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In the first paper of this series, we located T, for an arbitrary distribution of impurity
bonds P(E2) and, for a particular P(E2) with a narrow width, we found that the specific heat
fails to be analytic at T„although it is infinitely differentiable there. In this paper, we
generalize this conclusion to an arbitrary distribution P(E2).

I. INTRODUCTION

In the first paper of this series, ' we introduced
a two-dimensional Ising model in which the hori-
zontal energies E, are all fixed and all the vertical
bonds E2(j) between the jth row and the (j+1)th
row are fixed, but E,(j) is allowed to depend on j.
Furthermore, the energies Ea(j) are treated as
random variables such that if j oj ', Ez(j) and E2(j')
are independent and are each described by a tem-
perature-independent probability density P(Ez).
For this Ising model, we showed that with proba-
bility 1 the thermodynamic limit of the free energy

where

z, =tanhPE, , i=1, 2 (1. 2)

and the subscript c means T= T, . To justify call-
ing the 7, located from (1.1) a critical tempera-
ture, we would like to show that the specific heat

per site exists and is the same for all Ising models
of the collection specified by P(Ez).

For this random Ising lattice we located T, by
the general formula

0= dEz P(E2) ln zz,
1+zyc

Z $
0
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C~ at H= 0 fails to be an analytic function of T at
T, . In I we made no such statement for a general
distribution function P(Ez). Instead, we considered
the special case

b=(1-z~i)li+z. ."I ' . (2. 3)

Furthermore, in (2. 1) the function v(x) is zero un-

less

p (X) = NX "X" ' for 0 & & & & (1.3)
axo(1) & ax & az+ b', (2. 4)

where

and

=0

A. =Z2

otherwise where

xo(X)= (2a) '{a +b —X+[(a +b —X) +4Xa ] Vz]

(2. 5)

with

P(E,)dE, = p, (X)dX,

and showed that the terms in CH o that are of order
1 as N- ~ are analytic except at the T, def ined by
(1.1). Moreover, we showed that at this T, these
terms in C~ o, even though they fail to be analytic,
are infinitely differentiable functions of the real
variable T.

The purpose of this paper is to generalize the
conclusion of I from the special case (1.3) to the
general case of an arbitrary probability distribution
P(Ez). More specifically, we show that for any
P(E,), C„o fails to be an analytic function of T at
the T, defined by (1.1), and that at T, the form of
the singularity is the same as that found in I for the
special case (1.3) unless P(E,) =5(E, —Ez). We al-
so show that if

P(E2) c 0 only if Ez & E, &Ezo,

x,(~)-'= (2a~)-'{-(a'+b'- ~)

+[(a +b —X) +4Xa ] vg, (2. 6}

and, if (2. 4) holds (and a & 0), v(x) satisfies the in-

tegral equation

Q2 minHx -a)/(a + b2-ax), (a + b )/a]
v(x) =

( )z
dx'

x a

a +b —axx ' (*')V, (*' x —a (2. 7)

In this paper we show that for any P(Ez), E„ fails
to be analytic at T= T, , where T, is given by (1.1).
By definition, P(Ez) is independent of T. There-
fore, the first three terms in (2. 1) are analytic
functions of T for real T. To study the last term
in (2. 1), it is convenient to break the 8 integration
into two parts as shown in Eqs. (2. 8) and (2. 9):

then C~ o is an analytic function of T if T is low
enough so that

—m& 8&a &0. (2. 3)

(1 —z )/(1+z ) «'
or high enough so that

", (1-,)/(1",).

(1.7a)

(1.7b) g &0 (2. 9)

In the case of Eq. (2. 8) the resulting expression
will be shown to be an analytic function of T when
T is real and non-negative,

However, we have not been able to prove the stron-
ger statement that, if T is such that (1.7) does not
hold, then C~ o fails to be analytic only at T,.

II. FORMULATION OF PROBLEM

In I we showed that the free energy of the random
lattice is given by

E„=—P [ln(coshPE, ) + f dEz P(Ez) ln coshP E,

This region will be shown to give rise to an infinite-
ly differentiable singularity at T, of precisely the
same nature as that found in I.

III. —z (0( e( 0

We consider the last term in (2. 1) with 8 restrict-
ed by (2. 8):

G(T) = f' d8 f"dx v(x)

+(4v) 'f„' d8»II+z "'I'+(») ' f', «
x f dxv(x) f dE2 P(Ez) ln(a +b +az2x ')],

(2. 1)
where

x f dE2 P(E2) I (na +zbza+zz/)x, (3. la)

which, by (2. 22) of I, may be reexpressed as

G(T)= f d8 f dx v(x) f dEz P(Ez)ln(zz+ax) .

(3. 1b)

a = - 2 z, sin8
I
I.z, e"

I

'

and

(2. 2) Unfortunately, (2. 1) is valid only for real T and

hence is not particularly suitable for investigating
analyticity properties as a function of T. There-
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fore, to proceed further, we generalize (2. 1) and

(2. 7) to the case that T is complex and lies in some
suitable open set containing the positive real Taxis.

In I we saw that

P ln 2 cosh Ey + dE2P Ea ln cosh Ep

two-dimensional integral over d x. Therefore, G

will be an analytic function of T for T real if

C(T}= f de f d'x v(x) f" d~, I (Z, )

x In(a'+ I)'+az', x ')

+((rr) 'f de in(s ~ g,e")'+(2m) '

(0 9(( 1 C (8)de bm g ln
n=Q ((

(s. 2)

L„,)~ (8) a o z, (n)' D„(e)

with
(S. Sa)

where C„(8) is determined from the recursion rela-
tion

C„,((8) a +b a 1 0 C (8)

= J' de 1 d'x v(x) f" dZ, I (Z, ) ln(z,'+m)

(S.9)

is an analytic function of T for T in an open set in-
cluding the positive real T axis.

When T is real, v(x) vanishes unless (2. 4) holds,
When T is complex, however, (((x) does not have
the property that it is zero unless x is confined to
some suitable one-dimensional subset of the x pl.ane
On the other hand, v(x) does have the property that,
when a W 0, it vanishes unless x is in some bounded

region 8 of the complex x pj.ane.
To determine this region we note that the homo-

graphic transformation appearing in (S.6),

c,(e)=i, a,(e)=0.
Furthermore,

9K 1 C (8)
Ilm K Z In

C (8)

= Ilm K Q In 0 +I) +
((X(n)D„

3R M ()o fi Q Cn
(s. 4)

x = [(a'+ h')x' +az', ]/(ax' +z',),
may be xewritten as

x xQ Q x xQ
p + I -1 8x+xQ 83 x + xQ 83

where

z,'(x(, —a)
x()(z, +axo)

(s. io)

(3. iS)

x„=c„/D„, (s. 6)

then x„will be a complex variable, However,
once we make this generalization to complex x„
the argument of I goes through and we have

In this analysis, T may be made complex. The only
change is that now a, h, and zz(n) will be complex
and hence, in general, C„and D„will be complex.
Therefore, if we define x„as in I by

gz+ I 2+zz [(g2 I 2 z2)z 4szz8] )/2

&z+ hz+zz+ [(&z hz zz)z 4ozzz] jfz

a&e &0, (3. 13)

then E2 is real, and T is sufficiently close to the
real axis

The points x,(z,') and —z', x, '(z', ) are the fixed points
of the transformation (3. 10). Furthermore, if

/a /'(I, {s.14)

x P(E,)v(x'), (s. 6)

6'(x -x ) = 6[Its(x - x)]6[1m(x -x)] (s. I)

d x=d BexdImx. (s. 6)

In (3.6) the d x' integration is over the entire re-
gion of the x' plane where v(x') does not vanish.
In terms of v(x) defined by (3.6) we find that for
complex T, F„ is given by (2. 1), except that the
one-dimensional integral over dx is replaced by the

and it is possible to separate the curves x,(z', ) and

zzx()'(zz) by a circle C that encloses xo(zz) but not

zzx()'(zz). As long as (3. 13}is satisfied, it is pos-
sible to find an open set 8 which contains the real
positive T axis such that any transformation of the
type (S. 10) will transform the circle C into its in-
terior. a 8 clearly is a function of Z and of C. Call.
the interior of such a separating circle A. Then,
since ()(x) satisfies (3.6), we conclude that if a 0 0
and TQS~

v(x)=0 if xQ R .
The region R so defined is clearly not the smallest
region in which (S. 15) holds, but for the present
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purposes it is sufficient.
For each Zw 0 the set 8 is bounded. Therefore,

we note with Furstenberg' that the solution of (3. 6)
may be written as

v(x) =lim —Z K, (x, y)v'(y) d'y,
4'= j.

(3. 16)

where v'(y) is some arbitrary function

0
Qg +83

(3. 1V)

K, (x, y) = f d'y-K, ,(x,y)K, {y,3), (3. 16)

and, since v(x) and K,(x, y) may contain 5 functions,
equality in (3. 16) is meant in the sense that for a
class of smooth test functions

d'x fn (x)v(x) =lim — d'x
R n~~

d'y fn(x) Q K„(x,y)v'(y) .
R 0=1

(3. 19)

With this information on v(x), we may investigate
the analyticity of G defined by (3.9). For G to be
analytic it is sufficient to prove that if —z «8& e & 0
and Tc S, then

—7& 8 & —7T+E' (3.aS)

where x~ is the point that x transforms into when
acted on by k transformations of the type (3. 10)
associated with E',» Ea+&. Now v'(x) is an arbi-
trary function and hence may be chosen to be a
function for which (3. 17) is a continuous function of
T and 8 and an analytic function of T for each 8
when (3. 23) holds and T&= S. Furthermore,

J dEzP(Ez)ln(a + bzyazzzx ')

is a function of x whose only singularities lie on the
curve

x= —[a/(a'+ b')]z,'(0&z, &1)

and at the (possibly isolated) point x = 0. However,
if a 0 0 and TF S, , this curve does not intersect the
set A. Therefore, we conclude that when (3. 21)
holds and T&= 8, , Eq. {3.23) is a continuous function
of 8 and T and an analytic function of T for each 8.
But this argument is independent of k. Therefore,
g(8, T) possesses the same properties just shown
to hold for (3. 23) and henceJ', de g(e, T)

is an analytic function of T.
To complete the proof that G(T) is an analytic

function of T for Tc S, we must consider

g(8, T) = J„d'x v(x)

x f dEz P(Ez) ln(a'+b'+«z, 'x ')
(3. 20)

«(8)-0 and f&(8)-(1+z,)/(1-z, ) .
Therefore for all positive E2

x,(~)- (f '- &&)/s,

(3. 26)

(3. 2V)

is a continuous function of 8 and T together and an
analytic function of T for each 8.

We first consider a W 0 so that

and the previous argument will break down. How-

ever, if we rescale variables by defining

(3. 26)

—m & —w+e' & 8 & a&0.
Then from (3. 19) we may write

(3. 21)

v) (x&)d'x) --v(x)dzx, (3. 29)

g(8, T) =lim — d x d'y Z K&, (x, y)v'(y)
f1~ CO B 0=1

we find

J
'" de J dx v(x) J dE, in(X+«x) = f,

dEz I' E2 ln a + 5 +m'ax '

(3. 22)

)& f dx& v&(x&) J dEz P(Ez) ln[X+x&]

(3.30)

Consider the 4th term in the sum

J d x j d y J"dEz P{Ez) 1n(a + f& +«zzx ) where v&(x&) satisfies the equation

)&K„(x,y)v'(y) = J d'x J dE,"'dE,"' ~ ~ dE,"'

&& P{E&&&)P(E&z&). . .P(E &&1&)

)& f" dE,P(E, )ln(«'+ f '+sz,'x,-')v'(x), (3.aa)
0

V)(x&)= J d x& J dEz l5

xp +zg

(3.31)
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The transfor mation

x& = [(a'+ bz)xi +a'z', ]/(x& +zoo), (S. 32)

and

v((x() d'x( = v(x) d'x (4. sb)

which appears in (3.31) may be rewritten as

X& —QX0 2 X& —QX0
-1 2 + 1 -1 2

X& +gX0Z2 X&+aX0 Z2
(S.33)

When (3. 25) holds, we conclude from (3. 27) that the
locus of fixed points axo(z', ) and az,'x, '(z', ) may be
separated by a circle that encloses all points of the
curve axp(zp) and this circle encloses a bounded
region. Furthermore, because of (S. 27), we see
that (3. 14) continues to hold for T c S even when
8 = —m. Therefore, the previous argument may be
carried through to show that the region R& outside
of which v&(x&) vanishes is bounded when (3. 25)
holds and does not intersect the line

2
X& g2 (s. s4}

Hence if T c S, K&I. (3. 30) is a continuous function
of 8 and T and an analytic function of T for fixed 8.
Thus we have established that G (and hence G) is an
analytic function of T for T real and non-negative.

IV. e(0 & 0

When 8-0, the arguments of Sec. III fail be-
cause, even if we make a scale change of variables
like x& = ax, it is not possib1. e to separate the curves
xp(zz) and zoxp (zo) by a circle of finite radius that
intersects neither curve when 8 = 0. However,
there are types of restrictions that may be placed
on P(E,) which will allow the previous argument to
be made for 8=0. In particular, there are two
cases for which we may therefore easily show that
the free energy is an analytic function of T:

Then the contribution to E„ from e & 8 & 0 is

f d8 f d x( v((x()

x f" dE, P(E,) in(a'+b'+z', /x, ) (4. 4)

C„„(0) b (0) 0 C„(0)

D„„(0) 0 z', (n) D„(0) (4. 5)

Consequently, as noted in I, the associated station-
ary distributions for real T are either

v(x) = 5(x) (4. 6a)

when R& is the region in which v&(x&) is nonzero.
For T real, R& is the segment of the real axis

xo(Ao)/a & x« xo(l'o)/a .

For T complex, even for 8-0, the curve xp(X)/a
for E2 & E2 may be separated from the curve
zoxo'(A)/a by a circle of finite radius whichcontains
x(X)/a. Therefore, we can apply the argument of
Sec, III to conclude that if T is small enough so
that (4. lb) holds, then F„ is an analytic function of
T for T real and positive.

When (4. 1) does not hold, this general argument
cannot be made for the region 8- 0, and hence it is
possible that this region may give a nonanalytic
contribution to E„.

When 8=0, the recursion relation (S. 3) degener-
ates to

p, (X)w 0 only if Yp & X & Xp & b '(0) (4. la)
or

v(x) = (1/x')5(1/x) . (4. 6b)

p (X) c 0 only if b'(0) & i%.'p & A. & A p . (4. lb)

In the first case, if all Eo(j) were increased to the
maximum allowed value E2, the lattice would still
be above T, . In the second case, if all Eo(j) were
decreased to the minimum allowed value E2, the
lattice would still be below T, .

From (3. 7) of I we see that for real T, v(x) is
nonzero only if

xo(A p) & x &xp(Ao) (4. 2)

If (4. la) holds, then xp(Ap)- ~ as 8- 0. Therefore,
as in the case 8 -—m, we may define x& = ax and the
argument of Sec. III may be carried through word
for word. Therefore if (4. la) holds, F„ is an ana-
lytic function of T for T real and positive.

Similarly, if (4. lb) holds, then xp(Xo) - 0 as 8- 0.
Accordingly, we define

x( --x/a (4. Sa)

(4. 7b)

Accordingly, our strategy will be to find an approx-
imate expression for v(x) which reduces to (4. 6)
for 8=0. In studying such approximations we re-
strict T to be real and consider the analyticity
properties of E„, only after an explicit approxima-
tion to the nonanalytic part is obtained. This pro-
cedure wi1.1 allow us to demonstrate that E„ is not
analytic at T, . Furthermore, as in I, it will also
provide us with an approximation to the singularity
at T, . However, it is not possible to rigorously
discuss the sense in which this leading approxima-

The first expression gives the minimum contribu-
tion to the free energy if

f dE, P(E,) in(z,'/b') & 1, (4. 7a)
0

while the second expression gives the minimum con-
tribution to the free energy if

f dEo P(Eo) ln(zoo/bo) & 1 .
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tion to the singularity at T, is valid.
We first study the equation obtained from (2. t)

by setting a = 0 while keeping x fixed and of order
1. Then, if we call the resulting function vo(x), we
have

where N is large. Then

f dt p(t) ln(t/b ) = ln(XO/b ) —1/N
0

and

dt p, (t)[ln(t/b')] = [ln(A. /b')]

(4. 19a)

vo(x) =b'x ' dx' vo(x')x' p, x'—
0

(4. 8)
—2N '[1n(XO/b ) —1/N] . (4. 19b)

This equation has several solutions. First of all,
it has the solutions given by (4. 6). However, for
our purposes it is necessary to realize that (4. 8)
has two other solutions, both of the form

v, (x)=cx "',
where 5 satisfies

(4. 9)

1 f=dt (t/b')' p, (t) . (4. 10)

Clearly 0 = 0 satisfies (4. 10), since by definition

f (5) = f dt (t/ 'b)' p, (t) .

Since (4. 1) is assumed not to hold, it is clear that
unless in (4. 1) we let

(4. 12)

X =b or A.
' =b (4. iS)

f,
' dt p(t)=1. (4. ii)

However, since this solution is independent of T,
it is useless for our purposes.

To see that (4. 10) has one more solution consider
the function

Therefore, T = T, when

1n(XO/b ) =N ', (4. 20)

and to leading order in T- T, and N, 5 is given by

5 - —2N a[in(b /Xo) + N '] - 2N (b Xo —1 +N ') .

(4. 2i)

Combining (4. 21) with (4. 18) of I, we see that to
leading order the 5 of this paper and the 5 of I are
identical.

The function vo(x) is not integrable over the range
0 to ~ and thus is not by itself a stationary distri-
bution. However, when T & T, , vo(x) fails to be in-
tegrable only at x=0. Therefore, for T & T, , vo(x)
will in some sense join on to the 5 function (4. 6a).
Similarly, when T & T, , vo(x) fails to be integrable
only at x= ~ and hence will in some sense join on
to the 5 function (4. 6b).

To make these last remarks precise, we first
notice that (2. 7) reduces to (4. 8) not only for 8- 0
and x = 0(1) but also for

then as 5- + ~

(4. 14)

ai. & x & e'/a,

where

(4. 22)

2 f,' dt }j.(t) ln(t/b')
fo' dt p, (t)[ln(t/b )]

(4. 17)

As an example, consider the case studied in I:

[The ca,ses where (4. 13) hold may be studied by
considering the 5-+ ~ limit of our final expres-
sion. ] Furthermore,

f "(6)= f dt [ln(t/b~)]2(t/b )'p. (t) & 0 . (4. 16)

Combining (4. 14) and (4. 15) and the fact that f(0)
= 1, we see that if f '(0) w 0, there are two and only
two values of 6 which satisfy (4. 10). However, if

f dt ln(t/b )p(t) = f '(0) = 0, (4. 16)
0

the fixed solution at 5 = 0 and the moving solution
coincide.

Equation (4. 16) is precisely Eq. (1.1), which de-
termines T, . Near T, when 5-0 we may expand
(4. 10) to find that to leading order, 5 is related to
T Tc by

c'«1 and L»1. (4. 28)

v( (x()dx( ——v(x)dx

and let

limv&(x&)= v&(x&) as a 0,

we find that

(4. 24)

(4. 26)

ba x& g/y2

v&(x&)= i ~a dx&x& v&(x&)
(x& —1/ (1 b 2)-l

(4. 26)

for

Therefore, to consider in detail how vo(x) joins on
to (4. 6a) when T& T, , we consider the region where
a - 0 and x - 0 in such a fashion that x& is fixed.
Then if we define

q(i) =m,"i" ',

=0

0 & A. &A.0

otherwise (4. 18)

1/(1 —b') & x« ~ .

As x& - ~, Eq. (4. 26) is approximated as

(4. 2V)
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V( (X() 2 dx( X( V( (X()p X(
sx& x&

1
&(p, (l(.)-Jt dx( v((x() lnx(+ dX In& )1(l() .

0

(4. ss)

1
= —

2 dttv& 2 pt . 4 28b2

But E is arbitrarily small. Therefore, as x& - ~,

In the first integral replace the variable X by

q=x, (b'+~ x, ')/-/(,

to obtain

(4. s4)

v, (x()-const xvb(x&) =C&(5)x "' . (4. 29)

(4. 30a)

This is integrable at large x& for T& T, . If T& 7,
(5 &0), we may normalize v&(x&) by

b dx v&(x)=1 .

&0 (q-1)/ b2 b2
dq dx(.---'----, V(x()

~I/(I-b &

b2 (0
x lnq p dx& v& (x& ) 111x&

q —1
1/(1-b2)

This integral will exist because of (4. 29). However
we will also need to consider v& (x&) when T & T, .
Therefore, at least if 5 & 1, it is convenient to nor-
malize v&(x&) so that

1

+ & p, k ink.
0

(4. s5)

I/(I b21 dx([v((x() —C((5)x("]—5 'C((5)(1 —b') '=1 .

(4. sob)

Then we may use (4. 26) to show that the first two

integrals cancel. Therefore (4. 32) reduces to

fb d8 f dl( II(X) Ink = —e J' dX p, (l() Ink, (4. 36)

v(x) - (I/a)v( (x/a) . (4. sl)

Clearly, when 5 & 0, (4. 30b) reduces to (4. 30a).
From (4. 25), (4. 29), and (4. 30a) we conclude that

when T & T„a- 0 and x/a = O(1)

an expression which is clearly an analytic function
of T for T real and non-negative.

A similar argument may be used when T & T, .
Then if we consider a- 0 and x- ~ such that x& is
fixed, let

We may use (4. 31) in (2. 1) to study the contribu-
tion to I'„ from the region e'&8&0 when T& T, and
(4. 11) does not hold. This gives

v& (x& ) dx& = v(x) dx

and define

lim v& (x& ) = v& (x& ) as 8 - 0 .

(4. s7)

(4. 38)
((224 b2) 1 &a

d8 dxv(x) d& ln (I'+b + —
1/, (y)

I;. xo(l) J

dj9 dxa 'v&—

We find that (2. 7) becomes

b2 min(x& /b -x) b b2]

V&(X& )= dX& X& V& (X& )
0

(4. 39)

&( dkln a+b + —11(l(.)
1 Xa

x
0 As x&-0, this approaches

0 (0 1
dx( v(x() dain(b'+Xx(I)II(X) .

1/(1- b2) O (4. s2)

This last integral is easily evaluated using the pro-
cedure of Sec. 2 of I. Indeed, because of (4. 29),

J
dx& v& x& dkln b2+Xx&' p, X

1/(1- b2) 0

dx, , (x, ) dXl x, '
)

b'+ Xx,-'

1/(1- b ) 0

v& (x& ) - const x vb(x&) = C& (5)x& (4. 41)

which is integrable at x& =0 if T & T, . Therefore,
if T & T, , a- 0, and xa = O(l),

V(x)-av& (xa), (4. 42)

where, if T& T, (5 & 0), we normalize v&(x&) by the

v&(x& ) 2 (fx& x& v&(x& ) II x&x) x&

(4. 4o)

This is the same equation as (4. 8). Therefore, as
x& 0,
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requirement

f dx) P) (x) ) =1 (4. 43a)

and if 5& —1, we use the condition

f dx) [v) (x)) —C)(5)x '
t +5 'C)(5)b =1,

(4. 43b)

which reduces to (4. 43a) if 5 & 0. Approximation
(4. 42) gives a contribution to F„ from e & 8 & 0 of

-1+6

v(x)-const&& (,/ ), ( ), (4. 48)

This is normalized to some fixed constant. As
5-0, it becomes

the range x = O(1), where v(x) is given by const x x '.
When x-a, v(x) behaves as v&(x/a), which is inte-
grable at x-0. Similarly, when x-1/a, v(x) be-
haves as v& (ax), which is integrable as x- ~.
Therefore, when & a & x & e'/a and 5-0, we may ap-
proximate

fo d8 f '
dx v(x) f d](. p(]].) ln(A+ax) x'

v(x)-const x (4. 47)

—f' d8 f' dx) v, (x))
)8 0

x f d](. p(l() in(]]. +x) . (4. 44)

Because (4. 43a) holds if T & T, , we may proceed a.
we did for (4. 33) to evaluate this expression as

f d8 lnb = —e lnb', (4. 45)

which, again, is clearly an analytic function of T
for T real and non-negative.

It remains for us to investigate the case T= T, .
The previous arguments fail because if T= T, , then
5 = 0 and hence P& (x&) fails to be integrable at x&
-0. In this case, when 8-0, the dominant contri-
bution to the normalization factor is coming from

For our purposes it is useful to have an approxi-
mate expression for v(x) which, as a-0, reduces
to (4. 46) if x = O(1) and 5- 0, while it reduces to
v& if T& T, , x=O(a) and to P& if T& T, and x
=O(a '). Such an approximation is

( )
C) (5)a' 'v&(x/a)
C, (5)a-' + C,(5)a'

C& (5)a "'v) (xa)
C, (5)a-'+ C,(5)a' if x& 1. (4. 48)

Clearly, as a-0, if 5 &0 and x =0(a), this reduces
to a '

v& (x&), while if 5 & 0 and x =O(a), it reduces
to av&(x&). Furthermore, as a-0, v(x) is normal-
ized to 1 since

a2 @ lt2=, (o) -', (o)" '*"'*" ().-, (). fxp (1)/a a +C& 5a a

a-1
=[C,(5) ',C, I5) '] ' C, (5) ' d*,[,(*,) —C, (5)*-"]~ 5-'C, (5)[a' —[x (1)a ']'])

xp(1) /a

a +&2
C (5)a '( d* Ia, (x ) —C (5)x,"'] 5 'C (ll)[(a' ~ 5')'- ']

a
(4. 49)

which, using (4. 30b) and (4. 43b), reduces to1+O(a)
(at least if —1 & 5 & 1). Finally, we see from (4. 30b)
that x '/(2lna) (4. 51)

I

Therefore, for 5=0, a-0, and x=0(1), (4. 48) re-
duces to

lim 5 'C& (5) = —1 as 5- 0

and from (4. 43b) that

limb 'C& (5) =1 as 5-0 .

(4. 50a)

(4. 50b)
l

as desired.
We now may study the analyticity properties of

F„at T= T, by using (4. 48) in (2. 1) when 8-0, to
obtain

j d8 [C&(5)a '+ C&(5)a'j '[j, dxc&(5)a '"P&(x/a) f dl). tu(X)ln(a2+ b~+ah/x)
0

+ j dxc&(5)a 'P&(xa) j dx p(A. )ln(a + b + aX/x)]. (4. 52)
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Consider first —1 & 5 &0. Then (4. 52) is conveniently rewritten as

de[C&(5)a '+C&(5)a ] '(J dxC&(5)a 'v&(x/a) J dXV, (A.)ln(a +b +aX/x)
0

+ J dx[C&(5}a '
v&(xa) —C&(5)a v&(x/a)] J dX g(A) ln(a + b + aA/x)

—J'
z z, dxC&(5)a v&(x/a) J d). p, ().)ln(a +b +a)./x)]. (4. 53)

Therefore, using (4. 29), we find [correct to terms of O(a)] that the integrand of the 9 integral in (4. 53) is

[C&(5)a + C&(5)a ] {C&(5)a f 2 dx& v&(x&) J did, (A)ln(b + X/x)

+ C&(5)a ' lnba [ J dx&( v&(x&) —C&(5)x '")+ 5 'C&(5)b '] ], (4. 54)

C&(5)a Inb~+ C&(5)a f~ dX p(X) ink

C&(5)a '+ C&(5)a'
(4. 55}

25 J'de (1 —6")-'. (4. 58)

I

which, using (4. 32), (4. 36), and (4. 43b), reduces to is proportional to 5 and from (4. 50) that C&(5)/
C&(5)--1. Therefore the dominant singularity in
(4. 57) at 5 = 0 is the same as that in

A similar procedure may be used when 0 & 6 & 1 to
show that the integrand of the 8 integration of
(4. 52) is also given by (4. 55). Therefore we con-
clude that when 5-0, the most singular part of F„
is given by

But this is precisely the integral [(4.44) of I] which
gave the leading singularity in E„for the special
case (1.3). Accordingly, we conclude, as in I,
that at 5= 0 the most singular part of F„has the
formal expansion

f C,(5)a ' lnb~+ C,
C (5)a + C (5)a

—'5+ Q B 5 "(2n)
n=0

(4. 59)

(4. 56)

It remains to make the singularity in (4. 56) at
6 =0 explicit. We consider only 5 ~ 0, since the case
6 & 0 is treated in an identical manner. To do this
we first rewrite (4. 56) as

pl c,(5)
dA p(X)ln —

z I de 1+ ab', c,(5)

(4. 57)

But near 5= 0 we see from (4. 17) that

J,
'

d~ q(X) In(~/b')

where B~„are the Bernoulli numbers. Therefore,
for any distribution function P(E~) except 5(E, —Ez),
the most singular part of F„is an infinitely differ-
entiable function of the real variable T even at T
=T,. However, (4. 59) diverges for all 5x0, and
hence we conclude that for any P(E2), E„fails to
be an analytic function of T at T = T„where T, is
given by (1.1).
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