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Detailed magnetoreflection studies on the binary and bisectrix faces of bismuth are made to
look for the fine structure predicted by the Baraff generalization of the Lax two-band model.

This generalization is required to explain certain structure in the de Haas—van Alphen data.
No fine structure is found experimentally in the magnetoreflection spectra for these optical
faces. Magnetoreflection data were also taken for H in the trigonal direction to look for ex=-

pected departures from the Lax model.

No such departures were found. By assuming a par-

ticularly simple form for the Baraff Hamiltonian, it is possible to explain both the magnetore-
flection and de Haas—van Alphen data, which had previously been thought to be inconsistent.

I. INTRODUCTION

The tightly coupled conduction and valence bands
of bismuth (see Fig. 1) have been studied extensively
by a number of experimental and theoretical tech-
niques.' One particularly informative experiment
has been the infrared magnetoreflection study of
Brown, Mavroides, and Lax (BML).? In this experi-
ment, resonances in the magnetoreflectivity were
observed and identified with interband transitions
between Landau levels in these strongly coupled
valence and conduction bands. These data, which
indicated that the bands had extremely nonparabolic
dispersion relations, could be understood in terms
of the coupled two-band model.*™® This band model
assumes that the two coupled bands interact only
with each other and results in a spectrum of non-
uniformly spaced Landau levels which remain dou-
bly degenerate even in the presence of spin-orbit
interaction.

The magnetic energy levels for bismuth as given
by the Lax two-band model*® can be written as’

E) j(ky)=%[€?+2€(B*H] + %G /2my) ]2, (1)

where &y is the wave vector along the magnetic
field. These magnetic energy levels are labeled
by the band index b and quantum number j. For

ky =0, these levels depend only upon two parameters:
the energy gap E, and the cyclotron effective mass
m¥. These parameters are related to quantities in
Eq. (1) by

E,=2¢ (2)
and

m¥=moBo/B¥, )

where m, is the free-electron mass, 3 B, is the
magnitude of the Bohr magneton, B8y= lel%/myc,
and the quantity g* is related to the effective-mass
tensor M * by

B* = Byl - ¥ + h)V?/ detiTi *)'/2, 4)

where 7 is a unit vector in the direction of the mag-
netic field, and detm* signifies the determinant of
the matrix for the effective-mass tensor. The +
and - signs in Eq. (1) denote, respectively, the
conduction band (b =+1) and valence band (b=-1)

of the coupled two-band model. The magnetic
energy-level index j in Eq. (1) is related to the or-
bital and spin quantum numbers »z and s by

j=7£+% -S, (5)

where #=0,1,2, ... and s =+3. The k; dependence
of the energy levels involves the longitudinal ef-
fective mass my,

my=h-m* . h , ®6)

and assumes the simple form of Eq. (1). Of par-
ticular interest to the magnetoreflection experi-
ment are the extrema in the magnetic energy levels
which occur at &, =0 and are denoted in this paper
by EJ ; rather than the more cumbersome form

Ej ;(0). 1t is these levels Ej ; of the two-band model
that have been used by BML for the interpretation

of the observed magnetoreflection spectrum.?

The magnetic energy-level structure of bismuth
has also been extensively studied by experimental
techniques which detect the passage of Landau levels
through the Fermi surface [de Haas—van Alphen
(dHvA), ® de Haas -Shubnikov, ® magnetothermal oscil-
lations, ! and ultrasonic magnetoabsorption! mea-
surements]. These experiments, which we will
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call dHvA-type studies, measure the magnetic
field at which the Landau levels at k; =0 pass
through the Fermi level. The fine structure ob-
served in the dHvA studies clearly indicates that
the Landau levels are not degenerate; the energy
levels, instead of depending only upon the single
quantum number j, do, in fact, depend upon both »n
and s of Eq. (5). That is, the effective g factor
for the electrons does give rise to a spin splitting
of the Landau levels. Baraff'? assumed that this
splitting was due to the small interaction of the
tightly coupled valence and conduction bands with
the other bands nearby and calculated the expected
Landau-level energies to first order in perturba-
tion theory. His results indicated that fine struc-
ture might be observable in the magnetoreflection
spectrum in bismuth. Since the equipment of BML
had been greatly improved in recent years,* we
repeated their experiments in order to look for such
fine structure. However, no fine structure is
found in the present magnetoreflection study, indi-
cating that the interaction of the tightly coupled
bands with the bands nearby has a particularly
simple form. The simplified equations, which ex-
plain both the splitting observed in the dHvA-type
experiments and the absence of splitting in the

S. DRESSELHAUS 2

resonances in the magnetoreflectivity, are presented
in this paper.*

Perhaps even more important than these binary
and bisectrix studies is the work carried out with
H along the trigonal direction; this is so for several
reasons. First of all, magnetoreflection oscil-
lations due to interband transitions have not been
previously observed with this sample orientation
due to the very small amplitude of the resonances.
Secondly, it has been known for some time that the
Fermi surface for the electrons in bismuth con-
sists of three ellipsoids which are centered at the
L points in the Brillouin zone, and are greatly elon-
gated along one of the principal axes (the heavy-
mass axis). It has, therefore, been pointed out®
that the two-band model may not provide an ade-
quate description of the dispersion relation along
the heavy-mass direction, since it is expected that
in this direction the close-lying valence and con-
duction bands should not be tightly coupled at all.
Moreover, the heavy-mass direction is nearly
perpendicular to the trigonal axis (about 84° away),
and, therefore, it is expected that any significant
departures from the two-band model along the
heavy-mass direction should lead to observable
effects in the magnetoreflection data for H along
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The full-zone energy-band model for bismuth according to Golin (Ref. 1).
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The tightly coupled valence and

conduction bands near the Fermi level are the L, and L bands separated at the L point by an energy gap E,.



2 MAGNETOREFLECTION STUDIES IN BISMUTH

the trigonal direction. Furthermore, this experi-
ment is expected to provide a critical test for such
departures since the magnetoreflection technique
yields information on the energy bands over a wide
range of energy and wave vector. The most signif-
ficant result with regard to this aspect of the mag-
netoreflection study (H I trigonal axis) is that no
departures from the Lax two-band model are found
over the entire range of magnetic fields and photon
energies where interband Landau-level resonances
are observed. This observation, along with the
results obtained for H | binary and bisectrix axes,
leads to some interesting conclusions about the
energy-band structure of bismuth in the vicinity of
the L point, and these conclusions are discussed
in Sec. III.

II. EXPERIMENTAL RESULTS

In our experiments, the optical reflectivity R of
a liquid-helium-cooled single-crystal-bismuth
sample is measured as a function of magnetic field
H and photon energy 7w, using the Faraday geome-
try (H 'k where k is the optical propagation vector).
The principal features of the experimental apparat-
us have been described previously.?!® The im-
provement in the equipment that has been essential
to the present work is the introduction of an En-
hancetron signal averager to improve the signal-
to-noise ratio. The effectiveness of this device
can be seen in Fig. 2. Here the direct recorder
trace displays the output of the detector amplifier
and this trace is compared with the result of aver-
aging together six such traces. This improvement
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in the signal-to-noise ratio provided more accurate
observation of the magnetoreflection spectrum for
the magnetic field H along the binary and bisectrix
directions; this improvement, furthermore, made
possible the observation of the spectrum for H along
the trigonal direction, which had not been previously
investigated.

The experimental trace of Fig. 2 was taken at a
photon energy of Zw=0.0815 eV, with the geometry
HI k and H along the trigonal direction. As a first
guess, the magnetoreflection spectrum observed from
this cleaved trigonal face was analyzed in terms of the
Lax two-band model, * which had been successful
in the interpretation of previous magnetoreflection
experiments.? In the present analysis, it was as-
sumed that each peak in the reflectivity is associ-
ated with a resonance corresponding to an allowed
interband Landau-level transition, and in Fig. 3
these resonances have been plotted as open circles
and labeled in accordance with the notation of BML.
No 7 =0 resonances were observed for H I trigonal
axis because these resonances presumably occur
at H>100kG *® for the range of available photon
energies. In addition to the experimental data,
the theoretical resonant fields and photon energies
predicted by the Lax two-band model have been
plotted as solid lines in Fig. 3. The band param-
eters for these curves were found by fitting the
theory to the data, using an rms error minimizing
technique. The results are summarized in Table
I. As can be seen, the agreement between theory
and experiment is excellent, and no effects associ-
ated with departures from the two-band model were

FIG. 2. Experimental magnetore-
flection traces taken from a cleaved
trigonal bismuth face with H in the
trigonal direction. The photon energy
is Zw=0. 0815 eV and the amplitude is

n=1 expressed as a percentage of the zero

field reflectivity. A comparison is
made between the direct recorder
trace and the enhancetron computer
output after six traces.
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TABLE 1. Electronic band parameters for bismuth.
Present

Parameter work BML ? SBR
E, in meV 11 15 15.3
B* in meV/kG
trigonal 1.25 0.82
binar light 7.47 4.71 5.50
mary heavy 0.42
bisectri light 8.44 5.47 6.36
1SECHIXY heavy 4,24 2.55 3.17
m} at bottom of band
trigonal 0.0093 0.0141
: light 0.00156 0. 00246 0.00210
binary ¢y cavy e e 0.0277
bi tri light 0.00137 0.00212 0,00182
ISECITIX § yeavy  0.00273  0.00455  0,00364
Egm}¥ in eV®
trigonal 1.2 1.1
binar { tignt 7.1 6.1 7.3
y z heavy .. 0.55
light 8.0 7.1 8.4
bi .
isectrix { heavy 4.0 3.3 4.2

2Taken from magnetoreflection data of Brown,

Mavroides, and Lax (Ref, 2).
bTaken from deHaas~—Shubnikov data of Smith, Baraff,

and Rowell (Ref. 9).
°m} is taken at the band extremum.

found for H in the trigonal direction. In Sec. III, we
discuss the significance of this unexpected result.

It should be pointed out here, however, that the
magnetoreflection results are satisfied by an ellip-
soidal two-band model. Although nonellipsoidal
effects are expected to be most pronounced for
this magnetic field orientation, ° there seems no
need to invoke nonellipsoidal complications to ex-
plain the magnetoreflection data.

The applicability of a two-band model was also
tested with magnetoreflection measurements made
with H|| binary and bisectrix axes, the sample
orientationi used by BML.2 An experimental trace
taken with Hl binary axis is shown in Fig. 4. For
this photon energy of 7w =0.107 eV, the n=0 reso-
nance occurs at H> 100 kG, the maximum available
field; since the reflectivity between 40 and 100 kG
shows no structure for this photon-energy value,
the figure was terminated at 40 kG. The resonances
of this figure have a very large amplitude, primar-
ily due to th_cz small cyclotron effective mass which
occurs for H in the binary direction (see Table
I). The data taken with H il binary axis essentially
confirm the earlier results of the BML study® so
that the significant conclusions that follow from
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the present work are (a) the peaks in the magnetore-
flection spectrum display no observable fine struc-
ture (see Fig. 4) and (b) the Lax two-band model
provides an excellent description of the observed
magnetoreflection spectrum (see Fig. 5). Figure5
gives a summary of the magnetoreflection reso-
nances for HIl binary axis. These data cover a
much larger range of magnetic fields and photon
energies than the earlier work, % and are included
here to demonstrate how well the two-band model
(solid curves) follows the data (open circles). The
fit to all the interband Landau-level transitions

(n =0 through n="7) is made using two parameters,
the effective cyclotron mass and the energy-band
gap. Departures from the two-band model only
begin to appear at the highest photon energies and
magnetic fields. Here, changes in the line shape
are also observed, indicating that at these large
photon energies other bands are becoming important
and the Lax model is beginning to break down.
Using the band parameters determined from the
interband Landau-level transitions (and no additional
information), the dashed curve for the cyclotron
resonance transition was computed; this curve
agrees well with the cyclotron resonance mea-
surements (shown as the open circles). For this
magnetic-field orientation, the line shape observed
in the low-photon-energy limit is essentially the
same as that shown in Fig. 3(b) of BML.% The
present cyclotron resonance results are in good
agreement with the far-infrared measurements of
Hebel and Wolff, 16 hoth with regard to line shape
and resonant frequency. The agreement with re-
gard to the resonant frequency is demonstrated by
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FIG. 3. Summary of the experimental (open circles)
and theoretical (solid lines) values for the resonant mag-
netic fields and photon energies in the magnetoreflection
spectrum from a trigonal bismuth face.
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FIG. 4. Experimental magnetoreflection trace taken

from a binary bismuth face and Zw=0,107 eV. The
resonances are labeled in accordance with the notation
of Ref. 2.

the Hebel and Wolff point'® given in Fig. 5. In con-
structing Fig. 5, the resonant fields for the inter-
band Landau-level transitions were taken at the
reflectivity maxima, while for the cyclotron reso-
nance the steepest portion of the reflectivity rise
was selected. !

For H Il bisectrix, a more complicated magneto-
reflection spectrum is observed and the improved
signal-to-noise ratio made possible a more sys-
tematic study of the spectrum for this sample ori-
entation. Representative experimental traces for
H in the bisectrix direction are shown in Figs. 6
and 7. Figure 6, which is more typical of the data
in the higher photon-energy range, is similar to
that of Fig. 8 in BML, % but differs in detail. The
magnetoreflection spectrum shown in Fig. 6 is
more complicated than that shown in Fig. 4, since,
in the bisectrix case, relatively small cyclotron
effective masses occur for both the principal and
nonprincipal ellipsoids. !® For the bisectrix magnetic
field orientation, the electrons in the single princi-
pal ellipsoid have the smaller cyclotron effective
mass and give rise to the series of interband Landau-
level resonances for the “light” carriers, and these
are denoted in Fig. 8 by the subscript / and by open
circles. The carriers in the two equivalent non-
principal ellipsoids have a heavier cyclotron ef-
fective mass and give rise to the more closely
spaced resonances denoted by % and by closed circles
in this figure. In contrast to this situation, the
cyclotron effective mass for the principal ellipsoid
for the magnetic field along a binary direction is
so large that the interband Landau-level resonances

have unobservably small amplitudes; thus, the reso-

nances of Fig. 4 are associated with the two equiv-
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alent nonprincipal ellipsoids.

The identification of the resonances associated
with the heavy carriers in Fig. 6 was clarified
to some extent by polarization experiments. With
the optical electric field orientation E binary
axis, the resonances associated with the heavy
electrons are almost completely extinguished,
whereas the light electron resonances are strong
for both E I binary axis and El trigonal axis. This
polarization effect arises from the large anisot-
ropy of the electron effective-mass tensor, which
causes the bands associated with the various
elhpsmds to couple differently to the two polariza-
tions of E. No striking polarization effects are ob-
served in the magnetoreflection spectrum for Hin
the binary direction.

The magnetoreflection spectrum for H in the bi-
sectrix direction was also studied in the limit of
low photon energies, and a recorder trace charac-
teristic of this limit is shown in Fig. 7. The spec-
trum here is seen to be quite different from that
of Fig. 6, which is typical of the higher photon-
energy range. The present work is the first de-
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FIG. 5. Summary of the experimental (open circles)

and theoretical (solid lines) values for the resonant mag-
netic fields and photon energies in the magnetoreflection
spectrum from a binary bismuth face. Data for both in-
terband Landau-level transitions and cylotron resonance
are shown. The A point is taken from the cyclotron
resonance data of Hebel and Wolff (Ref. 16).
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FIG. 6. Experimental mag-
netoreflection trace taken from a
bisectrix bismuth face and 7w
=0, 1165 eV using the enhancetron
computer output for the average
of four traces. The ! and 4 sub-
scripts refer, respectively, to
the light and heavy cyclotron
masses that occur in this ori-
entation.
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tailed study in this limit, where the improvement
in signal-to-noise ratio provided by the Enhance-
tron computer is essential for the study of the
spectrum. In Fig. 7, not only do the resonant
fields of the n =0 transitions depend strongly on
the nonparabolic features of the two-band model,
but the line shapes are also characteristically dif-
ferent from those of the higher quantum-number
transitions. Also seen in this figure are the cyclo-
tron resonance lines for the light- and heavy-mass
electrons.

A summary of the observed interband and cyclo-
tron resonance transitions for H Il bisectrix axis
is given as the open circles in Fig. 8 and a fit to
the interband data is made by the Lax two-band
model in terms of two parameters, the energy-band
gap E, and the cyclotron effective mass m} (see
Table I for explicit values). From this figure it
is seen that the two-band model accounts very well
for the bisectrix magnetoreflection spectrum. Using
the band parameters determined from the interband
data, the two-band model also provides very good
agreement with the observed cyclotron resonance
transitions. Thus, the bisectrix magnetoreflection
spectrum can be explained quantitatively by the Lax
two-band model. * To put this another way, no fine
structure is observed in this spectrum that cannot
be handled by the two-band model, in contrast with
the dHVA -type results, &1

From both the binary and bisectrix data, the
energy-band gap of the two-band model is deter-
mined to be E,=11+1 meV. A relatively accurate
value for E, is obtained in the present work because
of the large amount of data taken in the low quantum
limit. Since the magnetoreflection data for the

80 90 100

n=0 transition with HIl trigonal axis are not avail-
able, the energy-band gap cannot be accurately
deduced from the trigonal magnetoreflection data.
For this reason, the trigonal data were interpreted
with the two-band model using only one adjustable
parameter, the cyclotron effective mass, and con-
straining the energy gap to the 11-meV value as
determined from the binary and bisectrix magneto-
reflection data.

The most detailed determination of the effective-
mass tensor and the cyclotron effective masses for
the electrons in bismuth was made in the de Haas—
Shubnikov studies of Smith, Baraff, and Rowell,®
where the analysis was carried out using the Lax
two-band model and a value of E,=15.3 meV. This
value of E, is close to the value of E, =15 meV re-
ported by BML. 2 Because of the different values
taken for E,, discrepancies appear between the
cyclotron effective masses m} as determined by
Smith, Baraff, and Rowell® and by the present
magnetoreflection study (see Table I). The princi-
pal reason for this discrepancy is the form of the
two-band model. In bismuth, both the de Haas-
Shubnikov periods and the location of the magneto-
reflection resonances depend primarily upon the
quantity E,/m}; and if, instead of m¥, we compare
values for E,/m¥, then good agreement is obtained
between the present magnetoreflection data and the
de Haas-Shubnikov data.® This can be seen in Table
I, where the results for E,/m} are also included.
In comparing these experiments, it is of interest
to observe that to within experimental error, there
is no evidence for any difference in the cyclotron
effective mass in bismuth as observed at high fre-
quencies w > w, andat low frequencies w <w,, where
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w,isameasureof theoptical-phononfrequency. The
magnetoreflection experiment is carried out in the
high-frequency limit, while the dHvA experiments

take place in the low-frequency limit.

II. DISCUSSION

The experimental results summarized above in-
dicate that the magnetoreflection experiment can be
analyzed entirely within the framework of the Lax
two-band model. On the other hand, the analysis
of the dHvA-type experiments requires the introduc-
tion of other bands to remove the degeneracy of the
Landau levels. It is the purpose of this section to
show how these two results can be reconciled.

In this connection we will first present some of
the previously developed theoretical treatments of
the strongly coupled valence and conduction bands
of bismuth. We will then use our experimental re-
sults to simplify this theory, anddiscuss the implica-
tion of this simplification.

The most general effective Hamiltonian 35 de-
scribing two strongly coupled nondegenerate (ex-
cept for spin) bands in the vicinity of the L point
in the Brillouin zone was developed by Baraff, 12
and may be written as

3 = 3Gy +3C,, (7)

where 3G, is the two-band Hamiltonian, extensively
studied by Wolft, ® and describes the interaction of
the two strongly interacting bands with each other.
The perturbation Hamiltonian 3¢, of Eq. (7) is as-
sumed to be small compared with 3¢y, and describes
the interaction of the two strongly coupled bands
with the other bands nearby. In the Lax two-band
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model, itisassumed that ¥, is zero, and the Hamil-
tonian J¢y, is diagonalized in the presence of a mag-
netic field to yield the Landau-level energies of

Eq. (1).

It is important to note that Eq. (1) yields doubly
degenerate Landau levels, except for those with
j=0; here, we can only have s =%, since the s=-3%
level does not exist. In the presentation which
follows, we do not discuss these nondegenerate
levels, since a consideration of this special case
does not affect our conclusions in any way, but
merely makes the presentation much more compli-
cated.

Using 3C,, Wolff calculated the velocity matrix
elements® for transitions between the Landaulevels
as a function of &y, n, s, n’, and s’, where the or-
bital and spin quantum numbers %, s and »’, s’ cor-
respond, respectively, to the initial and final states.
He found that for arbitrary &y these transitions
were allowed only when Az=0, As=+1, or Ap==+1,
As=0. In addition, he found that only the spin-con-
serving (As =0) transitions were allowed at 24 =0,
where the extremum in the joint density of states
occurs. One might expect, therefore, that the
contribution of the spin-flipping transitions to the
dielectric constant would lead to much smaller
structure in the magnetoreflectivity than the spin-
conserving transitions. By calculating the dielectric
constant of bismuth using the one-electron density
matrix formalism, and the ky-dependent Landau-
level energies and velocity matrix elements as
given by Wolff, ® we have substantiated this as-
sumption’®; the observed resonances in the mag-
netoreflectivity of bismuth are found to be almost

- HEAVY
n, =0 ELECTRON
CYCLOTRON
RESONANCE

LIGHT T

ELECTRON

CYCLOTRON

RESONANCE

FIG. 7. Experimental
> n, =0 A
[ [ magnetoreflection trace
> \ taken from a bisectrix
=
'5 i) 10% bismuth face and 7w
- =0. 0618 eV using the
b enhancetron computer
o output for the average
of two traces.
1 | | | | | | 1 I |
) 10 20 30 40 50 60 70 80 90 100

MAGNETIC FIELD (kG)
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completely due to the spin-conserving transitions.!®

Thus, every interband Landau-level resonant
structure in the magnetoreflection spectrum as pre-
dicted by the Wolff selection rules® would consist
of contributions from the four degenerate resonant
transitions, which may be written b, j, s«~-b,j+1,s,
where s =+%, and the band indices are b=+1. De-
generate with these resonances are the unobservably
small spin-flipping resonances, which may be
written as b, j,s =5~ =b, j+1, s=—-%, where
again b=x1. Both the spin-conserving and spin-
flipping transitions are illustrated schematically
in Fig. 9. The Wolff selection rules'® apply to the
Lax two-band model where 3¢, =0 and the energy
levels depend only upon quantum number j. The re-
sulting doubly degenerate energy levels are shown
on the left-hand side of this figure.? This energy-
level degeneracy leads to the sixfold degeneracy in
the resonant photon energy corresponding to both
spin-conserving transitions (fourfold) and the spin-
flipping transitions (twofold).

In analyzing their data, BML? used Eq. (1) with
ky =0 for the Landau-level energies and simplified
the labeling by indexing each observed resonance
with the orbital quantum number (z) of the two
levels involved in the spin-flipping transition; ac-

otor= CYCLOTRON RESONAN

LIGHT ELECTRONS

PHOTON ENERGY (ev)
g

5
-7 \_ CYCLOTRON RESONANCE
HEAVY ELECTRONS

o 10 20 30 40 50 60 70 80 90 100
MAGNETIC FIELD (kG)

FIG. 8. Summary of the experimental and theoretical
values for the resonant magnetic fields and photon ener-
gies in the magnetoreflection spectrum from a bisectrix
bismuth face. For the interband Landau-level transi-
tions, the light-mass data are given as the open circles
and the heavy-mass data as the closed circles.
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FIG. 9. Schematic representation of the allowed in-
terband Landau-level transitions in bismuth according
to the Lax and Baraff versions of the two-band model.
The four spin-conserving and two spin-flipping transi-
tions of the Baraff model become degenerate in energy
for the Lax model.

cording to the Lax model, these energy differences
are degenerate with the energy for the spin-con-
serving transitions which actually produce the ob-
servable resonances.

Although it is found that by using the above method
of analysis an extremely good fit can be obtainedto -
both the data of BML and the data reported in this
paper, itisalso clear from dHvA -type experiments®!!
that the perturbation Hamiltonian 3C,,although small,
produces observable effects. The fine structure
in the dHvA data shows that the j, s and j, —s
Landau levels are not degenerate. In order to
understand this splitting, Baraff, 12 ysing first-or-
der perturbation theory, calculated the energy
shifts which occur when the perturbation Hamil-
tonian is assumed to be nonzero. The Baraff Ham-
iltonian'? allows the bands of the two-band model
to interact with other bands not explicitly treated
in the Wolff two-band Hamiltonian.® The Landau-
level energies at ky = 0 obtained in the Baraff treat-
ment can be written as

EbB,J',s:El?,j +ﬂ +f- ) (8)

where the perturbation terms f, and f. depend on
spin s, as well as on the band index b and the
quantum number j, and are given by

fo=[(E),; £ €)/E} ;](B.j + G.s)B*H, 9)
in which the orbital correction terms are described

by

-

B:=H-A, -H/H-m*-H (10)

st

and the spin correction terms by

-

G:=H-F, -H/H.m*-H. (11)
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In these equations, the energy gap E,= 2€, and the
five tensors m*, Xt , and F, are to be experimen-
tally determined.

In order to analyze the magnetoreflectivity data
in terms of the more general Baraff Hamiltonian,
we also need to find the selection rules for transi-
tions between the eigenstates of 5. To determine
these selection rules, we first note that the matrix
elements of JC, between the degenerate b, j, s and
b, j, —s eigenstates of 3, vanish at k, =0. There
is, therefore, no zeroth-order mixing of these two
states at ky =0, where the singularity in the joint
density of states occurs. Secondly, we note that
JC, is quite small, as shown by the experimental
dHvA data.®!! It therefore seems reasonable to
assume that at &y =0 the velocity matrix elements
for transitions between the Baraff states are very
similar to the ones calculated by Wolff.® From
our magnetoreflection line-shape calculation, **
we have found that the selection rules are essential-
ly determined by the velocity matrix elements at
ky =0, where the extremum in the joint density of
states occurs; therefore, it seems reasonable to
assume that the selection rules calculated by Wolff®
are still essentially correct.

In Fig. 9 we have, therefore, used these selec-
tion rules to draw the four spin-conserving and two
spin-flipping interband Landau-level transitions for
the Baraff model; we recall that according to the
Lax two-band model, all six of these transitions
are degenerate. If all the tensors in Eqgs. (10)and
(11) are independent of each other, it can easily
be seen that none of these transitions are degener-
ate when the first-order perturbations, as described
by Eqs. (8)-(11), are taken into account. Thus, the
Baraff Hamiltonian predicts, in general, fine struc-
ture in the magnetoreflectivity spectrum. How-
ever, no such fine structure has been observed with
the magnetic field along any of the principal crys-
talline axes. We have, therefore, made the sim-
plest assumption consistent with the data; that is,
we assume that all of the spin-conserving transi-
tions in Fig. 9 are degenerate. This assumption
has, in fact, been used in constructing Fig. 9. This
restriction, however, requires that

A, =-A_=A, (12a)

F=--F=F, (12b)
so that

B,=-B.=B, (12¢)

G,=-G.=G . (12d)

With these restrictions, we may now write the
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Baraff magnetic energy levels at ky =0 in the sim-
pler form?

Ep; s=EY; +2B*H[(e/E) ;) Bj +Gs], j#0.
(13)

It can be seen that the spin degeneracy of these
levels is lifted through the spin-splitting parameter
G. Equation (13) can be even further simplified by
defining a new effective-mass tensor

M* = (m* + 4A) (detm*)" 2/[det(m* +4A )] /2 |
(14)

and a new quantity

grx= ol M * - 7)M/2/(detM*)V/2= p*(1+ 4B)V2 .
(15)

Expanding the square root to the same accuracy as
was achieved in deriving Eq. (8) (first order in the
small quantities B and G), we find

B*¥* =pg*(1+ 2B). (16)
Furthermore, since it can be shown to first order
in B that

(€* +2¢p**Hj)"?= B} ; + 28*H(¢/E} ,)Bj, 17)
we finally find that we may write the expression for
the Landau-level energy E; ; . as

E3 ;s=Ep +2sB**GH, (18)
where we have ignored the small difference between
B* and B** in writing the small term 2s8**GH and
have defined EJ; as

EY =+ (e®+2¢p**Hj)V? . (19)

It is important to note that, though Eq. (18) is

very simple in form, it includes all the effects due
to ¥, to first order in perturbation theory. The
first term of this equation (E,‘,’,'j) has precisely the
same form as the Lax two-band energy levels Eg ie
The only differeng_ez. is in tEe interpretation of the
band parameters M* and m*. In both cases, the
physical significance of the effective-mass tensors
is that they describe the curvature of the conduction
band at the band extremum. In the Lax two-band
model, this curvature is assumed to be completely
due to the interaction between the tightly coupled
valence and conduction bands, * while in the more
complete theory of Baraff!? it is recognized that a

portion of the curvature is due to the interaction of
the valence and conduction bands withthe other bands
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nearby. The second term of Eq. (18) describes the
lifting of the degeneracy of the two-band model by
the interaction with the nearby bands to first order
in perturbation theory.

It is now clear why the two-band model describes
the magnetoreflectivity spectrum so well. Essen-
tially, the interband transitions which yield large
resonances in the reflectivity are spin-conserving
ones, so that the second term of Eq. (18) drops out
of the expressions relating the resonance fields with
the photon energies. We, therefore, obtainexpres-
sions which are exactly of the same form as are
generated by the Lax model. Equation (18) also
helps us to understand why the two-band model
works so well even with the magnetic field along the
trigonal axis, where coupling to bands outside the
two-band model are known to be important.® The
analysis given here shows that 3, has no effect
on the magnetoreflectivity spectrum to first order
in 3,

Finally, it should be pointed out that the relation-
ships between the Baraff band parameters found in
this paper are not predicted by any symmetry argu-
ments and may, therefore, be valid only as afirst
approximation. Higher-resolution magnetoreflec-
tion measurements may, in fact, show verysmall
splittings of the resonant structure and may also
show two additional broad sidebands due to the “non-
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resonant” spin-flipping transitions. Such experi-
ments would provide valuable information on the
effective g factor for the valence band at point L
in the Brillouin zone.

The simplest way to understand the band param-
eter relations which describe the present data [see
Eq. (12)] is to assume that all the bands in the vi-
cinity of the Fermi level at point L are interrelated
in some fashion. The simplest physical picture
consistent with the data assumes that for each band
at an energy E, interacting with the valence band,
there is another band at energy ~ E which interacts
just as strongly with the conduction band. This
physical picture is not the only possible one, how-
ever, and many other band structures could also
yield the relationships between the Baraff param-
eters implied by the present magnetoreflection
results.
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A general variational method for efficiently calculating energy bands and charge densities
in solids is presented; the method can be viewed as a weighted local-energy procedure or al-
ternately as a numerical integration scheme. This rapidly convergent procedure circumvents
many of the difficulties associated with the evaluation of matrix elements of the Hamiltonian
in an arbitrary basis and treats the general nonspherical potential with no more complication
then the usual “muffin-tin” approximation. Thus the band structure of ionic and covalent ma-
terials can be calculated with realistic crystal potentials. As an example, the method is ap-
plied to the one-electron model Hamiltonian with a nonspherical local potential, using a
linear combination of atomic orbitals basis. Matrix elements of the Hamiltonian are evalu-
ated directly without decomposition into atomic basis integrals; no “tight-binding” approxi-
mations are made. Detailed calculations are presented for the band structure and charge
density of bee lithium which demonstrate the feasibility of our method, and reveal the sensi-
tivity of the energy bands to nonspherical and exchange components of the crystal potential.
Various prescriptions for the construction of crystal potentials are considered, and conve-

nient least-squares expansions are described. The extension of these methods to nonlocal
potentials such as are encountered in the Hartree-Fock self-consistent-field procedure is

discussed.

I. INTRODUCTION

The energy-band model for crystalline solids has
proved to be very useful in describing optical, mag-
netic, and transport properties of a variety of ma-
terials. The success of this model depends essen-
tially on the choice of potential in the one-electron
effective Hamiltonian. This potential may be deter-
mined in many ways, including an empirical set of
parameters, the superposition of model free-atom
potentials, or by a self-consistent iterative proce-
dure based on a many electron picture. Two inter-
related problems which must be solved in applying
the theory are (a) to find a crystal potential which
adequately accounts for electron correlation and
(b) to develop computational methods powerful
enough to handle realistic potentials. The very
great progress made in understanding the electronic
structure of metals has been aided by the fact that
the free-electron “p'/3” local exchange and the

“muffin-tin” spherical average potentials are rather
good approximations to the crystal potential. Com-
putational methods such as the augmented-plane-
wave (APW), KKR, and Green’s-function schemes!™
exploit this simple form of the potential. However,
in some cases, particularly for nonmetals, the re-
sults have been found to be sensitive to nonspherical
components of the potential and/or deviations from
the simple exchange approximation.*® In addition
to studying these effects, it now appears important
to investigate the consequences of adopting effective
potentials, nonlocal as well as local, based on pseu-
dopotential, Hartree-Fock, or more fundamental
many-electron models.

The approximations which simplify the energy-
band treatment of metals seem to be practically
useless for most ionic and covalently bonded solids.
The aspherical ion crystal fields and the covalent
charge distributions are not well represented by a
spherical average, and the exchange model is ques-
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