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tion for the crystal. The explanation is hidden in the
complex compromises made by each of the six R sites,
none of which generally has its moment fully aligned,
even when the sum of the moments is aligned.

31R. Alben, Phys. Rev. Letters 24, 68 (1970); another
mention of this kind of point occurs in Ref. 5, but in
the case treated there, the mean-field approach is not
as well justified as for YbIG.

%Near (H,, T,) Xp behaves as ¢ !/% for all paths ex-
cept the coexistence curve (g=0). Along ¢=0, Xp be-
haves as p'/%, 1t is traditional to denote by 6 the ex-
ponent which gives the behavior of the forcing variable
as a function of the state variable: ¢ =aX®. The value
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of 6 is 3 for this classical critical point. The variation

of X along the coexistence curve is given by the exponent
B and here B=%, again the classical value.

3For the high temperature here the R-sublattice model
of anisotropy is difficult to justify since R is almost de-
magnetized. Thus, unlike in previous treatments, we
here use the F-sublattice model.

34However, since there is a change in symmetry the
“outer ” phase boundary cannot end, it continues as a
first-order line. The point F exhibits behavior similar
to a second-order line (point D) and not like a liquid-
vapor-like point (B).
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The effect on the nuclear spin-lattice relaxation of the anomalous temperature dependence of
generalized unstable lattice modes near the ferroelectric transition is investigated both theo-
retically and experimentally. Expressions for the relaxation rate near T, are derived for typ-

ical cases of critical dynamics of ferroelectric crystals.

For the case of undamped soft-pho-

non modes it is shown that, on the basis of a Raman two-phonon relaxation mechanism, the
relaxation rate should behave near the transition temperature as (T'— 7)™, where » depends on
the shape of the dispersion curve of the soft branch. On the other hand, for the case of damped-
oscillatory modes or diffusive modes, the relaxation rate, derived by using the classical ap-
proach for the direct relaxation process, should behave as (7 — TO)‘“2 or as In(T — T) if the an-

isotropic character of the dipolar interaction is taken into account.

An experimental investi-

gation of the nuclear spin-lattice relaxation rate in NaNO, single crystal is presented. The
resonance spectrum and the recovery law under different conditions are discussed. The re-
sults of the relaxation rate as a function of temperature, angular orientation, and resonance
frequency indicate the existence of a damped generalized soft mode or critical diffusive mode.
The available data on the shape of the relaxation-rate peak tends to favor the logarithmic sin-

gularity, in agreement with the prediction of an anisotropic interaction.

From the analysis of

the data, it is inferred that the soft mode can be identified as the flipping motion along the fer-
roelectric ¢ axis of the electric dipoles associated with the NO; group, which seem to be mainly

correlated along the a axis.
new low-temperature phase transition.

I. INTRODUCTION

Nuclear magnetic resonance (NMR) techniques
have been widely employed in order to gain infor-
mation on the phase transition and on the proper-
ties of ferroelectric crystals,! Information on
structural or symmetry changes occurring at the
phase transition can be obtained from the splitting
and/or shift of the NMR spectrum associated with
the static quadrupole interaction with the lattice.
Furthermore from the temperature dependence of
the quadrupole interaction one can deduce the
temperature dependence of the spontaneous polar-
ization. The temperature dependence of the

The relaxation measurements support the recent suggestion for a

jumping frequency of atoms between sites with
different electric-field gradients (efg) can be ev-
idenced by the collapsing of the corresponding
resonance lines, Finally, measurements of spin-
lattice relaxation time governed by magnetic di-
polar interactions and quadrupole interactions
have been performed, mainly in hydrogen-bonded
ferroelectrics, in order to study the proton or
deuteron motion both in the paraelectric and fer-
roelectric phases.

Inordinary diamagnetic nonconducting ferroelec-
trics the main source of relaxation for nuclei with
I>3 is the coupling between the nuclear-spin sys-
tem and the crystal lattice through the interaction
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of the nuclear-quadrupole moment with the efg in
the crystal; the coupling is made time dependent
by the different characteristic motions in the crys-
tal. Therefore, measurements of quadrupole
relaxation provide information about the dynami-
cal properties of the crystal, whose importance

in the understanding of the microscopic mecha-
nism of the ferroelectric transition has been em-
phasized in recent years. In fact, Anderson® and
Cochran® explained the transition in displacive
ferroelectrics in terms of a lattice instability
arising from the anomalous frequency lowering of
a long-wavelength transverse-optical mode near
the Curie point, Also in order-disorder hydro-
gen-bonded ferroelectrics the transition to the
polar state has been described by Brout, Miiller,
and Thomas, * in the framework of a quasi-spin-
wave formalism,® on the basis of low-lying col-
lective excitations whose frequency exhibits a crit-
ical behavior. Finallyinmixed-type ferroelectric
crystals, where a coupling between the tunneling
or flipping motion of the ions and a phonon mode is
taken into account, Kobayashi® has shown that the
ferroelectric transition is driven by the anoma-
lous temperature behavior of the frequency of a
coupled quasi-spin-wave phonon mode.

Recently a study of quadrupole relaxation in a
ferroelectric crystal was performed by one of us.”
Measurements in powdered sodium nitrite showed a
peak in the relaxation rate near the transition
temperature. The results were interpreted semi-
quantitatively in terms of quadrupole relaxation
induced by lattice vibrations through a Raman two-
phonon mechanism and it was speculated that the
ferroelectric contribution, i.e., the anomalous
increase in the relaxation rate near the transi-
tion, is associated with the frequency lowering of
a soft ferroelectric mode. Subsequently Blinc and
Zumer® observed an analogous ferroelectric con-
tribution in the nuclear magnetic spin-phonon re-
laxation of P3! in KH,PO,. These authors inter-
preted the ferroelectric contribution by relating,
in the classical spectral-density approach, the
magnetic relaxation to the long-wavelength elec-
trical-polarization fluctuations., The spectral
density is obtained by the fluctuation-dissipation
theorem on the assumption that the generalized
dielectric susceptibility is the one pertaining to
a system of single-damped harmonic oscillators.
However Blinc and Zumer overestimated the fer-
roelectric contribution by considering only the
long-wavelength (g = 0) polarization fluctuations.
The above theoretical approach has been recently
employed by us® in order to describe the quadru-
pole ferroelectric contribution from strongly
damped phonon modes and from the statistical flip-
‘ping motion of interacting electric dipoles by

taking into account, in an approximate way, also
the contribution coming from modes with ¢ #0.
An anomaly of the nuclear spin-lattice relaxation
rate near the critical temperature was also ob-
served by us!® in Rochelle Salt and sodium-tung-
sten bronzes (Na,WO,).

In this paper we present an elaboration of the
theory of the quadrupole relaxation in ferroelec-
tric crystals and an experimental investigation in
single-crystal sodium nitrite. A theoretical treat-
ment, similar to the one which will be given in
Sec. IIB, will be presented also by Blinc et al.**
in connection with measurements of magnetic re-
laxation in dicalcium strontium propionate.

In Sec. II the outlines of the theory of nuclear
relaxation by quadrupole interaction in a ferroelec-
tric crystal are given; in Sec. IIA an expression
of the relaxation rates for a Raman second-order
two-phonon mechanism is derived for two typical
dispersion curves for the ferroelectric branch; in
Sec. IIB the relaxation transition probabilities are
calculated in the framework of the classical lattice
approach where the spectral density is obtained by
relating the efg fluctuations to the polarization
fluctuations and then, by making use of the fluctu-
ation-dissipation theorem, to the generalized di-
electric susceptibility., All ¢ components of the
polarization are taken into account by assuming an
approximate expression for the ¢ dependence of the
generalized susceptibility both for the cases of
isotropic and anisotropic interaction. The exper-
imental details and the methods of analysis of the
raw experimental data are presented in Sec. IIIL
This section has been developed to some length
because the measurements of quadrupole relaxa-
tion in noncubic crystals are not straightforward.
The experimental results and their discussion
are presented in Sec, IV, while in Sec. V the con-
clusions are summarized,

II. THEORY

In general two approaches can be used to de-
scribe the quadrupole spin-lattice relaxation; one
is based on a quantum description of the lattice
while the other is based on a classical lattice. The
first approach, employing Van Kranendonk’s'?
Raman second-order two-phonon process, is used
in Sec. ITA, It appears suitable to derive the fer-
roelectric contribution to the relaxation rate in a
crystal where the ferroelectric transition is re-
lated to the existence of soft underdamped phonon-
lattice modes. However, in order-disorder or
mixed-type ferroelectric crystals, where in gen-
eral a more complex dynamics triggers the phase
transition, a quantization of the lattice cannot be
easily given and the classical lattice approach
should be used. The treatment for this second
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case is developed in Sec. IIB by expressing the
nuclear relaxation in terms of the spectral density
of the spin-lattice interaction'® where the spectral
density is then evaluated in terms of the appropri-
ate microscopic critical dynamics of the system.
It may be noted that the classical lattice ap-
proach describes a direct relaxation process
while the Raman two-phonon mechanism is an in-
direct relaxation process. The relaxation due to
the indirect process is predominant for under-
damped phonons, while for strongly damped pho-
nons or for a purely relaxation-type motion the

|
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direct process should give the more relevant con-
tribution, *

A. Indirect Raman Two-Phonon Mechanism

In the Raman relaxation process the spin tran-
sition between Zeeman levels m and m + lL is ac-
companied by the creation of a phonon and the an-
nihilation of another whose frequency differs by
pbwy(wy = Larmor frequency). The transition
probability is obtained by integrating over the
phonon-frequency spectrum,

Womon = /B2 [ [ ([(m,n;+1, ny = 1152 [n;,n;,m+p)|plw)pw;)8(w; - w; - pug)dw,; dw;, (1)

where 3@’ is the effective quadrupole Hamilton-
ian, which couples the nucleus with the lattice, #;
and #,; are the phonon quantum numbers, and },
stands for a summation over the phonon branches;
the contribution to relaxation has been considered
independently for each of the acoustic and optical
branches; the curled brackets stand for an aver-
age over all directions of phonon propagation.
The contribution to the relaxation rate coming
from each branch depends on the phonon-frequen-
cy spectrum and several calculations have been
performed using approximate forms of the spec-
trum.® It has been shown that in the high-tem-
perature approximation the results are rather in-
sensitive to the details of the phonon spectrum.
However, as will be shown, the drastic changes
of the ferroelectric branch, near the transition
temperature, can affect the relaxation rate in a
ferroelectric crystal.

In Eq. (1) the temperature enters only through
the equilibrium-phonon occupation numbers and
thus, in the high-temperature approximation, i.e.,
kT > llwy,,, the transition probability is of the
form Weoe T2 for any branch and any type of phonon
spectrum assumed, as long as the latter is almost
temperature independent, Let us consider the
transverse-optical branch (TO) which is character-
ized by an anomalous temperature behavior and
discuss its contribution in detail. Equation (1) can
be rewritten

Wmaw =KT?+21/52)| Q|

X foo Ui+ 1, 0, = 1] V2 [0y, ;) [ 2o (w) o,
(2)
where all contributions, with the exception of the
one coming from the ferroelectric branch, are
included in the term K72, In Eq. (2) we have as-
sumed w;, w; > Uhwy. The quadrupole Hamiltonian
was written as

Ho=220 QuVop, L=0,£1,£2, (3)
where

Q=AQBIZ-1%), V4=V,

Qu=AWI,+I.1), Vy=V,%iV,,, (4)

QtZ:AIE, VtZZ%(Vxx—Vyy)iiny

with A =eQ/4I(2I - 1), V;, the efg components and
Qum=(m [Qu Im +pu).

The term in the Hamiltonian (3) that corresponds
to the Raman two-phonon process is the term
quadratic in the lattice displacements in the ex-
pansion of V, in terms of lattice displacements U
from the equilibrium positions; i.e.,

3%y oul, aul
V‘f):%z Zz(a»y‘ u>0 * QiQ;

b 100 17 \OTROTE /o 8Q; 0Q,
92y,
=10 -V g0, 5
22 50,09, U (5)

where .rf, is the @ component of the position vector
of the #th ion, U° is the displacement from the
equilibrium position, and @; is the normal coor-
dinate relative to the ¢ th normal mode of the fer-
roelectric transverse-optical branch, which is not
to be confused with the quadrupole moment opera-

tor defined in Eq. (4).
From Eq. (5), by using the expressions for the

matrix elements of @,
(n+1|Q|n) =(n| Q| n+1) = 5/ Mw) ¥n +1)/2,
where M is the mass of the crystal and
7= (e"*T 1) '~k T/hw
one obtains

2
Wy e =KT?+ 27, | Qun|2BT? Prol@) 4,
' n To W
(6)

where



Ino

sesronr ()

and we have replaced the derivative of V, with
respect to the normal coordinate with an average
value independent of @. Therefore the constant
B depends on the structure of the crystal and on
the different sources for the fluctuating efg which
are associated with the optical lattice vibrations
(point charges, induced dipoles, covalency, and
overlap effects), ¥

In order to perform the integration in Eq. (6)
one should make assumptions about the phonon
dispersion curve wpo(d) and consequently ppolw).
If one uses for wp(d) the function employed by
Kochelaev'® for the optical branches

wrolg)=Awlg/qy) +wy With Aw=wy,-w, (7)

where w, is the frequency corresponding to the
maximum value ¢, of the wave vector, one obtains
for the ferroelectric contribution to the relaxation
rate,

Woonen = (10782 @, | BT ¥(qy/ Aww)) . (8)

However, in evaluating Eq. (8) we have assumed
w™~w;t for every ¢, which is a good approxima-
tion if Aw <wy This model for optical modes is
practically equivalent to an Einstein model where
Aw is the spread in the phonon-frequency spectrum
which one has to assume in order to allow a Ra-
man process.

By imposing in Eq. (8) Cochran’s condition for
the occurrence of the ferroelectric transition,
i.e., wd=B(T - Ty)for T >T, andassuming Aw
temperature independent, we obtain for the relax-
ation rate due to the ferroelectric branch the re-
lation

22 2
e :151;2 | Quml ZB% WT‘?@E . 9)

It should be stressed that this model overestimates
the effect of the lowering of the frequency of the
ferroelectric branch. In fact it corresponds to
imposing Cochran’s condition on all the modes of
the branch. This overestimation can be in part
compensated by limiting g, to a value g* which
includes only a fraction & = ¢*3/67%N of the total
number N of modes in the ferroelectric branch,
as we have done in writing Eq. (9).

Another possible expression for the dispersion

curve is
wrold) = (bw/q*¥)g? +w,, 0<g<g*.

In this case, by performing the integration in Eq.
(8), one obtains

. 37 2N (1 2Aw 1
Wi = 2] Qun 87 5 (g - 458 w»@)(m)

(Aw)® \w
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By putting Cochran’s condition in Eq. (10) the
relaxation rate contains a singular term of the
form

W oo [T2/(T = Ty)] for T>T,. 11)

By assuming a still different dispersion curve of
the form

“’?ro(q)=[(ww‘— wé)/q*z] @+ wg ,

we obtain that for T near T, the relaxation rate ap-
proaches the function C, - C,(T - T,)! /2, which re-
mains finite at T, although its derivative does not.

One can conclude that the Raman two-phonon
relaxation contribution associated with the ferro-
electric branch displays a peak in the relaxation
rate near T, whenever the frequency at ¢=0 of the
phonon spectrum is assumed to go to zero on ap-
proaching the ferroelectric transition. The shape
of the peak however, is a rather sensitive func-
tion of the phonon spectrum assumed. !’

B. Direct Relaxation Mechanism

Let us consider the case where the nuclear re-
laxation is due to the efg fluctuations associated
with the cooperative motion of permanent elec-
trical dipoles or of tunneling ions.

The quadrupole spin-lattice relaxation transi-
tion probability is written'®

Wm,m-r-u:(l/kz)lQumlzJu(“wL)a (12)
where the spectral density J,(w) is given by
Ju()= [ et (v, (0)V,F (1)) dt . (13)

If one considers that the permanent electrical
dipoles can flip between two opposite positions
along a given direction or that the ions tunnel be-
tween two equilibrium sites, then the time-depen-
dent part of the efg function V, at the nuclear po-
sition can be written in the form

V,@)=32., A 0,(2), (14)

where o(t) assumes the values =1 and A'? is the
difference between the two values of the efg func-
tion V, due to the ith dipole moment (or tunneling
ion) in the two positions.

By expanding in Fourier components we obtain
in the random-phase approximation

J, (@)= (4N)"12. A, (AN

< f et oG 0ot-g,ma,  9)

©

where

- .

o(d, t)= (N)'Uazz Oi(t)eh.r‘ ’
A,@= Z,-Aff)e’a %

The spectral density of the time-dependent func-

(18)
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tion o(q, ¢) can be related by the fluctuation-dis-
sipation theorem to the imaginary part of the re-
duced generalized dielectric susceptibility x(q, w):

(= et (o(d, 0)o(- g, t) ) dt

= - (2rT/Nw)x"' (q, w) . (17)
From Egs. (12), (138), (15), and (17) one obtains
for the spin-lattice relaxation rate the expression

I/Vm,ma-u = (ﬁz)-l ’ Qumlz(kT/Zqu)N‘z

X 2 e A @AXOx (G, pwy) . (18)
Since on approaching the transition temperature
only the low g values of the susceptibility are
strongly enhanced, and the efg goes as »~*, so that
mainly the nearest neighbors contribute to 4, (),
in performing the ¢ summation in Eq. (18) we will
set A,(d)=4,(0).'® Then the evaluation of the re-
laxation rate is reduced to the evaluation of

I=223x"(q, ) , (19)
which we will do for a diffusive-mode model and a
generalized damped-oscillator soft-mode model.
The evaluation will be done in the assumption of

an isotropic interaction; subsequently, the aniso-
tropic effect will be discussed.

1. Diffusive-Mode Model

If one assumes that the electric dipoles can be
considered an interacting Ising spin system (where
the Ising variable corresponds to the two equilibrium
positions), the dynamical susceptibility can be
written in the form?'®

X@, w)=x(d,0)/[1+iwt(@)] ,
with
x(@, 0)= (/RT)7@)/70] ,

where the g-dependent dielectric relaxation time
7(q) is related to the Fourier transform of the
dipole-dipole interaction J;; by the relation

(@)=7,/[1-8J@] [B=(1/rT)] ,

and T, is the relaxation time for the noninteracting
dipole system.
Expression (19) becomes

(20)

(21)

pw T3(d)

T4 Pt (22)

N
Hpwy) BN s
To
For isotropic interaction by approximating J(g)
=J(0)(1 - @¢?) and by integrating over the Debye
zone, we obtain in the case of [uw,7(g)]?< 1,

VNT Buw TV 1
mw,;):——é—gz—é(?o);m

AND RIGAMONTI
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T 1/2 T 1/2
« 0 gz, [ To
[(T = To) tan (@) qD(T — To)

T
()12 0o |, (23)
(o) ‘IDT_TO(l_anJ

where T,=J(0)/F is the Curie temperature and ¢,
=(6m2/V)"3, Near the transition temperature the
quadrupole spin-lattice relaxation rate [see Eq.
(18)] assumes the approximate expression

~ TO 1/2 4 ] (24)
u{n,mﬂt —A[(T— T(]) - ﬂ(a)I/ZqD
[ e T\ 23
for |(a (-‘—‘Q—) ] >1,
qD T__ TO
1 TV V.
A=W1Qumlz@ff*i”)zfo(ﬁ> Na

2. Genervalized Damped-Oscillator Soft-Mode
Model

The susceptibility can be written in the form?®
¥(d, w)=x(d, 0w?@)/ [(w?(@) - w?) +i2Tw] , (25)
x(d@, 0)=2/w*(@),

where w(d) is the frequency and I is the damping
factor of the soft modes. The g dependence of the
frequency of the soft modes can be approximated
as

W q)=alT - Ty)+vg® .

Since we are interested in the value of the suscepti-
bility at the Larmor frequency we point out that for
pwy < w(g) and an appreciably large damping the
susceptibility turns out to be of the Debye type [see
Eq. (20)] with 7(g) =2T/w?g). Therefore in the
case in which the frequency of the soft mode w(q)
remains greater than pwj even close to T, one
obtains for the ferroelectric contribution to the
relaxation rate

(26)

B T, 1/2 4(aT0)1/2 ]
Wm,m+u - B[(T -T, > - ‘iT('y)l/qu 3 (27)
1 ine VART2T R
B= qg2 | Qunl (L ALV T aTy)™

3. Anisotvopic Intevaction

An evaluation of the generalized susceptibility
x(d, w) for the case of the anisotropic dipolar in-
teraction was performed by Pytte and Thomas.? In
the light of their results we assume in Eq. (21),

J(@)=J(0)1 - ag® - 6cos®] , (28a)
and instead of Eq. (26),
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(28b)

where 0 is the angle between the § vector and the
ferroelectric axis (assumed to be a symmetry axis
of the crystal). By performing the summation (19),
for the case of the Suzuki-Kubo dynamics, we ob-
tain for the singular part of the ferroelectric con-
tribution near the transition temperature,

@) = alT - Ty)+yg® +€ cos?d ,

W, man = A8 Y20 T,/ (T = T()]M2
+1n{[T/T,-(1 - 8)]"/2+ (5)/2})

- Al4/m(@)2q)), (29a)
where the constant A is the same as in Eq. (24).

For the case of damped harmonic oscillators
with w?(g) given by Eq. (28b) one obtains

aTO 1/2 T )1/2
e e
T € 172

+m{T0 —<1 - aT0>]

. € 1/2‘)_3 4(aT0)1/2_>
(@) )-26ov)
where B is the same as in Eq. (27).

As can be seen from Egs. (29a) and (29b) for
6~1or €/aT,~1, respectively, the singularity in
the relaxation rates is logarithmic, while for
6<1or e/aT0<< 1 one recovers the square-root
singularity valid for isotropic interaction. A loga-
rithmic singularity was obtained for the specific
heat by Pytte and Thomas?! who used a more gen-
eral expression for w?(q) in the case of anisotropic
dipolar forces.

The condition pw; < wlg) or 1/7(g), used in per-
forming the above calculations, breaks down if the
frequency of the soft modes reaches a value of the
order of the Larmor frequency before the transition
occurs. In this case an appreciable dependence of
the relaxation rates on the measuring frequency
should be observed. The nuclear relaxation rate
in the case of a diffusive mode decreases at given
temperature by increasing the measuring frequency,
as it can be inferred from Eqs. (18) and (22). On
the contrary, for generalized soft modes with no
overdamping, the frequency dependence is opposite
[Eq. (25)].

(29b)

III. EXPERIMENTAL DETAILS AND ANALYSIS
OF RESULTS

A. Experimental

The Na®* nuclear spin-lattice relaxation in sodium
nitrite has been investigated, by NMR pulse tech-

NUCLEAR QUADRUPOLE SPIN-LATTICE RELAXATION: -

2789

niques, in powdered and single crystal.? The
measurements were performed with a Briker
B-KR 306 coherent pulse spectrometer operating

at 24 and 8 MHz; the maximum intensity available
for the rf field H, was 30-60 Oe, respectively. The
transient nuclear signal was detected by direct
observation on the oscilloscope or recorded by a
box-car integrator. In order to avoid the nonlin-
earity effects due to the diode detection, a constant
reference signal of proper phase and amplitude

was added to the nuclear signal or a calibrated cor-
rection curve was used.

The temperature was varied by a standard nitro-
gen-gas flow system and it was measured with the
thermocouple junction in thermal contact with the
upper part of the sample; the temperature was
stable within 1 °C. The spurious “piezoelectric”
signal superimposed on the free precession decay
was suppressed by loading the sample surface with
a liquid.

The relaxation-rate measurements were per-
formed by the usual 90°, ¢, 90° pulse method. The
first pulse produces the equalization of the popula-
tion of the irradiated Zeeman levels; the amplitude
S(t) of the nuclear free precession signal following
the second 90° pulse yields the relative population
difference at the time ¢ during the recovery pro-
cess. In order to extract from the experiment the
Am=1, 2 relaxation transition probabilities W,
and W, one has to know the recovery law, which
depends on the Zeeman levels that are irradiated.

For a nucleus with I= £ in presence of static
quadrupole interaction, three resonance lines cor-
responding, respectively, to the + %« - 1 transi-
tions (central line) and 2 — + § transitions (satel-
lite lines) are generally observed. The resonance
frequency of the satellite lines is shifted in first
order according to?

ve—vy=+3vg(3cos?0 —1) , (30)

while for the central line only second-order terms
are effective and the shift is

vo-vy =% Wh/v)(1 - cos?0)(1 - 9cos?9) , (31)

where vq =¢?gQ/2h and eq=V,, is the largest
component of the diagonalized efg tensor; 6 is the
polar angle of the steady magneticfield inthe prin-
cipal axes frame of reference =¥ of the efg tensor.
Therefore several different cases for the recovery
law can be considered. For the case in which only
the central line is irradiated, by solving the master
equations with the appropriate initial conditions,

one has for the recovery law
[S(e) = S(2)]/S(0) = % (e3¥1t 4 g=2¥2t) | (32a)

For irradiation of one satellite line one has
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[S(0) = S(£)]/S(w0) = L[e-2¥1t 1 g=2W1*W2)t] = (32D)
while for simultaneous irradiation of all lines

[S(oo)_ S(t)]/s(oo) =e-2/5(W1+4W2)t . (32(3)

B. NaNO, Measurements

Sodium nitrite is a ferroelectric crystal with
body-centered orthorhombic structure (space
group C2XImm 2). The transition to the nonpolar
centro-symmetric phase (space group D2 Im m m)
occurs? at ~164 °C; the transition is accompanied
by an order-disorder rearrangement relative to
the orientation of the NO," radicals and a dis-
placement of the Na* ions along the ferroelectric
c axis.®

The static quadrupole effects have been pre-
viously studied by Weiss®® as a function of tem-
perature; the principal axes of the efg tensor
are oriented, in both phases, as the crystal axes
(Z//¢; a<b <c); the quadrupole-coupling constant
decreases for increasing temperature with a
small abrupt change at the transition.?” Two
representative values for the strength of the quad-
rupole interaction are vqo=550 KHz at 18 °C and
vo=430 KHz at 166 °C; the asymmetry param-
eter 1 is always small (/7 ]< 0.1) and it changes
sign on crossing the transition temperature.

The quadrupole strength and the dipolar line
width 6y, in NaNO, at any temperature are such
that the conditions

Ve /2w <yH,

Gyd<<yH1 <<yQ

(33a)
(33b)

can be achieved. Therefore, in a single crystal
it is possible to irradiate separately central or
satellite lines [condition (33b)] or irradiate all
lines together [condition (33a)] by choosing a
proper orientation of the crystal. In the second
case it is convenient to use a comb of 90° pulses
instead of the single first pulse in order to be
sure to have achieved initial conditions correspond-
ing to a complete saturation of all levels. More-
over, since both the above conditions are suffi-
ciently satisfied at 24 MHz for H;~30 Oe, in a
powdered crystal one 90° pulse at the Larmor
frequency practically involves irradiation of the
central line alone.”

In Fig. 1 the Na® free precession (fp) signals
for NaNO, powdered and single crystal at room
temperature are shown. For the powdered sam-
ple [Fig. 1(a)] and the single crystal, in the case
of irradiation of the central line only [Fig. 1(b)],
the maximum amplitude of the fp signal was found
to correspond to a pulse duration of about 37,5,
where 7,,, is the duration of the maximizing
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FIG. 1. Na? pulsed NMR signals in NaNO, at 24 MHz
and at room temperature. (a) Free precession (fp) and
echo signal in powdered sample with diode detection;

(b) fp in single crystal for central-line irradiation; (c)
fp and echo in single crystal for a satellite-line irradia-
tion. (The time base is 100 us/div.)

pulse for the usual case of all lines superimposed.
For irradiation of one of the satellite lines [ Fig.
1(c)] the corresponding maximizing pulse is
1/¥37y,,,.  This result agrees with the pulse
durations which can be evaluated by using the
fictitious spin-3 approach.'?

The fast decay of the fp signal in powdered
sample is associated with the different second-
order quadrupole shifts [see Eq. (31)] for the
various randomly oriented crystallites. Since
this broadening is inhomogeneous the decay signal
can be refocused into an echo by applying a sec-
ond pulse [see Fig. 1(a)]. Furthermore thefpde-
cay and echo signal show beats as one expects
since the free precession is the Fourier transform
of the resonance frequency distribution function.
If one neglects the dipolar interaction one can
calculate numerically the fp shape. For the time
7* at which the first minimum appears, in the
diode-detected signal, one finds for n<0.2:
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T*21.5 (. /v%) .

The experimental value 7*=1,2x10-* sec (at 24
MHz) agrees with the quadrupole-coupling con-
stant previously measured®® if one takes into ac-
count the dipolar interaction.

The fp of the satellite line in a single crystal
[see Fig. 1(c)] decays more rapidly than the fp
of the central line [Fig. 1(b)] and can be refocused
into an echo. The dephasing time of the satellite
line is angular dependent and it decreases strong-
ly on approaching the transition temperature.
This effect can be attributed to a first-order
broadening due to lattice defects and to tempera-
ture gradients over the sample. 28

The measurements of relaxation rate as a func-
tion of temperature were performed in the single
crystal by studying the return to equilibrium con-
ditions in the case of irradiation of all lines super-
imposed. According to Eq. (32c¢) the recovery
law is exponential with time constant 1/7, =2(W,
+4W,) as is shown in Fig. 2(a).

The study of the angular dependence of the re-
laxation transition probabilities was limited to the
case of a rotation of the crystal around the ¢ axis,
with € LH,, so that the central and satellite lines
could be irradiated separately at all angles. In
principle it is possible to obtain for all angles the
relaxation transition probabilities W, and W,
separately. In fact from the tangent at the origin
of the nonexponential recovery plot one obtains
the quantity (W, +W,)™! for the central line [see
Eq. (32a)] and the quantity (2W; + W,)~! for the
satellite line [see Eq. (32b)]. However since the
quadrupole broadening of the satellite line is too
strong for certain orientations, particularly near
the transition temperature, we chose to study

] 0z 06 08
t in sec

FIG. 2. Semilogarithmic recovery plot as a function
of time for Na® in NaNO, single crystal at room temper-
ature and at 24 MHz. (a) Irradiation of all lines super-
imposed; (b) irradiation of centra] line, for an orienta-
tion of the crystal with & LT, and b~ H,=90°.
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only the angular dependence of the quantity W,
+ W, by studying the recovery of the central line
[see Fig. 2(b)].

IV. RESULTS AND DISCUSSION

The temperature dependence of the relaxation
rate for a single crystal of NaNO, is shown in
Fig. 3. While approaching the transition tem-
perature from the paraelectric region the relax-
ation rate (at 24 MHz) rises rapidly by a factor
of 4-5, below the transition temperature 1/7,
drops rather abruptly, and then keeps decreasing
according to a 7% law. An unexpected anomalous
decrease of the relaxation rate by an order of
magnitude occurs in the temperature range 220—~
170 °K. Preliminary measurements of Na® quad-
rupole-coupling constant were performed in this
temperature range but no discontinuity or anomaly
was detected. On the other hand, a drastic in-
crease of the piezoelectric signal following the rf
pulse was noticed in the above temperature range.
In the light of recent findings by Gesi, 2® it can be
concluded tentatively that a new phase transition
with an associated anomaly in the piezoelectric
coefficients occurs in NaNO, at low temperature.
More measurements should be performed in order
to elucidate the nature of the transition.

The measurements performed at 8 MHz, in or-
der to check on a possible frequency dependence
of the relaxation rate, yielded essentially the
same results as at 24 MHz in the whole tempera-
ture range (see Fig. 3). A small deviation may
be present in the paraelectric phase near T,
where the values of 1/7, at 8 MHz seem to be
slightly lower. However the experimental error
at the lower frequency is considerably greater and
consequently a small frequency effect cannot be
checked.

Let us focus our attention on the ferroelectric
contribution to relaxation which manifests itself
by the anomalous increase near 7.. Since the
dynamics of the phase transition in NaNO, must
involve a coupling between the lattice and the NO,~
electric dipole system, the results obtained in
Sec. IIA for the indirect Raman relaxation process
by undamped lattice vibrations will not be applied
in this case. On the other hand a relevant direct
process should be present and therefore the ex-
perimental behavior of 1/7, in the paraelectric
region is compared to the theoretical expressions
derived in Sec. II B for the ferroelectric contribu-
tion associated to a diffusive mode or damped
generalized-lattice mode:

Wee (T - T,) "2 for isotropic interaction

and

Wee In(T - T,) for anisotropic interaction .
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As is shown in Fig. 4 the experimental data fit mation about the symmetry of the effective efg
a logarithmic expression rather than an inverse tensor can be obtained from the available data.
power law of the form (T - Ty)~". The best fit of Let us define the root mean square of the time
the experimental data yields the following expres- fluctuating efg components associated with the
sion for the relaxation rate (for 7= 163 °C):
1 T, \'?
T—‘E%(WI+4WZ)=7.7IH ﬁ) -3.2sec-!. /
' ’ (34) * /

The constants in Eq. (34) contain information
about both the microscopic dynamics of the ferro-
electric transition and the coupling between the
unstable mode and the nuclear-spin system. In
order to extract the two types of information
separately, measurements of relaxation rate at
different resonance frequencies and for different
crystal orientations in the external magnetic field
were performed. Unfortunately, no appreciable
frequency effect was observed and therefore one
can infer only that the frequency of the unstable
mode is always greater than the Larmor frequency
even close to the transition temperature.

While the angular dependence is essentially
the same well above and below T, it changes
appreciably in the neighborhood of the transition.
The angular dependence for a rotation of the crys-
tal around the ferroelectric ¢ axis (¢1 Hy) of W,

+ W, at different temperatures is shown in Fig. 5.
Since this was the only angular dependence that
could be investigated, the complete form of the
efg tensor effective for the relaxation process
could not be derived. Nevertheless, some infor -

To=436 K

, . —
3 « 5 6 7 8

Ay

T-To

FIG. 4. Semilogarithmic plot of l/thg—(Wl +4W,)
versus [T)/(T - Tp)]"? for Na® in single crystal NaNO,.
The solid straight line represents the function 1/7,=7.7
xlog [Ty/(T—Ty)1'/2=3.2. The dashed line represents the
function 1/7,=A[T,/(T - Tp1”? which is drawn to fit the
high-temperature experimental values.
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FIG. 5. W, +W, for Na® in single crystal NaNO, with
€ 1T, as function of the angle between the b axis and H,
at different temperatures; the solid lines refer to T< T,
while the dashed lines refer to T'> T..

ferroelectric unstable mode as the component
Vi, of the efg tensor effective for relaxation.
Since the static efg tensor has the crystal axes
as principal axes both above and below 7, 2 we
will tentatively assume that the same is true fgr
the “relaxation-efg tensor” V%;. Then for ¢ LH,
and for a rotation about the ferroelectric ¢ axis
the relaxation rate W, + W, should have the follow-
ing angular dependence:

Wy + Wy £(8, 1) = (VE)2{n? cos® 6 sin®0
+3[3(3+m) —-ncos?0)?}, (35)

where 6 is the angle between ﬁo and the b axis
and 7= (V::z - ng)/ Vg:-

The function f(#,n) is angular independent for
n=0 while for 7#0 is a function continuously in-
creasing (7 >0) or decreasing (1 <0) between 0
and $7. The ratio R between the extremal values
is

R=£0,n)/fGzm,m=[B-n)/@+n] . (36)

With these assumptions it is found that for 7
~+0.2 Eq. (35) gives an angular dependence in
agreement with the experimental data and a cor-
rect ratio between the minimum and maximum
value of W, + W,, near the phase transition. How-
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ever it should be pointed out that the minimum
displayed by the experimental behavior (see Fig.
5) does not occur exactly at 6=0. This could be
due to the presence of a second smaller contri-
bution by a “relaxation-efg tensor” whose princi-
pal axes do not coincide with the crystal axes.
An additional check of the validity of our conclu-
sions about the symmetry of the “relaxation-efg
tensor” is provided by a comparison of the theo-
retical ratio between W, + W, (for a certain angle
#) and % (W, +4W,) (for the orientation for which
all lines are superimposed) with the corresponding
experimental ratio. The relaxation rate for all
lines superimposed can be related to the asym-
metry parameter and one obtains

1/T,= 2(W, +4W,) <(VE)2(0.17m% - 0. 237 +0.68).

(37)
From Eqs. (37) and (35) one obtains for 1=0.2 a
ratio

B(Wy+4W5)/(Wy + Wp)gayyor =1

to be compared with the experimental value of
~1.1at T=442 °K.

At this point one can compare the theoretical
expressions (29a) or (29b) with the expression
(34) which fits the experimental data. If one con-
siders at first Eq. (29a), which is based on the
assumption of a relaxation-type motion, one has,
by assuming 6=1, A=7.7 sec-! and vagp=1.2
or 0.85 (according to the two limiting values 0 or
3 sec~! of the “nonferroelectric” background re-
laxation). The values of @ so obtained (2.3 or
1.2 A% respectively) are not in disagreement with
the value that can be estimated theoretically using
the assumption of an interaction J;; limited to the
nearest neighbors. In fact from Eq. (28a) one
has a=~1(d?), =2.9 A® where (d?),, is the mean
square value of the nn distance. By using the
above experimental values for a one can estimate,
from the expression of the constant A [see Eq.
(24)], V¥, =620 and 370 KHz, respectively. In
the above estimation we have used the value 7,
=0.3%10-1° sec deduced by Hatta et al.? from di-
electric measurements.

Alternatively let us consider Eq. (29b) which is
based on the assumption of a damped generalized
soft mode. Assuming € ~wZ and ¥~ w?/q%, and for
the quantity 2I'/wZ a value of the order of 10~ sec
as can be deduced from reflectivity measure-
ments, *° one obtains for the efg component Vfc, a
value greater than 10 MHz, which is unreasonable.
On the other hand one can obtain a value of VE,
~500 KHz if one assumes 2T/wi=7,=0.3x10"1°
sec, which corresponds to a strongly damped gen-
eralized soft mode; in this limit the generalized
soft mode is equivalent to a diffusive mode.
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Therefore, from the angular and temperature
dependence of the relaxation rate it can be con-
cluded that the “relaxation-efg tensor” has its
principal axes practically along the crystal axes,
with the greatest component Vfc ~500 KHz and
7n=0.2. The interpretation of this result in terms
of charge and/or electrical dipole localization
and of their critical motion is in general very
difficult. If one considers the simple picture of
NO;" dipole cooperative motion, one finds that an
efg tensor effective for the relaxation having the
principal axes along the crystal axes, with the
greatest component V7%, of the order of the value
deduced from the experiment and an asymmetry
parameter 0.3, can be obtained by considering
the flipping motion along the ¢ axis of three cor-
related Ising electric dipoles of 0.8x%10-!% esu
localized at the positions (xa, 0,3¢) and (0, 0, 3¢)
with respect to the Na® nucleus; (the value of
0.8x10™ ' esu for the electric dipole component
in the c¢ direction is not inconsistent with the val-
ues of the atomic dipoles given by Betsuyaku®! for
the NO,™ group). However no in-phase motion has
to occur between two dipoles located at  and
-T. In fact, it can be easily seen that two parallel
dipoles located at T and ~1 do not produce elec-
tric field gradients at the origin.

From the above considerations it could be in-
ferred that the critical slowing down involves
mainly cooperative modes of the “ferroelectric”
dipoles characterized by small wave vectors di-
rected along the a axis.

V. CONCLUDING REMARKS

It has been shown that by studying the quadrupole
spin-lattice relaxation in ferroelectric crystals
one can detect the presence of unstable generalized
lattice modes, since they produce near the tran-
sition temperature an anomalous peak in the re-
laxation rate. The existence of the peak in the
relaxation rate can be justified theoretically for
the typical microscopic dynamics that are be-
lieved to trigger the ferroelectric transition in
different type of crystals.

In particular, in NaNO, the measurements have
shown that the rising of the relaxation rate in the

)

transition region (for 7 >7T,) is of logarithmic
type. This result points out the importance of
taking into account the anisotropic character of
the interaction among the “ferroelectric” ions or
dipoles.

Measurements as a function of the resonance
frequency allow one, in principle, to distinguish
between a spectral density characteristic of a re-
laxation-type motion or of a not-overdamped os-
cillatory motion, if the critical slowing down
reaches the 10"-10%-Hz region. In our mea-
surements in NaNO, no frequency effect was de-
tected. However dielectric dispersion measure-
ments® seem to point out that critical motions in
the above frequency range are present for tem-
peratures close to T,. Therefore it would be de-
sirable to perform relaxation measurement
very close to T, with reduced temperature gradi-
ents and/or at higher resonance frequency (by
using a superconducting magnet).

Note added in proof. It should be noted that also
P3! dipolar relaxation rate obtained by Blinc and
Zumer® in KH,PO, can be fitted with a logarithmic-
type behavior even close to the transition temper-
ature [see G. Bonera, F. Borsa, and A. Rigomonti,
Colloque Ampere, Bucharest, 1970 (unpublished)].
Therefore, the conclusion about the temperature
dependence of the damping factor, made by the
above authors in the attempt to fit their results,
does not seem to be justified. A temperature-in-
dependent damping factor is indicated, on the other
hand, by Raman spectroscopy results. Further-
more, regarding the new phase transition®® at 178 °K,
measurements of Raman spectra performed by
C. K. Asawa and M. K. Barnoski (unpublished re-
port) indicate that no change in crystal symmetry
occurs at the transition, in agreement with our ob-
servation of no detectable efg changes.
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In the first paper of this series, we located T, for an arbitrary distribution of impurity
bonds P(E,) and, for a particular P(E,) with a narrow width, we found that the specific heat
fails to be analytic at T,, although it is infinitely differentiable there. In this paper, we
generalize this conclusion to an arbitrary distribution P(E,).

I. INTRODUCTION

In the first paper of this series,! we introduced
a two-dimensional Ising model in which the hori-
zontal energies E, are all fixed and all the vertical
bonds E,(j) between the jth row and the (j +1)th
row are fixed, but E,(j) is allowed to depend on j.
Furthermore, the energies E,(j) are treated as
random variables such that if j #j’, E,(j) and Ex(j')
are independent and are each described by a tem-
perature-independent probability density P(E,).
For this Ising model, we showed that with proba-
bility 1 the thermodynamic limit of the free energy

per site exists and is the same for all Ising models
of the collection specified by P(E,).

For this random Ising lattice we located T, by
the general formula

*© 2 1+2z 2
o=f dE, P(E,) In zzC(-——-1£> , . 1)
1-2z
0
where
z; =tanhBE; , i=1,2 (1.2)

and the subscript ¢ means T=T,. To justify call-
ing the 7, located from (1.1) a critical tempera-
ture, we would like to show that the specific heat



FIG. 1. Na® pulsed NMR signals in NaNO, at 24 MHz
and at room temperature. (a) Free precession (fp) and
echo signal in powdered sample with diode detection;

(b) fp in single crystal for central-line irradiation; (c)
fp and echo in single crystal for a satellite-line irradia-
tion. (The time base is 100 ps/div.)



