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sponding diagram for the special transitions involving the

j =0 levels is immediately constructed from the Wolff
selection rules given in Ref. 6.

Because of the complexity of the Baraff Hamiltonian,
the treatment in Ref. 12 is confined to kH = 0.
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A general variational method for efficiently calculating energy bands and charge densities
in solids is presented; the method can be viewed as a weighted local-energy procedure or al-
ternately as a numerical integration scheme. This rapidly convergent procedure circumvents
many of the difficulties associated with the evaluation of matrix elements of the Hamiltonian
in an arbitrary basis and treats the general nonspherical potential with no more complication
th"n the usual "muffin-tin" approximation. Thus the band structure of ionic and covalent ma-
terials can be calculated with realistic crystal potentials. As an example, the method is ap-
plied to the one-electron model Hamiltonian with a nonspherical local potential, using a
linear combination of atomic orbitals basis. Matrix elements of the Hamiltonian are evalu-
ated directly without decomposition into atomic basis integrals; no "tight-binding" approxi-
mations are made. Detailed calculations are presented for the band structure and charge
density of bcc lithium which demonstrate the feasibility of our method, and reveal the sensi-
tivity of the energy bands to nonspherical and exchange components of the crystal potential.
Various prescriptions for the construction of crystal potentials are considered, and conve-
nient least-squares expansions are described. The extension of these methods to nonlocal
potentials such as are encountered in the Hartree-Fock self-consistent-field procedure is
discussed.

I. INTRODUCTION

The energy-band model for crystalline solids has
proved to be very useful in describing optical, mag-
netic, and transport properties of a variety of ma-
terials. The success of this model depends essen-
tially on the choice of potential in the one-electron
effective Hamiltonian. This potential may be deter-
mined in many ways, including an empirical set of
parameters, the superposition of model free-atom
potentials, or by a self-consistent iterative proce-
dure based on a many electron picture. Two inter-
related problems which must be solved in applying
the theory are (a) to find a crystal potential which
adequately accounts for electron correlation and

(b) to develop computational methods powerful
enough to handle realistic potentials. The very
great progress made in understanding the electronic
structure of metals has been aided by the fact that
the free-electron "p " local exchange and the

"muffin-tin" spherical average potentials are rather
good approximations to the crystal potential. Com-
putational methods such as the augmented-plane-
wave (APW), KKR, and Green's-function schemes' '
exploit this simple form of the potential. However,
in some cases, particularly for nonmetals, the re-
sults have been found to be sensitive to nonspherical
components of the potential and/or deviations from
the simple exchange approximation. ' In addition
to studying these effects, it now appears important
to investigate the consequences of adopting effective
potentials, nonlocal as well as local, based on pseu-
dopotential, Hartree-Fock, or more fundamental
many- electron models.

The approximations which simplify the energy-
band treatment of metals seem to be practically
useless for most ionic and covalently bonded solids.
The aspherical ion crystal fields and the covalent
charge distributions are not well represented by a
spherical average, and the exchange model is que's-
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tionable because of extreme variations of density
through the crystal cell. Methods which have been
set up to exploit the ionic or atomic character of
these materials, such as the orthogonalized-plane-
wave (OPW) and linear-combination-of-atomic or-
bitals (I CAD) tight-binding schemes, have been
rather successful in parametrizing the experimental
data. However, development of these methods from
the ad initio point of view has been rather slow, due
primarily to the multicenter integral problem, fa-
miliar from molecular theory. Considerable effort
has been spent in overcoming this computational
problem.

A numerical-variational method for the energy-
band problem with general crystal potentials is pre-
sented in Sec. II. The multidimensional numerical
integration technique employed makes it possible to
circumvent not only the integration difficulties in-
herent in ordinary energy-band calculations, but
also the particular problems for nonspherical po-
tentials. As an example, the method is applied to
the LCAO tight-binding basis. Methods of construct-
ing the crystal potential are discussed in Sec. III;
convenient representations of the crystal potentials
and charge density in various regions of the unit
cell are presented and we show how these methods
can be extended to include a nonlocal potential. In
Sec. IV we present detailed calculations on the band
structure and charge density of bcc lithium which
demonstrate the feasibility of our method, and re-
veal the sensitivity of the energy bands to nonspher-
ical and exchange components of the crystal potential.

Il. VACATIONAL APPROACH

A. One-Electron Model

Initially, we consider the application of these
numerical methods to the variational solution of the
SchrMinger equation with a one-electron Hamiltonian

H(r) = ——,
' V'+ V(r),

where V(r) represents some approximation to the
potential for an electron in the crystal. (All energies
are given in Hartree atomic units e /a, and lengths
in Bohr radii ao. )

In the linear variational approach, we seek ap-
proximate solutions expressible as

and requiring

e,&
= p c.*;(x.lH- e

I x.)c.,
m, n

(4)

leading to the secular matrix equation

H(k) C(k) = e (k)S(k)C(k)

where

H;, =&x;IHlx, &, ~;, =&x;Ix,& .

The secular equation can be solved by standard
methods; elements of the diagonal matrix e(k) form
the familiar energy-band structure. The number
of bands found simultaneously here coincides with the
number of basis functions employed. The major
difficulty in applying the RR method is the evalua-
tion of matrix elements of the Hamiltonian, espe-
cially with a potential of general form. Some pro-
gress can be made by selecting simple basis functions
y&, e. g. , plane waves; however, the resulting
wave-function expansion (2) may prove slowly con-
vergent.

Another approach is to modify the RR procedure;
one variant of this method can be found by redefining
the expectation value as a weighted sum of integrand
values determined by some Chscxete sarnPling rule.
While the upper-bound property is lost, one is freed
from errors introduced by approximate evaluation
of the integral matrix elements. ' In a Bloch basis,
it is easily sho~n that matrix elements of a lattice
translation-invariant operator O(r) can be reduced
to an integral over a single unit cell:

C,.; are parameters to be determined variationally.
In the Rayleigh-Ritz (RR) variational procedure,

one obtains approximate wave functions +; and
energies ~;, which are upper bounds to the exact
eigenvalues of H4; = e;+; by minimizing the expecta-
tion value of the operator (H e) w—ith respect to the
coefficients C, ;. The upper-bound property is ob-
tained by defining the expectation values (4,. (H
—e ~+&& a.s integrals over the spatial domain. The
linear variational equations are found in the standard
way by writing

e, (k, r) =g, X,.(k, r)C„(k),

where the basis functions y; are Bloch functions,
l. e, )

X~(k, r) = M '~'e'"'U&(k, F)

(2)
(x; I

0
I x,) = f d r U; (k, r)O(r)U&(k, r)

Accordingly, we redefine the expectation value as

Here U& is periodic in the lattice and the coefficients
&x'IOlxs&= Z m(r )U;"(k, r )O(r )U, (k, r ) (8)

m=1
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with weight function v(r) and sample points (r I. in
the unit cell, and proceed again to derive a secular
equation identical to Eq. (6). If theweightingfunction
is chosen appropriately (see Appendix), the weighted
sample will converge to the integral as the number
of points is increased, and the procedure can be
thought of as an internally consistent integration
rule, as well as a weighted local-energy scheme.
Either point of view can be adopted for the following
discussion. Of course, there are a variety of varia-
tional procedures based on different error criteria,
e. g. , minimization of the operator IH- c j leads to
a least-squares method of considerable interest. '~

At present, the additional computational effort re-
quired by this method seems unjustified.

B. Bloch Basis Set

The variational approach outlined above is not
restricted to a particular form of basis function;
the choice of basis will be dictated by requirements
of convergence (in basis size) and computational
convenience. Accumulated experience shows that
composite basis sets such as APW, OPW, and

combined plane-wave tight-binding forms are well
suited for describing both atomic cores and the
interatomic region of the crystal cell. However,
recent work has shown that even the simple LCAO
tight-binding scheme is capable of high accuracy
with a limited basis size when applied carefully.
As an initial application, ' we have chosen to im-
plement the LCAO tight-binding basis

(9)

with exponential Slater-type orbitals (STO) a, of the
form x'y z"~~e ". located at each atomic site. Since
a large number of atomic and molecular calculations
have shown the utility of the STO basis, we are able
to carry over readily available optimized atomic
functions" as a starting point for the crystal calcu-
lation. In addition, this basis lends itself readily
to further analysis, such as projection of localized
(Wannier) functions and population analysis of ion-
icity, hybridization, and covalent bond densities.

There have been many previous applications of
the tight-binding method; in the standard approach,
one expands the matrix elements in (6), using (9),
and attempts to evaluate the resulting multicenter
molecular integrals. The difficulties of accurately
evaluating the multicenter integrals are well known
from molecular theory; moreover the lattice sum
of component integrals which must be performed
leads to further loss of accuracy. In early efforts,
three-center and most two-center (next nearest
neighbor, etc. ) integrals were usually ignored, with
subsequent poor results. This has tended to place
the LCAO method in general disfavor as an ab initio

approach, and its main use has been as a semiem-
pirica, l interpolation scheme. ' If one adopts a,

simple analytic form for the potential, the multi-
center integral problem can be solved, e. g. , by the
Gauss transform method, ' and many former ob-
jections have been removed. Our numerical method
has several additional advantages: (a) No specific
analytic form is required for the potential; (b) no
loss of accuracy is experienced due to lattice sums,
since component molecular integrals are never
generated; and (c) inexpensive preliminary studies
are easily made with a small number of sampling
points, to optimize the atomic basis and reveal
gross features of the band structure.

V(r)=Z V;(r —R„- p;)+ V„(r)
Vp 't

(lO)

consisting of superimposed atomic (or ionic) Cou-
lomb potentials and the effective exchange V„. The
atomic Coulomb potentials are readily summed;
ionic potentials are treated by separate summation
procedures for point ion and overlapping ion con-
tributions. Efficient summation procedures are
available for point ion potentials, "'" The exchange
potential is generated from the crystal charge den-
sity p'"(r) as

III. CRYSTAL POTENTIAL AND CHARGE DENSITY

A. Crystal Potential

The many different types of potential' ""used
for energy-band calculations have goals which cover
a similar range, from correlating and fitting ex-
perimental parameters, to attempting to develop
a base for a more fundamental many-electron theory
of solids. Fortunately, we have progressed to the
point where different methods yield equivalent re-
sults for the same model potential. Often, slight
empirical adjustments to a priori potentials yield
satisfactory fits to experimental data, e. g. , Fermi
surfaces and optical structure. A number of inter-
nally consistent APW and OPW calculations have
now been made" by iterative refinements of the
model potentials which suggest that the effective ex-
change potential must be reconsidered carefully.
Similar evidence is found from non-self- consistent
studies of transition-metal and rare-earth com-
pounds"; however, the exchange effect here is
mixed with the problem of the nonspherical crystal
field. We shall not discuss the many proposed re-
finements and modifications of Slater's p' ' effective-
exchange potential, '6 which is in turn based on the
Hartree-Fock model, except to note that each
scheme requires detailed numerical investigation.

In order to verify that our method is accurate and
efficient, we have chosen initially to implement the
ad hoc local potential commonly used,
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V„'"(r) = —3o.[(3/4 v)p" ']"'

where the arrows 0, 4 denote either spin, and n is
a sealing parameter. ' The assumed initial charge
density is found by summing atomic densities,

p" ' = Z p';"(r —R„- p. , )

One iterative procedure to achieve self-consistency
is to solve the band problem with the potential (10),
occupy the Bloch states according to Fermi-Dirac
statistics and determine densities of either spin,
solve the Poisson equation for the Coulomb potential,
redetermine the exchange potential via (11), recal-
culate the bands, etc.

It may be useful to comment on several approxi-
mations commonly made in applying the model po-
tential (10).

(a) The muffin-tin approximation, which replaces
(10) by its spherical average inside nonoverlapping
atomic spheres of radius 8, and by a constant out-
side, is practically useless for ionic and covalent
bonded materials, but seems quite good (to a few
tenths of an eV) for simple metals. The error in
a material like diamond amounts to several eV over
a large region of the cell. The interatomic region
can be treated relatively easily in both APW and
OPW methods (warped muffin tin), ' but the atomic
sphere region is more difficult. In order to assess
the effects of these approximations, we have devel-
oped fitting procedures and convenient analytic rep-
resentations of the potential (10), which are dis-
cussed in Sec. IV.

(b) The model exchange potential (11)has often
been approximated by the sum of atomic exchange
potentials,

which is the leading term in a multinomial expansion
of (11). However, a significant error is made
whenever the atomic charge densities overlap, and
additional terms must be included. From the nu-
merical point of view, this method of approximation
has a further disadvantage in that lattice sums such
as (13) are very slowly convergent, compared to
(i2).

For our direct method, the initial atomic (or
ionic) Coulomb potential and charge density is ob-
tained, for example, from a version of Herman and
Skillman's HFS program or from Clementi's ana-
lytic wave functions. " When the atomic potential
and density are given in tabular form, a Lagrange
interpolation procedure is used to provide a con-
tinuous representation, The crystal potential (10)
is then summed to obtain .V(r ) on the sa,mple points

required in constructing matrix elements of the
Hamiltonian.

In an alternative procedure, one uses the tabular
values V(r ) over a grid in the unit cell to project
out analytic (least-squares) representations of the
potential which may then be used to form matrix
elements. In this way, the effect of muffin-tin,
warped muffin-tin, and other approximations can be
studied. For this approach, we find it convenient
to define a basis set orthonormal over a finite set
of points

L

q, (r)=Z g, (r)W„ (14)

constructed as a linear combination of functions
Let us define the inner product over a pair of

functions a and b as

(~lb&= Z ~(r )a'(r )f(r ) (i6)
m=1

with weight function ~(r) over the set of points {r j;
then the orthonormality condition is simply (y; I y&)
= 6, &

The l.east-squares fit of a function V(r) is
expressed simply as

V'(r)=Z q, (r)(y, l V), (i6)

where U SU= A is the diagonalized overlap matrix.
Reasonably compact representations of the crystal
potential can be found by dividing the unit cell into
several regions: (a) nonoverlapping spherical vol-
umes around each atom and (b) the volume outside
all atomic spheres. A separate least-squares fit
is generated inside each region; the fit is optimized
by selecting basis functions appropriate for the be-
havior of the potential in each region. The accuracy
of the fit within a given region also depends on the

and freedom in the choice of v(r) allows the fit to
be optimized in a given subspace of the fit region.
While the fit (16) is unique, the basis functions {y,].
are undetermined to within a unitary transformation.
Preliminary fits made with Schmidt orthogonalized
bases often proved troublesome because of approxi-
mate linear dependency among the functions {g,);
however, the canonical orthonormalization scheme '
has proved quite satisfactory. In this scheme, the
functions y& are labeled by eigenvalues of the diag-
onalized overlap matrix S (S,„=(g, ig )) so that
nearly degenerate functions corresponding to almost
vanishing eigenvalues can be excluded from the
basis set [thus, J ~ L in (14)and (16)]. The canonica. l
functions are defined by

Wg, = U„X,-1/2
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p(r)=g Z Gz z(k, r)Q&&. (k)
k

where

(19a)

Q, p =Q f„(k)C).„(k)Cq„(k)

(19b)

Here G is an invariant matrix depending only on the
basis set; Q contains the results of the variational
calculation, and may. be called the "charge and
bond order matrix. '" Our operational procedure is
to fit the matrix Q by an orthogonal set of functions

%~ =~&&~(»«~l Qg~ & (2O)

and to complete the k summation (integration) by a
numerical sampling procedure.

weight function &u(r). One choice is to weight ac-
cording to the volume element of integration, thus
the fit optimization is shifted toward regions which
make a large contribution to the matrix elements.
Inside the atomic spheres, the fitting grid and
weight factors are generated by the same scheme
used in forming matrix elements of the Hamiltonian.
Outside the spheres we use a uniform prismatic
grid with uniform weighting.

To ensure that the potential fit has the correct
symmetry, the functions (y&) are constructed from
a symmetrized basis. Inside each atomic sphere
we choose a localized set of functions (g,) of the
form r~e "A»(Q), where the A» form basis func-
tions for the totally symmetric irreducible repre-
sentation of the point group at the atom site. In the
intersphere region, we choose symmetrized plane
waves generated from e' ~', where K„are recip-
rocal-lattice vectors. The muffin-tin approxima-
tion to the crystal potential is found simply by re-
stricting the localized basis to spherically symmet-
ric functions and by using only the K= 0 Fourier
component outside the spheres. The warped muffin-
tin model' is obtained by including nonzero wave
vectors; thus this method of partitioning and choice
of basis facilitates a study of the importance of
various nonspherical contributions to the potential.

B. Representations of Charge Density

The crystal energy levels and wave functions are
found numerically at a discrete set of wave vectors
(k;]; however, the calculation of physical properties
such as x-ray (neutron magnetic) scattering factors
require the charge density (spin density) of the form

p(r)=P f„(k)q„'(k, r)+„(k, r) (ls)
n, k

(the f„are occupation numbers) drawn essentially
from the entire Brillouin zone. A useful procedure
is suggested by rewriting (1S), using (2) and (9) as

p(2
I
1)=Z f„(k)+„*(k,rz) 4„(k, r, )

n~k
(21)

required to generate the Hartree-Fock exchange po-
tential

v„(2I1}=J «. [p(211'"]P (22)

(P,z is the permutation operator). Since the density
is simply expressed as

p(2
I
1)= Z Z G &. , (k, r~, r, )Q&&. (k)

id'
(23a)

with

G&, &(k, rz, r, ) =L e'" "~a&*.(rz)a&(r, —R„), (23b)

we may conveniently evaluate the matrix elements
of U„by a numerical (six-dimensional) sampling
procedure.

IV. CRYSTAL POTENTIAL, BAND STRUCTURE, AND
CHARGE DENSITY OF bcc LITHIUM ~

The success of the one-electron energy-band
scheme for solids is largely dependent on the choice
of model potential, and in the absence of complete
experimental data one must rely on theoretical
models. An atomic superposition model using the
Slater exchange approximation has been favored by
many workers. ' However, computational approxi-
mations are usually made which make it difficult
to assess the full possibilities of the model. The
usual muffin-tin spherical averages to the potential
and further simplifications of the exchange become
questionable not only for ionic crystals, but also
for some metals. One of the goals of this paper is
to examine the superposition model carefully for the
simplest and best understood metal, lithium, by
comparison with the empirical Seitz potential which
has been used successfully in many previous cal-
culations. ' ' ' Since recent work ' has shown that
the band structure depends somewhat on the param-
etrization of the exchange potential in the superposi-

C. Nonlocal (Hartree-Fock) Potentials and Exchange Density

The Hartree-Fock model has been used often in
studying atomic and molecular structure; a few cal-
culations on insulators ' suggest that the model
may have important applications in solids. Since
the potentials must be determined self-consistently
and are nonlocal, accurate Hartree-Fock energy-
band calculations are an order of magnitude more
difficult than those with an g Priori potential. After
each cycle of the iterative procedure, we must re-
determine the charge density and Coulomb potential;
in addition, we must calculate the exchange density
(for either spin)
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tion model, and to a lesser degree, on nonspherical
contributions, it may be useful to study these effects
in more detail.

A second goal is to apply the discrete variational
method (DVM) to the calculation of the energy bands.
wave functions, and charge density of lithium metal
for several assumed model potentials. Using LCAO
basis sets, we show that the DVM is both accurate
and rapidly convergent with respect to basis size
and number of sample points. Since the DVM is
a general numerical method, not restricted to muf-
fin-tin or other approximations in the Hamiltonian,
one can, for the first time, make use of the com-
plete superposition model. Thus within a consistent
computational scheme, we are able to compare the
band structure determined by the empirical poten-
tial and the superposition model. After accounting
for a uniform shift, one finds significant differences
in the two sets of bands, as large as 0. 02 Ry, oc-
curring across the Brillouin zone. By recalculating
the bands with a muffin-tin average of the super-
position potential, we are able to show that the max-
imum contribution of nonspherical terms in the po-
tential is Q. QQ5 Ry.

One of the major advantages of our method is the
ease with which wave functions and charge densities
are obtained. These functions are required for any
accurate prediction of experimentally interesting
quantities such as optical absorption and x-ray
scattering data; the analytic LCAO wave functions
can be combined with efficient interpolation schemes
to yield additional results. Furthermore, the
charge (and exchange) densities can be used to
generate self-consistent local (and nonlocal) poten-
tials in an iterative calculation. In this paper, we
give results for the charge density determined by
the (non-self-consistent) superposition model; by
comparing this density with the superposed atomic
densities we extract the metallic bonding charge
density. Preliminary results on self-consistent
potentials are reported.

A. Crystal Potentia1

The Seitz empirical potential, 26 as quoted by
Kohn and Rostoker, 7 has been the starting point for
a number of recent calculations. ' '~' A least-
squares fit to this muffin-tin potential of the form

Vl.p= Vo r&R,

was calculated, with coefficients given in Table I.
This potential is plotted in Fig. 1(a), and is found to
lie below the Seitz potential except for a small re-
gion neal 1 = 1.5. Since Vl, p & V~ over most of the
crystal, we may expect to find a similar shift in
the energy bands determined by either potential.
The potential difference V& —Vgp shown in Fig.
1(b), can be minimized by scaling the exchange po-
tential (o. & 1). To study the effect of scaling, we
have also calculated the model potential with z = 4,.
the resulting potential difference is shown as a
dashed line.

Nonspherical contributions to Vl, reach a max-
imum near the muffin-tin radius and amount to about
l. 5/q of the total potential there These t.erms will
cause relative shifts of a few mRy in the band struc-
ture and thus, even in lithium, are important for
modern "high-precision" calculations, quoting
errors of 0. 001 By or less. Although our band cal-
culations on V~ use the numerical potential directly
without the use of fitting procedures, it is useful

TABLE I. Least-squares coefficients for spherical
average potentials.

vs

phase of the metal (the experimental value at 78 'K
is 6. 597 a.u. ). The muffin-tin radius for tangent
atomic spheres is thus R, =2. 8795 a. u.

The model potential formed by the superposition
of free-atom Coulomb potentials and charge den-
sities [cf. Eqs. (10) and (11)]taken by Rudge ' as
the starting point for self-consistent AP% calcula-
tions, was constructed using the Herman-Skillman
HFS o densities. The full Sister exchange (n = 1)
was used, and a lattice sum over 58 neighboring
atoms was found adequate to converge the potential
in the unit cell to four significant figures. To make
a comparison with the Seitz potential, a least-
squares muffin-tin average [cf. Eq. (16)] of the
form

9

V„=Z C,r' 'e "",-

i=1

(25)

(24)

V, = Vp, r&R,

was given by Lafon and Lin9; the coefficients are
reproduced for convenience in Table I. To obtain
a direct comparison with earlier work, we have
chosen the lattice constant a=6. 65 a. u. for the bcc

C(
2
3

5
6
7
8
9

Vp

—2. 925 8671
+ 2.701 8157
+ 1.6756787
—6.823 0630
+ 6.832 3735
—3.487 2725
+ 0.9885456
—0.147 9572
+ 0.009 1263
—0. 3248

—3.009 2561
—1.277 5884
+ 3.8851735

—11.207 2550
+ 10.558 0710
—3.563 1211
—0.7390967
+ 0.665 9503
—0.106 0555
—0.39542 a.u.
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to have a simp e pic ur1
' ture of the nonspherical terms.

The angular variation is well represented by I =- 4
spherical harmonics, and in the z= 0 plane can be
written as

(26)AV~=A(r) cos4y

Values of the radial function A~x~ g~ & are iven in Table
II since the maximum in A(r) extends well inside
the muffin-tin radius, we may conclude aude that the

0.5
1.0
1.5
2.5
2. 88(=a, )
3.0
3.325

—1.0 x10-5
—2.0x10 4

—1.2x10 '
—2. 8 x10-
—2.8x10 3

—2.4x10 '
+4.0 x10-'

TABLE II. Radial function A(r) for nonspherzcal
contributions.

.4

,8—

l.6—

2,4—

3.2-

4,0—

(r) (a.u. )

0.4 l.2 2.0 2.8

d ff' -tin approximation' would be an in-
adequate representation of the potential.

Q. Basis Sets and Convergence Properties

Convergence of the energy bandnds with respect to
tudied b considering a number of LCAO

Bloch basis sets [cf. Eqs. (2) and (9)]. erRather than
attempting a systematic variation of a~ ~ 4 tomic orbital
exponents, we were guiguided by earlier tight-binding

ns" foresults and Clementi's analytic wave functions for
the free a om. et . Th atomic basis set B1, containing
six functions listed in Table III, gives a rather ac-
curate representation of the core l.evel, conduction,
end firs exci et 't d bands over the entire Brillouin

~BZ&~. The ten-function-extended bases Bzone . e
ents in the3 (Table III) yield slight improvements in

er bands but serve primarily to fill in ad ' '

were alsoexci e s a't d & b nds Basis sets B2 and B3 w

ultsd b 3s 3p, and 3d functions with resu s
can bewhich show that the excited d-band structure can e

treated adequately. An example of the convergence
found at the poin inh

' t I" 'n the BZ is given in Table IV,
using the Seitz potential.

The energy levels were found to converge rapidly

"Its VL (a,u. ) TABLE III. Atomic basis functions.

.8-

.6-

4-

1s
1S

px

e-2 ' 43r

e-4, 5Ir

x -0.66r

02

/
/

/

0.4 I.2 2.0 2.8

B2=B1, augmented by

2s
p'x

B3 =Bl, augmented by

x e 2.43r

FIG. l. (a) Spherical average potentia gpal V formed
free-atom potentials and charge den-

~au) full exchange is solid line, n =@tial V& is shown in ~u, u
exchange is dashed line.

2s
p'x -i.~ 3 5rxe

z



2894 D. E. E LLIS AND G. S. PAINTE R

TABLE IV. Convergence in basis at F, 300 sample
points.

TABLE V. Convergence with number of sample
points.

Basis
Bl B2

Green's
function
(Ref. 2)

Basis B1
Number of points

State
State

50 100 300 600

(Ry) 1r, —3.764 —3.768 -3.766
21'g —0.676 —0.678 —0.682

Fgg +0.532 +0.530 +0.544
-0;681
+0.506

(Ry) —3.816 —3.768 —3.764 —3.764
2I'i 0 668 0 672 0 676 0 674

I'is +0.526 +0.530 +0.532 +0.533

as the number of integration (sample) points was
increased, and showed little dependence on the dis-
tribution and weights of these points. Both overlap-
ping atomic distributions and muffin-tin sampling
schemes (see Appendix) were tested with simile. r
good results. Typical convergence data is shown in
Table V, for the point I", using the basis B1 with the
Seitz potential. The uncertainty of about 0. 002 Ry
inferred for the 300 point sample is equal in magni-
tude to errors due to truncation of Bloch function
lattice sums (carried out to a radius of 20 a. u. ).
The splitting of degenerate levels, such as I'», due
to accumulated error and the disymmetry of sample
points, gives essentially the same error estimate.

C. Energy Bands

1. Seitz Potential

Rather extensive calculations of the energy bands
for the Seitz potential were made, using the basis
sets B1, B2, and B3. The convergence found at
general points in the BZ is essentially the same as
found along symmetry lines, and for purposes of
comparison we shall only discuss symmetry direc-
tions. The basis set B3 represents a good com-
promise between simplicity and accuracy for the
core, conduction, and first excited sp bands. (How-
ever, d states rapidly become important in the ex-

cited bands, particularly around the point H in the
BZ. ) The conduction bands and low-lying excited
bands obtained with B3 are drawn in Fig. 2; the con-
duction-band energies are compared (along the
symmetry lines 4, Z, and A) in Table VI with results
obtained by different methods. Our energies ob-
tained with 300 sample points, are in close agree-
ment with the Green's-function calculation and
show an improvement over the results of Lafon and
Lin, obtained with a more restricted LCAO basis
and the Gauss transform technique. The first ex-
cited band agrees well with that calculated by Wil-
liams, ' using the KKR method.

2. SuPexPosition Model Potential

For purposes of comparison, energy bands de-
termined by the three potentials V&, V~, and VL, p
were computed using the same basis (Bl) and in-
tegration scheme (300 points). These results show
the sensitivity of the band structure to the assumed
potential; as expected from the potential difference
plot in Fig. 1(b), the Seitz bands lie at higher energy
than those found for the model potential Vl. This
shift is not uniform across the BZ; as one conse-
quence, the energy gap at the zone face, E,=E(N, )
—E(N, ), taken as an indication of aspherical dis-
tortions of the Fermi surface, is reduced from

~ 2

-4

—.6

H H P P N N

FIG. 2. Comparison of energy bands determined from the Seitz potential (solid line) and y (dashed ].ine), using the
six function basis B1. The Seitz bands are shifted to bring the 2I'~ states into coincidence.
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0.212 Ry for Vz to 0. 198 Ry for VJ. The conduc-
tion and first excited sP bands for VL are plotted
along symmetry lines in Fig. 3. The Seitz bands
(shifted by 0. 114 Ry to bring the 21", states into
coincidence) are also drawn to show significant
shifts across the entire BZ. These shifts become
as large as 0.02 Ry, and clearly lead to a lowering
of the Fermi energy relative to the Seitz value of
Er = —0.424 Ry (or 0. 258 Ry from the bottom of the
conduction band) found by interpolation on a set of
30 inequivalent k vectors. Since the Fermi level
lies 0. 01 Ry below the state N„ there is no contact
with the BZ boundaries.

Results obtained with the muffin-tin average po-
tential V~o agree closely with those found from VI.
directly; the largest shift observed occurs at the
point 0, and is equal to 0. 005 Ry, This limit on the
effect of asyherical terms in the potential compares
well with the results of Rudge35; however, to treat
the cubic "crystal field effects" in the excited bands
accurately, we must include d functions in the LCAO
basis set.

D. Charge Density and Self-Consistent Potential

The crystal charge density p(r) was obtained as

[100]a,

Energies (Ry)

Discrete LCAO
variation Gaussian
(Oasis +3, transform
300 points) (Ref. 3)

Green's
function
(Ref. 2)

0.0000
0. 2500
0.5000
0.6250
0.7500
1.0GGG

—0.682
—0.640
—0.512
—Q, 414
—0.290
-0.062

—0.674
—0.629
—0.500
—0.407
—0.290
—0.Q65

—0.681
—0.640
—Q. 512
—0.414
-0.294
—0.061

[111]A,

0.2500 -0.598
0.3750 —0.498
0.5000 -0.414

—0.587
—0.485
—0.399

—0.598
—0.497
—0.412

0.1250
0. 2500
0.3125
0.3750
0.5000

—0.650
—0.556
—0.486
—0.400
—0.192

—O. 641
—0.545
—0.478
—0.395
—0.190

—0.651
—0.556
—0.486
—0.400
—0.191

TABLE VI. Comparison of lithium conduction-band
energies (lattice constant a=6. 65 a. u. ) caluclated by
different methods.

p(r) = Z; v; p(k&, r) (27a)

with component densities [cf. Eg. (18)]

p(k, r) =Lf„(k)~q„{kr)~', {27»)

calculated directly for 30 inequivalent k vectors.
The weights m; are chosen proportional to the vol-
ume element of k space occupied, thus defining an
integration rule. The simple shape of the Fermi
surface and the very smooth variation of p(k, r) with
k make more elaborate interpolation procedures
unnecessary.

The metallic bonding density was studied by com-
paring the calculated crystal density with the super-
imposed atomic charge densities; charge transfer
along the (1, 1, 1) nearest-neighbor axis is shown in

Fig. 4. The bonding charge is nearly constant over
a considerable portion of the cell, as expected. The
reduction of charge density near the metal nucleus,
relevant for the contact part of the Knight shift, is
evident; however, numerical values near the nucleus
ax e not very accurate due to the limited basis size

".6

H H P P N N

FIG. 3. Fnergy bands determined from the Seitz potential using the extended basis I33. Tick marks on horizontal

scale denote computed points.
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and lack of self-consistency.
By an obvious extension of the superposition

model, the self-consistent potential is defined as
p-p (a. ')

V(r) = Vo(r) —3o.[(3/Sw) p(r)]'~' (23)

where the Coulomb potential V& is obtained from the
crystal charge density p by solving the Poisson
equation. In our approach to this problem, the den-
sity is fitted by a least-squares procedure to a com-
posite basis set consisting of plane waves and local-
ized (tight-binding) functions; the Poisson equation
is then solved by a combination of numerical and
analytic techniques. The results to date are en-
couraging (estimated errors in Vc of 1% with -20
basis functions) and further work is in progress.
Fits to the exchange density p(211) [cf. Eq. (21)]
required for self-consistent Hartree-Fock calcula-
tions have also been generated to a few percent ac-
curacy. We are evaluating several computational
schemes for the matrix elements, to compare the
relative merits of discrete sampling versus analytic
integration procedures.

V. SUMMARY

We have combined numerical and variational tech-
niques in formulating an energy-band procedure
which is capable of treating general crystal poten-
tials. The procedure has been specialized for treat-
ing nonspherical potentials in a tight-binding LCAO
basis, and a number of calculations have been made
to study the efficiency of this method. Detailed re-
sults were presented for the case of bcc lithium
metal. The results of these calculations and those
on diamond and graphite, in two- and three-dimen-
sional form, indicate that the method is flexible,
efficient, and easily implemented. At the present
level of development, the energy levels have been
determined to Q. 01 Ry or somewhat better with about
300 sample points per atom in the unit cell. These
techniques are probably not competitive with the
APW and KKR methods for determining a single en-
ergy band in metals, using a muffin-tin approxima-
tion. The discrete variational method proposed
here has much to offer for systems in which non-
spherical terms are important and/oralargenumber
of bands are to be determined.

The results for lithium form part of a continuing
study of effective potentials for the band model. Sen-
sitivity of band structure to the assumed crystal
potential was studied; differences between the em-
pirical Seitz potential and the commonly prescribed
a priori atomic superposition model were found to
be more important than nonspherical contributions
to the latter. Significant shifts in the bands as
large as Q. 02 Ry were found; in particular, the con-
duction-band width and Fermi energy was deter-
mined by the superposition model to be smaller than

.05—

I

.5 I.O I.5

FIG. 4. Charge transfer p~ —
p& along the (1, 1, 1)

nearest-neighbor axis from origin to bond center; p&
is the superimposed hfs free-atom density and pz is the
calculated crystal charge density.

APPENDIX: NUMERICAL INTEGRATION PROCEDURE

The integration rule used here is essentially that
described previously' ' ' in which the required ma-
trix elements are reduced to integrals over the
crystal unit cell, which are then evaluated by a
systematic weighted sampling procedure. Thus for
a periodic local operator O(r),

that found for the Seitz potential. The metallic
bonding charge and charge transfer from the atom
were exhibited by comparing the calculated crystal
charge density with superimposed atomic densities.
Progress toward obtaining self-consistent Coulomb
and exchange potentials was described.

An investigation of nonlocal potentials in the ex-
change problem becomes practically possible with
this numerical approach. As a trial case, we are
developing the Hartree-Fock potentials for itera-
tive self- consistent calculations. While further
work is required to develop an efficient computing
scheme, preliminary results indicate that the ex-
change density can be obtained to sufficient ac-
curacy.

ACKNOWLEDGMENTS

Theauthors wish to thank A. J. Freeman for help-
ful discussions, and R. W. Williams for providing
us with results of his unpublished calculations.
Computations were performed at the University of
Florida Computation Center and at the Vogelback
Computation Center of Northwestern University.



DISCRETE VARIATIONAL METHOD FOR THE ENERGY 2897

o, ,(k) =I '(x;(» r)10(r) l»(k r»~

=(x (»ro)IO(ro)l»(k 'o)&o

with the property

p - lr-r, l-'

where M denotes the repeating volume for periodic
boundary conditions, the subscript 0 denotes a unit
cell, and the points (r ) lie within this cell. The
weighting function v(r) can be interpreted as the
local volume per point, the inverse of the sampling
point density function, and the integration rule as
a weighted average of the local density y*Oy. This
particular procedure when carried out consistently,
yields high accuracy for surprisingly small effort.

The point density function which is used to gener-
ate the sample points {r }represents a compromise
between computational convenience and the desire
to produce a stable rapidly convergent integration
rule for the class of functions under discussion.
Since we have to treat operators H with Coulomb
singularities at each nucleus, and orbitals y, with
considerable nodal structure around each atomic
site, it is apparent that a uniform point density will
be far from optimum. We have found that a super-
position of simple density functions based on each
atom

p(r)=Qg p,g(r)=m '(r)

gives good accuracy in the matrix elements. The
results are relatively insensitive to the parameters
governing p,„in fact, a muffin-tin model with uni-
form radial sampling inside each atomic sphere and
uniform (prism) sampling in the interatomic region
has some advantages. In the muffin-tin model, one
can easily build in symmetry relations connecting
different regions of the cell; on the other hand, with
overlapping atomic distributions, one builds up the
sample density along the atomic bonds, as well as
about the individual atoms.

Finally, we may mention two useful symmetriza-
tion procedures: (a) As defined, the matrix 0;&
will not be Hermitian in general; however, the
symmetrized form 0;&= 0;&+ 0&~, can be used to en-
sure that the eigenvalues of 0 are real. (b) It may
be desirable to constrain the approximate Bloch
eigenfunctions [Eq. (2)] to form basis functions for
the irreducible representations of the crystal space
group. This can be accomplished by choosing a
symmetrized point set (r ]. in the integration scheme,
i. e. , with each point r include all points Rr with R
symbolizing operations of the point group. Solution
of the secular equation (6) will then produce the de-
sired result, except for possibly degenerate states.
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The electrical conductivity for a system of electrons described by the single-band Hubbard
Hamiltonian is studied. An expression for the electrical conductivity that is applicable in the
narrow-band regime, i.e. , the bandwidth 4, much smaller than intra-atomic Coulomb re-
pulsion I is derived. It is shown that the conductivity vanishes at T=0 to first order in 6/I
for one electron per atomic site. For the non-half-filled-band case, the degeneracy of the
(atomic limit) ground-state wave function plays a crucial role in yielding a nonzero value for
the conductivity. The theory is used to analyze the experimental data in Li-doped NiO. It is
demonstrated how, as a consequence of this theory, the contribution to the conductivity from
the narrow 3d band is suppressed in the total conductivity, contrary to an ordinary band-theory
approach to the transport properties of this band.

I. INTRODUCTION

Many transition-metal and rare-earth compounds
are insulating despite the fact that elementary
theory predicts that they have partially filled bands. '
It was originally suggested by Mott that materials
with sufficiently narrow conduction bands are in-
sulating, independent of the fractional occupancy
of these bands. The failure of the Bloch-Wilson
theory of conductivity in this case must be attributed
to the neglect of electronic correlations. Mott
showed that for narrow bands, such as the d and f
bands of transition-metal and rare-earth com-
pounds, correlations can be expected to be particu-

larly strong. Hubbard and others have discussed
a method for introducing the effects of electronic
correlations into elementary band theory in a par-
ticularly simple manner, by considering correla-
tions between electrons on the same ion cores only.
A model at least as sophisticated as this must be
used if we want to understand quantitatively the
electrical and optical properties of "Mott insula-
tors. "

In this paper we calculate the electrical conduc-
tivity of a system described by the Hubbard Hamil-
tonian' in the narrow-band regime. A formal de-
finition of the electrical current is presented and
the linear response to an external dc field is


