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Starting from the Kubo formula for the optical conductivity, we review, reformulate, and
generalize our previous one-electron theory of the optical absorption of solid and liquid al-
kali metals to include many-body effects due to electron-electron Coulomb interactions. The
optical matrix element (g&, ) V'( (&), which was previously calculated in terms of an "optical
pseudopotential, " is rederived from a second-order scattering of an electron (quasiparticle
in the many-body theory) by the Coulomb field of the ions and the applied photon field. The
result is then represented by Feynman graphs similar in the lowest order to the "bremsstrah-
lung" of quantum electrodynamics, and shown, accordingly, to give rise to four categories
of many-electron effects, viz. , screening effects (usually incorporated in the one-electron
approximation), electron self-energy effects, electron-photon and electron-ion vertex cor-
rections, and final-state interactions. The changes of the one-electron result due to self-
energy and to vertex corrections counteract each other in sodium and potassium, leading to
no more than 10% net change; accordingly, the only appreciable enhancement comes from
final-state interactions involving virtual exchange of plasmons, considered previously by
Mahan.

I. INTRODUCTION

In this paper we shall review, reformulate, and
generalize our previous calculation' (hereafter
referred to as AI and AII) of the optical conduc-
tivity o(~) of solid and liquid alkali metals, to in-
clude many-body effects due to electron-electron
Coulomb interactions. In a subsequent paper, we
shall consider a second aspect of many-body ef
fects, namely, that due to electron-Photon-ion
interaction —its effects on the optical effective
mass and its implications on photon-induced su-
perconductivity recently introduced by Kumar and
Sinha. The calculation to be reported in this pa-
per will be based on the Kubo formula' and the
optical pseudopotential method introduced in AI,

since these approaches have been found to be both
simple and in reasonable accord in the one-elec-
tron approximation w'ith the recent measurements
of the optical properties of sodium and potassium
by Smith. However, since many calculations of
optical. properties, both in the one-electron ap-
proximation' and including many-body effects,'

exist in the literature, our emphasis will be on

providing a simple and complete picture which will
transcend all previous quantitative calculations,
and furnish a basis for future investigations in this
area. This simple picture —consisting essentially
of a second-order scattering involving an elec-
tron-ion vertex and an electron-photon vertex
similar to the "bremsstrahlung" of quantum elec-
trodynamics —will be derived in Sec. IIB.
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The difficulty experienced in the calculation of
optical properties in recent years seem to stem
from two uncertainties. The first is the uncer-
tainty about the optical matrix elements((» l V I tIt»),

which determines the oscillator strength between
Bloch states P». and tt» in the one-electron approx-
imation '; this was resolved by the introduction
of the optical pseudopotential in AI and AII. In
the many-body theory, the uncertainty appears to
be due to incomplete understanding of the nature
of the Feynam graphs (see Fig. 1) to be asso-
ciated with electron-photon interaction in a metal.
This lack of understanding is reflected in current
literature in the qualitative prescription of a va-
riety of processes expected to resolve the apparent
discrepancy between the one-electron approxima-
tion and the experimental results, particularly in
the alkali metals. ' The processes suggested in-
clude those by Kohn on multiple electron-hole
pair production by photons, by Cohen' on the pos-
sibility of metallic excitons, by Weiner" and
Mahan' on final-state interactions in which the
electron and the hole created by photons interact
via virtual exchange of plasmons, by Hopfield'
and Phillips' on plasma resonance, by Foo and
Hopfield" on phonon effects, and more recently by

Beeferman and Ehrenreich'6 on the consideration
of electrons and holes as quasiparticles. The
situation does not seem to have been made clearer
by the introduction of various techniques, e. g. ,
the emphasis on Ward's identities by Geldart and

Vosko, '7 or the most recent many-body perturba-
tion method by Young, ' to mention but a few.

Experimentally, the situation is unresolved,
particularly regarding the discrepancy between the
optical absorption in sodium and potassium, as
measured independently by Mayer and co-workers'
and more recently by Smith. If the latter is cor-
rect, as one is inclined to believe, then we would
expect many-body effects due to electron-electron
Coulomb interactions to be small in potassium for
which the agreement between experiment and one-
electron theory is already good. ' In sodium, the
discrepancy between the one-electron approxima-
tion and experiment seems to be adequately ac-
counted for by the virtual exchange of plasmon
considered by Mahan. ' In order to understand all

FIG. 1. Feynman graph for the
optical matrix element as used in
current literature, see, e. g. ,
Ref. 18.

these from a unified point of view, it is necessary
to explore all contributions from electron-electron
Coulomb interactions to all orders of perturbation
theory, which is our objective in this paper.

The outline of the present work is as follows.
In Sec. II, which will be divided into two parts, we
shall review our previous calculation and the Kubo
formula in the first part and describe a generaliza-
tion suitable for many-electron theory in the sec-
ond part. The many-electron theory, and com-
parison of the results with experiment will be de-
scribed in Sec. III. Conclusions will be drawn in
Sec. IV.

a(&u)= J dt J d&e '"'(j„(0)j„(t+iX)) . (2. 1)

Here, P= I/xT, x being the Boltzmann constant and
T being the absolute temperature of the material;
j„(t) represents the quantum-mechanical current
operator in Heisenberg representation, given for
a material characterized by a Hamiltonian II as

(t) e+ &8t/» j (0) e &Ht/»
(2 2)

j„(0)= ( —i e@/m) V„=- ( —i eh/m) , —(2.3)
e

in the x direction; and (A) = g» p»(g» lA I tr/») defines
the thermal average of an operator A, where

p, =e "»/Z„e-'s~ (2. 4)

E» and (» being the eigenvalue and eigenfunction
of H.

In this completely general form, the Kubo for-
mula (2. 1) is too abstract for practical determina-
tion of the conductivity in a real metal. Instead,
it will be found more convenient to use the form
given independently by Greenwood:

o(~)= & I&@ Iv. l@)I'
t

x ( p» —p». ) 5( E». —E» —5(o) . (2. 5)

This is known as the Kubo-Greenwood formula.
Since, however, it is not altogether obvious that
(2. 5) reduces exactly to (2. 1), it is instructive to
briefly demonstrate this explicitly. In (2. 5), we
have

P» P»' =P»(1 —e ) E ~ —E =@& ~

Thus, by using the standard transformation

(2. 5)

II. ONE-ELECTRON THEORY OF OPTICAL CONDUCTIVITY

A. Kubo Formula

According to the general theory of irreversible
processes developed by Kubo, ' the induced current
which is in phase with an oscillating electric field
of frequency co in a cubic or isotropic material is
given by the conductivity scalar
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5((u) = (1/2~) f e'"'dt

we obtain from (2. 5)

o((o) =(a/(o)(1 —e '" )(@/») J d« '"'

=(@/»)"'( —ie@/m) e;(y, , l vip, &, (2. 11)

e~(X = 1, 2) being the polarization of the photon
field of frequency co. The result is given by

t(k(klWlk')*-k'(k' IWlk))

x ~ P,&e, lj.(0)lq, &&(, I j.(0)lt &

jEkt/h + iEk ~t/h

=(h/(o)(1 —e "")J dte '"'

x E ~ P ~&0~ Ii.(0)
I e~ & &O' I j,(t)10~& )

k, k'

= J dt J dhe '"'(j„(0)j„(t+i&)).

This establishes the desired equivalence between
(2. 5) and (2. 1). The function (j„(0)j„(t)) is called
current curren-t correlation function. The pri-
mary advantage of the form in (2. 5) is that it in-
volves only the stationary states of H.

The reduction of the Kubo-Greenwood formula
described in AI and AII was achieved in the frame-
work of the following approximations:

(i) The Hartree-Fock self-consistent-field
method. This consists of determining („and E,
by solving the one-electron Bloch equation

(2. 7)

where H—= T+ V, T being the kinetic-energy oper-
ator ( —8 /2m) V, and V being the periodic lattice
potential representing the effective potential seen

by a single valence electron in the metal.
(ii) First-order perturbation solution of (2.7)

based on the pseudopotential method, i. e. , the
pseudopotential transformation

(2 6)

the summation in I' being over the occupied ion
core states, is applied to (2.7) to obtain

(2. 9)

Wbeing a pseudopotentialao; then IP„& is deter-
mined from this to first order in W by perturba-
tion theory. We find

Ik)+pl ~ &&k ~W & (2 l0)
Tk

where T, =h k /2m and (r Ik) = (1/0' ') e'"' is a
plane wave normalized over the volume 0 of the
metal, and the prime in the summation implies
that the term with k'=k is to be omitted. In this
approximation, we reduce the matrix element that
determines the "oscillator" strength

g„,=(I/»)"'e. ((, I j I( &

pa pa ' na(1 na ')

uk= & for

=0 for k &kz,

(2. 14)

k~ being the Fermi wave number determined by
the density of valence electrons.

Then, on gathering results, we obtain the one-
electron approximation

co(~)=(»/~) ~ g» ~.I'

krak

x,(1 „,) 5(E, , E„S+), (2. 15)

where, for later convenience in generalizing this
result to include many-electron effects, we now
write g». ~ by virtue of (2. 11) and (2. 12) in the
form

g» ~=(@/») e, j(k')G, (k', T,)(k' IWlk)

+(k
I
Wlk'&*Go(k, T„.)(h/2~)'~ e~. j(k) .

(2. 16)

Here, Go(k, T, , ) =1/[T, .—7'„] (2. 17)

defines a free-particle Green's function, and

j(k) =8@k/m (2. 18)

defines the matrix element of the current operator
in the plane-wave state k. This is the key result
which was evaluated numerically in AI, and re-
cently found to be in reasonable agreement with
the optical conductivity of sodium and potassium
measured by Smith. '

B. Second-Order Scattering Method and Graphical Analysis

Quite another way of interpreting the above re
suits, which will be suitable for immediate gen-
eralization to include many-body effects due to
electron-electron interaction, is to treat both the
pseudopotential W and the electromagnetic coupling
A j (A being the vector potential representing the
applied oscillating electric field) as perturbations

(2. 12)

where 8', called an "optical" pseudopotential, is
defined in terms of an ordinary pseudopotential W

by the relation

&k' Wlk& -=&k'I W+(T. -T.)»& (2»)
(iii) Low-temperature approximation, i. e. , the

distribution functions pk are to be evaluated at 0 K
so that



MANY-ELECTRON EFFECTS IN OPTICAL PROPERTIES ~

of the free-electron pseudo-wave-function

~0(~ f) (I/gU») iI » I' &u»I&

(2. 19)

Then the total scattering of the electron i.s given
by the matrix element {Q0». ) Hl lg»&, where P» is
the epact one-electron scattered pseudo-wave-
function determined by the solutions of the equa-
tloll (iII units such ihRt c = 1)

X f dId 8 G0(k& 0& ) (2. 26)

On substituting in (2. 24) and performing the inte-
grations, we obtain

I
Ia& 1 Q d+ Il»~g» )), g

X6(k' —p)6(0&
' —0&» ~ +0&)G0(p, 0& ')

x {p I
W

I
k & 5(0&

' —0&»)

(T+ HI)It&» = i@
8t

Hl= W+A ~ j+(e /2III)A

(2. 20)

(2. 21)

1/2
kl G yt

x{k' Wlk&6(0&» —v». +0&) (2. 2V)

The solution is formally given by the integral
equation

It&»( r, f) = (f „{r, i) + f d x ' dt '
G0( r, f; r ' f ')

xH,(r', f')P„(r', f'), (2. 22)

where G, is the free-electron Green's function or
propagator. (We have omitted electron-electron
IIltel'RctloII foI' simplicity Rt tllis stRge. )

Now, on iterating (2. 22) we obtain

&el IH, le, &
= {~l IH. l~l&

+ f d'I dt f d'r 'df 'p»*. (r, t)H, ( r, f)

x G0( r, f; r ', f ') H, ( r ', f ')II&»0( r ', f ') + ~ ~ ~ ~

(2. 23)

From this expansion, we are to pick terms that
are linear in 8' and A j, which are the lowest-
order contribution to the optical absorption.
Clearly, the first term on the right-hand side of
(2. 23) does not contribute. The lowest-order
contribution from the second term to the optical
absorption comes from the two cross terms, on
substituting {2.21),

g»»i»= f d tdf f d~I' dh II&»i (I', f)

xA(r, f) jG0(r, f; r ', f')

This is identical with (2. 16), but for the fact that
W rather than W is involved in (2. 2V), and the en-
ergy 5 function. The discrepancy is due to the
fact that we have evaluated the matrix elements
defined by (2. 23) between pseudowaves Q», rather
than the true wave functions g». It is clear that
when we make the appropriate modification, then
W in (2. 27) becomes replaced by W in this order.

The erueial point revealed in the present multi-
ple-scattering approach is that the lowest-order
contribution (i. e. , order W) to the optical matrix
element in a metal (Fig. 1) is basically asecond-
oxdex Scattering process, involving the scattering
of an incoming electron by the Coulomb field of
the ions (represented by W), a propagation, and
then scattering by the photon field into a final ex-
cited state. This is a familiar process in quantum
electrodynamics (cf. bremsstrahlung), ' and may
a,ccordingly be represented by the Feynman graph
shown in Fig. 2(a) which corresponds to g»». ».
Similarly, Fig. 2(b) represents the "time-
reversed" or "conjugate" graph corresponding to
g». , The sum of the two graphs gives the low-(e)

est-order contribution to the optical matrix ele-
ment in one-electron approximation. The impor-
tant features of the graphical analysis can be
summed up as rules for calculating the matrix

x W( r ')P»0( r ', f '),
S»» '» = f d ~df f d ~ df 4»' {r~ ~)

X W(r)G, (r„f; r', f')

xA(r', f') jp0»(r', f')

(2.24a)

(2.24b)

In order to see that these two contributions cor-
respond to the two terms appearing in (2. 16), we
normalize A in the form

(0) (b)

A = (k/20&)"'e, e'"'

and introduce the Fourier transform G0(k, e ') of
the Green's function through the form {since G0 is
a function of r ' —r and f ' —f only)

G,(r, f) = (I/n) Z„-s*"'(I/2~)

FIG. 2. Contributions to the optical matrix elements,
g~&'), and g&~&'), in the lowest order according to the multi-
ple scattering analysis [Eq. (2.24}): These are similar
in structure to the Feynman graph for the bremsstrah-
lung (Ref. 21}. Full lines represent electron propaga-
tors, curly lines represent electron-ion interaction
given by the optical pseudopotential, and wavy lines rep-
resent electron-photon interaction.
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(a) (b)

(c)
(a)

(e)

FIG. 3. (a) Incoming (initial) electron of momentum
Nk and energy I'~&, (b) outgoing (final) electron of mo-
mentum hk' and energy 1&~; (c) internal electron line,
with which we associate a factor

—g l
—t 0(p, &u');

1 d~'
0 g

2n'

(d) incoming (initial) photon, contributing a factor (8/
2&)' e&, (e) e].ectron-photon vertexj (k)~(k —p)0(&q —&&
—~); (f) electron-ion vertex (k f W fp} 6(cu& —&&)(note that
a Coulomb field does not conserve momentum).

r

P

(b)

k
k'

element associated with each graph in momentum
space as shown in Fig. 3.

In this formulation, many-body effects now cor-
respond to the familiar processes of quantum
electrodynamics, giving rise to the renormaliza-
tion of various quantities due to electron self-
energy effects, electron-photon vertex correction,
the electron-ion vertex correction and final-state
interactions. These are shown in Figs. 4(a)-4(c)
as modifications of the skeleton graph correspond-
ing to Fig. 2(a). Similar modifications corre-
sponding to Fig. 2(b) have been omitted for brevity.
These, and their implications on the optical con-
ductivity, will be explored in Sec. III.

An aspect of many-body effect which is usually
included in the one-electron approximation in the
framework of time-dependent Hartree-Pock theory
is shown in Fig. 5(a). This is the poLarization of
the electron gas due to the excitation of electron-
hole pairs from the Fermi sea by the ions. Below
the electron plasma frequency, this leads to the
screening of the bare electron-ion pseudopotential
by the electron gas discussed in AII. Above the
plasma frequency, it leads to the plasma reso-
nance considered by Hopfield' and Phillips. ' If
the electron-hole pair excitation is taken into ac-
count to all orders of perturbation theory within

the random-phase approximation, the effect would

be to replace the bare electron-ion vertex in Fig.
5(a) by an effective vertex [represented by the
thick curly electron-ion line in Fig. 5(a)], deter-
mined by the solution of the integral equation shown

in Fig. 5(b). The result in local screening ap-
proximation is

FIG. 4. (a) Modification of optical matrix element due

to electron-electron Coulomb interaction (this gives rise
to electron self-energy effects); (b) corrections at the
electron-ion vertex and at the electron-photon vertex
due to the "bridging" of the initial and final electron
lines by Coulomb interaction; (c) final-state interactions
without and with electron-hole pair excitation.

(a)

FIG. 5. Excitation of electron-hole pairs by the ion,
leading to the screening of the bare electron-ion inter-
action. The net effect is to replace the bare optical
pseudopotential matrix element, shown as a thin curly
line in (b), by an effective screened optical pseudopoten-
tial matrix element [Eq. (2. 28)), shown as a thick curly
line in (a) and in the integral equation (b).
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(k' g «~k) =(k' W~k)/~(k'-k, &o), (2. 28) G,(y, z, ,) =s,"'a, ."'/[z, .—z, ] (3. 5)

where &(q, a&) is the Hartree-Fock dynamic dielec-
tx'ic function with suitably screened exchange in-
teraction, Thus, in the one-electron approxima-
tion, the conductivity is

Let us now turn to the many-body theory. We
have noted above that in addition to the screening
effects due to electron-hole pair excitations, there
are many-body effects due to the electron 86H-en-
ergy, electron-ion, electron-photon vertex cor-
rections, and final-state interactions, as shown
in Figs. 4(a)-4(c). The effects shown in Figs. 4(a)
and 4(b) modify the optical matrix elements and the
energy 6 function entering the definition of o((0) in
the following way: We rewrite Eg. (2. 20) in aform
thRt includes the electron-electl on lntex'Rctlons RDd

V61tex col'x'ectlons Rs

6 a(r+Af+Z, )y, =is „' (3. 1)

(3.2)

defines "unperturbed" Landau quasiparticle states
Q ~, M being the self-energy due to electron-elec-
tron interaction, and

fT, =A,W"'+A A+0(A') (3.3)

18 Inodlf led 1Qtex'Rctlon term» +o Rnd + b61ng the
proper vertex parts fox scalar and vector coupling.
To xecovex the one-electron appxoximation, we
simply set Ao = 1, A = j, and M = O.

On carrying out the scattering analysis described
in sec. IIB and extracting the two terms contri. b-
uting to optical absorption, we see that the optical
matx'ix takes the form

g aa'. =(If/»)"'ee A(k')Go(I '
Za)AO

&&(k'( W"'(k)+A, &k( W"'(k') *

&& G,(k, Z, .)(5/2(u)"' e„A(k) (3.4)

where Go is the quasiparticle Green's function
given approximately by [Ref. 23, p. 257, Eq.
(6-61)]

~0(~)=—~ l~:l'. I'+s.(i-~, )5(&.-T, +~~),@ u, x', )t

(2. 29)

where g~~~.
~ is given by (2. 16) with W' replaced by

W"' in (2. 28). The fact that the pseudopotential
that entex'8 the optlcRl conductivity shouM be
screened mith a dynamic Hartree-Pock dielectric
function mas first pointed out by Hopfield. '3

III. MANY-BODY EFFECTS

A. General Considerations

z~ and z„.being quasipartlcle renormalization fac-
tors and E„being the quasiparticle excitation en-
ergy. Thus, we find the modified result

o(~) = (»/3) & Ig,'„",~'n, (I -n„.)6(Z„-Z, , +e(o)
(3.6)

w hei"e

g~eft, &t/3&1/3(g/2~P/3$. A(k)A (k) (k ~+A I ~)/

[Z„-Z„, ]+z,"'a,",'(e/2~)"' e„A(k')

xA, (k')&k
~

k"'~k'&/[z, -z, ].
This is the result we are after. In principle, it

includes the electron-electron many-body effects,
to Rll ordex'8 ln the Coulomb 1Dtex'Rctlon RQd fix'st
order in 8'"'. In the x'emainder of this section,
we shall evaluate the various parameters in this
expression in suitable approximations and compax'e
the x'esults whex'evel possible %'ith px'evlou8 cRl-
culations and with experiment. The modification of
(3.7) due to the final-state interactions of Fig. 4(c)
mill also be discussed.

B. Proper Vertex Parts

The proper vertex functions A~ and A(k) have
been studied by a number of authors. 26 As first
noted by Heine 8t aE. the factol g& z&~AO
x(k)(k 1

14'"' Ik') in (3.7) represents the appropri-
ate matrix element of the effective pseudopotential
seen by the Landau quasiparticle in a metal, and in
sodium

aqua
= 0.71. %'atabe and Yasuhara ' have

noted, however, that Ao depends not only on the
wave vector k but also on the energy of the state k
and on the frequency v appearing in the dielectric
screening function e(k ' —k, &o) in the definition of
(k~ &"'lk'). They found that in the optical fre-
quency range in sodium A, (k~, ru) = 1.557, while
A, (k~, 0) = 1.19; in other words, the dynamic vertex
part (which is the appropriate one in our case) is
larger than the static vertex part. Thus, for
sodium~

(a„a„.)"'Ao(0, (o) = z, Ao(k~, &u) = 1.11 . (3.8)

This is only ll/o enhancement of the optical matrix
element (3.7) or about 20/g enhancement of the
zeroth-order one-electron conductivity pro(&u) given
by (2. 29). In both Refs. 24 and 25 the estimates
were based on the calculation perfox'med by Rice.

As regards the vector vertex part A(k) in (3.7),
it has been shown by Nozieres [Ref. 23, p. 255,Eg.
(6-51)] to be given exactly by the Bethe-Salpeter
equation

A(k, (o) = I (k) + Z 'f(k(o, 0'ro')
ft tdI



&& G,(k ', ~ ') G,(k ',. &u ') A {k ', &u '), (3. 9)

where j(k) is given by (2. 18) and I(kv, k'&u') is the
irreducible interaction between two quasiparticles.
The result expected from an exact solution of this
equation will not be very different from that given
by the Born approximation, which corresponds to
one of the so-called 5'axd identities"

A(k) = j(k)+Z». f(k, k')5(P, —E» )l(k ), (3. 10

old energy for interband optical transition due to
the use of the quasiparticle excitation energy in
the 5 function appearing in (3.6) rather than T»
(the free-particle energy) appearing in (2. 29). A
reliable estimate, not unlike the one used by Ash-
croft and Wilkins, 27 for M(k, E), shows that the
shift in the interband threshold in alkali metals
has the functional form

where il is the chemical potential and f(k, k') is the
parameter of the Landau-Fermi liquid theory repre-
presenting the phenomenological interaction be-
tween quasiparticles. Physically, A(k) is usually
interpreted as the "current" carried by a quasi-
particle, the second term in (3. 10) being the effect
due to the "back flow" of quasiparticles (Ref. 23,
p. 10, Fig. 2).

It is convenient to introduce a quasiparticle ef-
fective mass m* (due to electron-electron but not
electron-phonon intera, ction) by writing (S. 10) in
the form

A(k) = elk/m* . (3. 11)

%e see therefore that the net effect of the vector
vertex correction [at the electron-photon vertex in
Fig. 4(b)] on cr(&u) is to replace the bare mass m by
m* in the expression for j(k). According to Rice,
rn* in the alkali metals, sodium in particula, r, is
no more than 10-15% larger than the bare mass.
Consequently, in sodium, the enhancement of oo(a&)

due to the seaEay vertex part Ao nearly cancels ex-
actly the effect of the vector vertex part A.

C. Quasiparticle Self-Energy Effect

Another source of modification of |I(&u) due to
electron-electron Coulomb interaction comes from
the quasiparticle energy E~ which appeared as en-
ergy denominator in (3. V) and in the energy 5 func-
tloll 5(E» —E» ~+Cd) 111 (3.6). Now~ 'tile quaslpartl-
cle energy is given by the poles of the quasiparticle
Green's function, i.e., by the equation

to the right (i. e. , higher-frequency region) beyond
(do given by

h~, =(h'/2m)K{K- 2k,) . (S. 16)

Here, K is the magnitude of the (110) reciprocal-
lattice vector, K=2. 28k», and in (3.14) x
= Ik„-Kl/k»-&1, so that 6&, &0. Thus, asisthe
case in all previous calculations, we find no evidence
for the anomalously low threshold found experi-
ment by Mayer and co-workers. ' On the other
hand, this negative result favors the recent re-
sults obtained independently by Smith.

,» Z»" » z h(k k ''
q)

where $(k k q) = Go(k E» )
2m e(q, (o')

(s. 16),

O. Final-State Interactions

Finally, we turn to precesses in which an out-
going electron interacts with an incoming one via
its Coulomb field, with or without electron-hole
pair excitation, as shown in the two graphs of Fig.
4 (c). These graphs represent the so-called final-
state interactions considered by Mahan. The con-
tribution of such processes to the optical matrix
elements of Eq. (3. '7), to all orders in electron-
hole pair excitation, can be evaluated from the
first of the two graphs of Fig. 4 (c), by replacing
the bare Coulomb interaction u(q) by a dynamically
screened interaction It(q)/&(q, &u). We may write
this as an extra term, 6g»»,'„, to be added to (S.7)

E„=T +M(k, E), (3. 12) &&Go(k '+ q, E;+h(u) . (3. 1"/)

where M is the self-energy operator introduced
earlier in Eq. (3. 2), and is given by Rice as

~(k E)--z "' """o'"'q"" (s 13)
» 2mi &(q, E')

In this expression, the unperturbed one-particle
Green's function must be written in the form

G,(k, E) =n, /(E —T„-iI})+(I-n„)/(E—T, +iI}},

where the limit g -0 is to be taken after the energy
integration has been performed, and u(q) = 4' /q~.

It is of interest to discuss the shift in the thresh-

All corrections due to quasiparticle self-energy in
the final-state interaction have been included in
this term.

Two cases of the above general result were dis-
tinquished in Mahan's paper. ' One case arises if
8(q) ls scl'celled by tile static dielectl'lc fllllctloll

c(q, ~ 0), and the other, arises from the poles
of I/&(q, ~): The latter is found to correspond
to processes in which a virtual plasmon is ex-
changed between the initial and final electron
states. Both of these are automatically included
in (3. 16). There is no compelling reason to iso-
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late the two terms in our general expression
(S. 1'7), but it is pertinent to note that, at least in
the static case, the factors in (S.1V) are precisely
those appearing in Mahan's expression for the
conductivity. ' However, whereas our correction
enters the expression for o(&u), through the square
of optical matrix element Ig»'& + 6g&~', l as re-
quired by (S.6), Mahan's correction is included as
a linear term in o(~), which we consider to be in
error.

Thus, in place of Mahan's result, u/F0=1. 45,
we should have typically

o'/o'0 —-(1+a~ x 0. 45) =1.49 for z„=0.'71
F p

in sodium. The two results are not very different.
These results were compared with experiment in
AI and led to significant improvement in the
agreement between theory and experiment.

IV. CONCLUSIONS

In this paper we have reformulated the optical

effects in simple metals in a form in which various
electron-electron interaction effects can be sorted
out. Although no substantially new result was ob-
tained, our analysis has provided a basis for con-
fidence in the present interpretation of optical
properties 1n the alkali metals based on the one-
electron "optical" pseudopotential method of AI,
and many-body effects. Perhaps the most import-
ant contribution of the present work is the interpre-
tation of various previous works in terms of an
inclusive theory. In a subsequent paper, we shall
show how the present approach can be used to re-
solve the apparent difference between the so-called
optical and thermal effective masses.
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