far which enables us to calculate a
nonvanishing conductivity under these conditions.
The expression we have derived for conductivity,
Eq. (39), with effective mass given by Eq. (37), is
correct to first order in A/I.

In this section, we explicitly apply Eq. (39) to
analyze the experimental data in a known Mott in-
sulator, for which A/I< 1. The material to be
discussed, NiO, was chosen because of the vast
amount of experimental data now available on well-
characterized samples. Consequently, many of the
parameters which are necessary in order to evalu-
ate the conductivity, Eq. (39), are known to suffi-
cient accuracy.

The situation in NiO is much more complicated
than the case of a narrow nearly half-filled s band
considered in Secs. II and III. The relevant narrow
band in NiO is the 3d band associated with the Ni*
ions, and a d band is highly degenerate. Further-
more, the 2p band associated with the 0% ions and
the 4s band associated with the Ni?®* ions cannot be
neglected. We shall restrict ourselves to a consid-

eration of NiO which has been lightly doped with Li,
since most of the experimental data have been com-
piled on such material. In this case it can be
shown'? that the Li* acceptor levels are approxi-
mately 0.4 eV above the ground-state 34®% band, and
approximately 0. 45 eV above the 2p band. The 4s
band is 3.4 eV above the Li* levels. The 2p and

4s bands are sufficiently wide compared to I that
they may be treated as ordinary one-electron
bands.!? For the 3d band, however, A has been
estimated as 0.3 eV, or less,'? and I is of the
order of 13 eV.!? Thus, the material is a Mott in-
sulator, with A/I< 1, and the first-order expres-
sion for conductivity should be quite accurate.
Since only the lowest of the large number of 3d
quasiparticle bands'® is within 1 eV of the Fermi
energy,'? our treatment of only one band in

the Hubbard model is sufficient in a discussion of
the electrical conductivity. Thus, Eq. (39) can be
applied to the lowest 3d® band, which must be con-
sidered exactly filled when 7 =1%.

When NiO is doped with monovalent Li, the Li*
enters the lattice substitutionally for Ni**. For
every Li* in the lattice, it is expected that one Ni®*
is electrostatically bound to a nearest neighbor
Li* the dipole forming an effective electron-hole

ELECTRICAL CONDUCTIVITY IN NARROW ENERGY BANDS
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pair in the normally divalent lattice. It is the
binding energy of this pair which represents the Li*
acceptor energy discussed previously. Actually,
the situation is still more complicated, since some
of the Li*ions are self-compensated by O%" vacan-
cies which form during the crystal growth.!®

Two competing conduction processes exist in Li-
doped NiO - conduction by hopping of holes in the
narrow 3d® band, and normal bandlike-hole conduc-
tivity in the 2p band. The contribution of the latter
process can be estimated from the well-known one-
electron relations. We must use Eq. (39) to evalu-
ate the contribution of 3d-band conduction.

Bosman and Crevecoeur'® performed a number
of transport experiments on a ceramic sample of
NiO doped with 0.088% Li. For this doping concen-
tration, the charged centers lead to an increase in
dielectric constant,!” which leads to a reduction of
the binding energy of the Li*-Ni®* pairs to about
0.25 eV. An analysis of the experimental results!?
shows that the sample was approximately 6% com-
pensated by oxygen vacancies, in rough agreement
with a chemical analysis.!®

The 2p-band contribution to the conductivity, at
temperatures below 450 °K, should then be!®

2m** pT\3/2 .
0y =4 (7-) el e EplRT , (48)

where m** is the effective mass of holes in the 2p
band, p,, is the hole mobility, and E, is the ac-
ceptor ionization energy, 0.3 eV for Li*-doped
NiO. Above 450°K, this contribution should be'®

*ok 3/4
05y =(1.8%10" cm'3/2)<2—7%%2ﬂ‘) ey, e Fal 2T

(49)

where we have used the fact that the Li* concentra-
tion is 5x10'® cm™. In a polar material such as
NiO, it might be expected that optical phonon scat-
tering predominates at low and intermediate tem-
peratures. It can be shown'? that, below 600 °K,
single optical phonon and resonance scattering give
a contribution to the mobility of

pgp~ (0.3 cm?/V sec) @0 eVI/ET | (50)

The measured conductivity and thermoelectric
power? fit the predicted 2p-band relations, Eqgs.
(48)-(50) from 200 to 600 °K.!2 The effective mass
m** can be estimated as 5my, where m, is the free-
electron mass.

The question which remains to be answered is
the contribution of 3d-band conduction. In Li-
doped NiO, it appears that conduction in the 3d
band is dominated by 2p-band conduction at all or-
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dinary temperatures. If the activation energy for
freeing a 3d-band hole is lower than that for a 2p-
band hole, it might be expected that the former
process will dominate at sufficiently low tempera-
tures. However, the partial self-compensation
which occurs in NiO leads to the predominance of
impurity conduction below 140 °K. %! Thus, it
appears that 3d-band conduction cannot be seen in
dc experiments. On the other hand, conduction
due to bound 3d® holes hopping among the 12 equiv-
alent nearest-neighbor Ni®* sites to a Li" center
dominates the ac conductivity above 30 MHz and
below 300 °K.2° From these data, it can be con-
cluded that (a) conduction of holes in the 3d® band
occurs by means of thermally activated hopping
between Ni? sites, (b) the hopping activation en-
ergy is less than 0.01 eV, and (c) the average
staying time of a hole on a Ni% site is about 10~'°
sec near 300 °K. These conclusions are consis-
tent with dielectric loss experiments down to 4 °K 2!
and predictions based on small-polaron theory. **

With the information obtained from these ac con-
ductivity experiments, we can use Egs. (39) and
(46) to evaluate the contribution of the hopping of
holes in the 3d® band to the dc conductivity. In
Li-doped NiO, the situation can be thought of as a
slightly less than half-filled band. In this case,
we may writen = -0, where & is the fractional
free-hole concentration. Using Eq. (46), we find
that to first order in &

1/m = Aa%(46) . (51)

However, as we have pointed out, the holes are
initially bound to the Li* centers. In the samples
under consideration (0. 088% Li), the binding energy
can be estimated as 0. 25 eV.!? Recalling that the
material is 6% self-compensated, we can evaluate

6 below 450 °K as'®

5=16¢°10-25 eV) /rT . (52)

If impurities or phonons are present, then we
must modify Eq. (39) by the substitution w-1/7,
where 7 is a scattering time. As we have discussed
in Sec. III, the scattering time must be shorter
than the hopping time in order that we may apply
Eq. (39) to the conductivity. If phonons play
the dominant role in determining the scattering
time, then, as is shown below, the condition for
applying Eq. (39) is satisfied. Noting this and
substituting Eqs. (51) and (52) into Eq. (39), we
can evaluate the 3d conductivity below 450 °K as

Ugg=npe?TyyAa (640" (025 VI /RT] (53)

Here, 73, refers to the explicit scattering mech-

anism and the expression in brackets represents

the effects of the electron correlations within our
theory.

ADLER, AND LANGE 2

If, instead of treating the strong electron cor-
relations as fundamental, we had applied ordinary
band theory to this problem, then from Eq. (42),
the bracketed term in Eq. (53) would be replaced
by 2/7 in the half-filled band case. At T=200°K,
the ratio of these quantities is ~3x10™ (at T =300
°K, it is 4.6x107%). This small ratio leads to a
suppressed 3d conductivity even if normal scatter-
ing times exist.

If we assume that small-polaron theory applies
to the 3d band of NiO, then sufficient parameters
are known to estimate 7y, It can be shown that?

oo B m \llze-wmhmo/ur)
%= 4w kT \ ycsch(wy/2kT)) N

(54)

where w, is the longitudinal optical-phonon fre-
quency and vy is a constant which gives the strength
of the electron-phonon coupling. For NiO, w,
~0.08 eV,® and y~0. 08,2 and Eq. (54) gives, in
the high-temperature limit

o 3/2
Ty~ (4X107 sec) (————902 K) o (-0 VAT  (55)

We note that 734 is much less than the hopping time,
1071 sec in NiO, which is consistent with our apply-
ing Eq. (39) to the conductivity.

At temperatures where Eq. (53) is applicable,
Eq. (54) has a complex temperature dependence,
but it is clear that the 3d scattering time is itself
small, and will further reduce the relative contri-
bution of hopping of 3d holes to the total conductivity.
Thus it is not surprising that this contribution is
dominated at all temperatures.

V. CONCLUSION

We have obtained an expression for the electrical
conductivity in the Hubbard model that is applicable
to the narrow-band regime. We have shown that
the conductivity vanishes to first order in A/I for
one electron per site, in agreement with the notion
of a Mott insulator. For the non-half-filled-band
case, we have demonstrated how the degeneracy of
the ground-state wave function plays a crucial role
in determining the behavior of the conductivity in
the narrow-band regime. It has been shown that
the electronic correlations suppress the conductiv-
ity from that which would have been obtained in a
partially filled band.

We have applied our results to the experimental
data available for NiO and have demonstrated that,
as a consequence of our theory, the hopping con-
duction in the narrow 34® band is suppressed in the
total conductivity and that the contribution from the
oxygen 2p band dominates the conductivity. Thus,
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the conductivity analysis in Sec. III can be useful
even in a case where hopping transport is not seen
experimentally. In Mott insulators other than
NiO, the 2p band or its analog may be sufficiently
far below the Fermi energy that its contribution

to conductivity can be neglected at ordinary temper-
atures. In such cases, hopping transport may be
expected to predominate, despite a suppression
analogous to the bracketed factor in Eq. (53). Un-
forunately, no other Mott insulator has been sub-
jected to the vast number of experiments which
have been performed on NiO, so a detailed experi-
mental test of the relations derived here must be
postponed. Nevertheless, we wish to emphasize
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the point that the ordinary transport expression
cannot be used in an analysis of the conductivity of
Mott insulators and that strong correlations must
be taken into account in narrow bands, as has been
done here, in order to adequately describe trans-
port and other properties.
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