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The long-range order parameter M of P brass has been determined from measurements of
the intensity of superlattice reflections of Bragg-scattered neutrons. Over the whole temper-
ature range T=.300 K to T= T~= 736'K, the data are in remarkable agreement with the pre-
diction for the compressible Ising bcc lattice with only nearest-neighbor interactions.

I. INTRODUCTION

The aHoy P brass is composed of approximately
equal parts of Cu and Zn. At room temperature the
cube corners of the bcc lattice are predominantly
occupied by one type of atom —say Cu atoms —and
the centers by Zn atoms. As the temperature is
raised, the occupation of lattice sites becomes
more and more random, until at the critical tem-
perature 7', the average occupation of a lattice site
is entirely random. Even above T, , however, the
occupation of lattice sites is correlated in the
sense thRt lf R certRln site ls occupied by R Cu at-
om, there will be an excess probability over ran-
domness that the nearest-neighbor sites are occu-
pied by Zn atoms and so on. The occupation of
lattice sites can be studied by a diffraction exper-
iment and in thi. spaperme describe a measurement
of the average occupation of a lattice site below
T, . This average occupation of a lattice site is a
measure of the long-range order and corresponds
to the magnetization in an Ising magnet. In an ear-
lier study, Chipman Rnd Warren' examined the
long-range order in P brass by x-ray diffraction.

It has been emphasized previously that the order-
disorder transition in P brass provides an excep-
tional possibility for an accurate comparison be-
tween experiment and a relevant theory for phase

transitions. This is because the configurational
energy in the alloy is formally given by the Ising-
magnet Hamiltonian, a model which is sufficiently
simple to allow detailed theoretical calculations.
Indeed, previous neutron scattering experiments
have verified the theoretical predictions for the
correlation range and the temperature dependence
of the magnetization and of the susceptibility. ' '
As we shall see, the results of the present experi-
ment on the average occupation of a lattice site are
also in very good agreement with theory.

The Bragg-scattering cross section (d ojd+)e for
a superlattice reflection from a rigid lattice is

+2 2~2$

Here N is the number of atoms in the single-crys-
tal sample, and fc„andf E, the scattering ampli-
tudes of Cu and Zo atoms, respectively. The scat-
tering vector I is the difference between the inci-
dent and scattered neutron wave vectors, 7 is R

reciprocal superlattice vector, i.e. , a vector in
reciprocal space with an odd sum of indices, and
M gives the average occupation of a lattice site.
I et 8; be defined as+ 1 if the lattice site at position
1; ls occupied by R Cu atorQ Rnd —1 if it is occupied
by a Zn atom, then M=(g,.s,.e"'~). The tempera-

turee

dependence of M near T, can be expressed by
the power lam
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Velocity Selector

Zn Monochromator

Soller Collimator

I'IG. l. (a) Neutron diffractometer. The sample may
be oriented to Bragg-scatter neutrons in direction P or
A corresponding to "parallel" and "antiparallel" re-
flections, respectively. (b) Scattering diagram corre-
sponding to neutrons scattered from the monochromator.
The distribution function is indicated by its contour for
half-peak intensity.

where f is the reduced temperature 1 —T/T, .
For the rigid bce lattice the predictions of the

Ising model are 0.303&P&0. 318andD =1.506's
However, the present experiments are carried out
at constant pressure, not constant volume, so the
effect of the lattice expansion with increasing tem-
perature must be considered. Essam and Baker
have calculated the appropriate correction for
P brass using Domb's model' and empirical data
for the lattice expansion, ' the compressibility, '
and the variation of T, with pressure. Near T, a
power law is still a good approximation, e. g. , in
the temperature region 0.003&t&.03 Essam and
Baker find the effective value of P = 0. 293 and D =

j..498.
In principle, the determination of M(T) is very

simple. By definition, hf(0) equals 1, so according
to Eq. (1), Ma(T) is equal to the ratio of Bragg-
scattering intensities at finite temperature 7.' and

T=0, respectively. It is, however, then presumed
that the crystal is similarly irradiated by the neu-
tron beam at all temperatures, i.e. , that extinc-
tion can be neglected. Furthermore, Eq. {1}ne-
glects the lattice vibrations which must be accoun-
ted for by the usual temperature-dependent Debye-
Waller factor. In order to decrease extinction one
can either use a small crystal or use a superlat-
tice Bragg reflection of low ref lectivity, i.e. , with
large Miller indices. In the latter case, however,
the corrections of the Debye-Wailer factor become
large and the results, thus, correspondingly uncer-
tain, so in practice it is necessary to use a suffi-
ciently small crystal if the extinction corrections
are to be made accurately.

II. APPARATUS AND MEASUREMENTS

A monochromatic beam of neutrons with wave
vector 4. 94A ' was extracted from the reactor
beam by means of Bragg reflection from a large
Zn single crystal in the (002) reflection. Higher-
order neutrons were effectively removed from the
reactor beam by means of a mechanical velocity
selector. The collimation of the reactor beam was
rather wide (-0.4'), the mosaic spread of the Zn
crystal was about 0. 3' full width at half-maximum
(FWHM) and the collimation of the monochromatic
beam was 0. 26' (FWHM). This implies a resolu-
tion of the monochromatic beam as indicated in
Fig. 1(b), where the ellipse around Rc indicates the
contour for half-peak intensity. The collimation of
the scattered beam was determined by a 2x 2. 5-cm
hole, 12 cm from the sample, and by a detector
window of 5~6 cm, 65 cm from the sample.

The sample was a single crystal of P brass (48-
at. % Zn) spark cutfrom alarge single crystalasa
cylinder 5mm gn diameter and 6mm, &n he&ght w&th

the axis along {011).By turning the crystal around
its axis, the (8 00) reflections could successively
be brought into position to Bragg scatter the inci-
dent beam, and there were, thus, no geometrical
corrections in comparing the intensities for these
reflections. In order to avoid Zn evaporation at
higher temperatures, the crystal was encapsulated
in a thin stainless-steel container.

The temperature was determined by a thermo-
couple mounted on the outer side of the stainless-
steel container. The thermocouple voltage corre-
sponding to the critical temperature (T, = V36. 0'K
for our sample) was determined by the pronounced
peak at 7, of the critical scattering at )K —rI =0. 02
A '. The estimated uncertainty in T,

' —T was about
0. 1 'K.

The temperature dependence of the two superlat-
tice reflections (100) and (300) was measured.
The angular settings of the Bragg peak change as
a function of temperature due to thermal expansion
of the crystal. However, the change in scattering
angle was found to be negligible because the colli-
mation between the sample and the detector was
very wide. A rocking curve was measured at each
temperature. The width of the peak was found to be
independent of temperature, so the peak intensity
was proportional to the integrated intensity al-
though the proportionality factor was of course
different for the (100) and the (300) reflection,
The peak intensities for the two superlattice re-
flections are listed in Table I. The corrections
described in Sec. III are substantially different
fox these two reflections and the agreement be-
tween the corrected data supports the reliability
of the final results.
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III. CORRECTIONS

A. Extinction

In a scan where the crystal is rotated around a
vertical axis, the integrated intensity I», of a
Bragg reflection with Miller indices (heal) is given
by

foal™I+ca~ ~
/sin 2esai

Here Ez„ is the usual geometrical structure fac-
tor, including the Debye-%aller factor, and 8», is
the Bragg angle of the reflection. In the derivation
of Eol. (3) it is assumed that the acceptance angle

of the counter is wide, and, also, that extinction
can be neglected. The first assumption can be
checked in practice by comparing the integrated
intensities for "parallel" and "antiparallel" neu-
tron paths (rays P and &, respectively, in Fig. I)
from the same reflection. Agreement to better
than 3/o was obtained for all five reflections inves-
tigated. The second assumption can be checked
by comparing integrated intensities of different
Bragg reflections, or alternatively the correction
for extinction can be determined experimentally by
this comparison. %e empirically determined the
extinction coefficient &, (defined as the ratio be-

TABLE I. Intensities and corrections for the (100) and (300) superlattice reflections.

Intensity
(counts per 3 min)

(constant back-
ground subtracted)

I

Cl ltlcal Extlnct1on
scattering correc-

back- tion
gl ound

~~8. g P Ceso

Lattice
vibration
correction

Normalized
order

parameter

p (g) i/2

p (0)-B(t}h"

Error
(in /o)

0.4925 +0.0014
0.4161+0.0010
0.3479+0.0012
0.2914 +0.0009
0.2327 + 0.0007

~ 0.1759+0.0008
. 0.1532+0.0007
~~ 0.1210+0.0007

~~ 0.0998 +0.0006
& 0.0664+ 0.0006
~ 0.0581 +0.0009
~ 0.0438+0.0010

0.0335 + 0.0008
0.0259+0.0005
0.0205 +0.0010
0.0101+0.0008
0.0051 +0.0004
0.0035 + 0.0003

0.6091 +0.0009
0.5271 ~ 0.0006
0.4502 +0.0008
0.3274+0.0005
0.2540 +0.0005
0.1970 +0.0005
0.1548+0.0004

o 0.1277 +0,0004
~ 0.0995 +0.0005
+ 0.0868 +0.0005
g 0.0730 +0.0005
~ 0.0592+0.0004
c 0.0459+0.0004

0.0327+0.0006
0.0259 + 0.0005
0.0197+ 0.0006
0.0163+0.0006
0.0130 +0„0004
0.0099+0.0005
0.0066 +0.0003
0.0035 + 0.0003

38 001 + 140
36 742 + 137
36 168+ 135
34 142+ 132
32 171+ 129
29 194+ 122
27 702 + 120
25 497 + 115
21 458 + 105
19123+ 99
18 162+ 97
16 045 + 91
13 294 + 83
ll 747 + 78
10 087 + 73
6928+ 61
4453+ 49
3378+ 43

5143+ 24
4621+ 22
4223+ 21
3256+ 19
2659+ 18
2118+ 16
1813+ 15
1460+ 13
1150+ 12
1039+ 12

902 + 11
811+ 11
642+ 10
496+ 9
412+ 9
327+ 8
292+ 8
266+ 8
233+ 7
173+ 7
112+ 7

29
61

103
135

5
6
8
9

12
16

0.746
0.750
0.758
0.769
0.785
0.804
0.816
0.833
0.847
0.873
0.880
0.895
0.901
0.919
0.934
0.954
0.973
0.978

0.911
0.912
0.914
0.919
0.924
0.929
0.936
0.941
0.947
0.951
0.954
0.959
0.964
0.970
0.975
0.981
0.982
0.984
0.987
0.990
0.993

50 921 +188
48 940 + 177
47 705 + 178
44 384 + 172
40 985 + 165
36 317+152
33 962 +147
30 621+138
25 341 +124
21 914+113
20 632+ 110
17 922+ 101
14623 + 91
12780 + 85
10803+ 78
7260+ 64
4470 + 50
3455+ 44

5 645+ 26
5064+ 24
4619+ 23
3542+ 21
2877 + 20
2278+ 17
1936+ 16
1551+ 14
1214+ 13
1092+ 13

945 + 12
845 + ll
665 + 10
511+ 9
422+ 9
329+ 8
291+ 8
262+ 8
227+ 7
162+ 7
96+ 7

0.941
0.932
0.921
0.910
0.896
0.881
0.874
0.866
0.857
0.844
0.841
0.834
0.830
0.828
0.824
0.819
0.817
0.814

0.644
0.594
0.544
0.455
0.394
0.345
0.307
0.281
0.253
0.241
0.228
0.214
0.202
0.189
0.183
0.178
0.175
0.173
0.169
0.166
0.164

0.983
0.960
0.954
0.924
0.896
0.851
0.826
0.788
0.722
0.675
0.656
0.614
0.555
0.520
0.480
0.395
0.310
0.273

1.001
0.990
0.987
0.944
0.915
0.870
0.850
0.795
0.742
0.721
0.689
0.673
0.613
0.556
0.514
0.460
0.435
0.416
0.392
0.334
0.259

0.20
0.20
0.21
0.22
0.22
0.25
0.26
0.27
0.31
0.38
0.57
0.78
0.81
0.68
1.56
2.49
2.46
2.83

0,23
0.23
0.25
0.30
0.35
0.38
0.42
0.46
0.55
0.62
0.61
0.75
0.81
1.04
1.21
1.54
1.80
1.82
2.20
2.56
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tween the observed integrated intensity and the in-
tegrated intensity from an extinction-free crystal)
for the (100), (200), (300), (400), and (220)
reflections at room temperature, where we know

that the long-range order parameter is close to
unity. At room temperature, we found E,= 0. 91 and

0. 75 for the (300) and the (100) reflections, re-
spectively. In order to obtain an approximate ana-
lytical expression for E, to be used at higher tem-
peratures for the (100) and the (300) reflections,
we compared the room temperature results for E,
to a. relevant theoretical model. Hamilton" has
calculated E, for a cylindrical crystal assuming the
angular distribution of mosaic blocks in the crystal,
W(&) is given by W(&) =1/(2v3g) if [6 (&qv 3 and

W(&) = Q if I & l&R v 3. The results for E, are given
in terms of the quantity

and Hamilton found that

E - 8X!3g

provided that x & 0. 5.

(4)

(5)

Here t/', is the unit-cell volume and x is the radius
of the crystal. At room temperature, the mosaic
width p is the only unknown parameter in Eq. (4),
and by fitting the data to Eq. (5), we obta. ined a
value of 0. 018' for the width of the assumed distri-
bution 2v"37'. We attempted, furthermore, to mea-
sure W(h) by using a nearly perfect Ge crystal as
monochromator and narrow collimation between
monochromator and sample. The angular width of
the rocking curve was 0. 08 FWHM but the shape
of the rocking curve indicated that W(&) might be

adequately represented by a superposition of a few
distributions each having a width of approximately
0. 02'.

We emphasize that the important correction for
extinction was determined exPexirnevtally by com-
parison of the integrated intensities from five re-
flections at room temperature. The theoretical
calculation is only used as a smooth interpolation
at higher temperatures using Eqs. (4) and (5) and

with iterated values of M(T).

B. Lattice Vibrations

The thermal vibrations of the lattice imply that
the Bragg-scattering cross section for the rigid
lattice [Eq. (1.)] is diminished by the Debye-Wailer

factor exp[-((K u)2)] where u is the amplitude of
the vibration. We do not need to specify in detail
what the average symbol ( ) stands for (the result
for a, monoatomic Debye solid is well known' ) but

we note that the correction is of the form
exp [ —&,(T)h ] for any (&00) reflection. ,

Furthermore, the presence of lattice vibrations

implies that some of the neutrons detected are not
scattered elastically but have rather created or
annihilated a phonon in the scattering process. The
count rate from such processes is conventionally
called the thermal diffuse scattering (TDS) back-
ground. We have estimated this correction using
the spherical approximation [Willis, ' Egs. (7. 7)
and (7. 9)] and we conclude that the correction to
D due to TDS is of the order of 1/0 for the (3QQ)

data and an order of magnitude less for the (100)
data. Furthermore, when the TDS correction is
small it is, also, of the form exp[-B2(T)h ]. The
temperature-dependent parameter B(T)=B,(T)
+ 82(T) can thus be determined experimentally by

comparing the extinction corrected intensities of
the (100) and of the (300) reflections at any tem-
perature. ' These corrections are ginen in Table I.

C, Other Corrections

The constant background was measured at sever-
al points at each temperature and subtracted from
the peak-height intensities.

The critical scattering background was estimated
from measurements of the resolution function, the
critical scattering intensities above T„and the
known ratio of the scattering above and below T, .
This background was small except at the points
nearest the ordering temperature.

IV. RESULTS

The measured and corrected intensities are giv-
en in Table I. The corrected peak intensities for
each reflection were converted to the long-range
order parameter M(T) by normalizing to 0. 996 at
room temperature. The listed relative errors are
less than the inverse square root of the tabulated
intensities because several points in the rocking
curve were used to obtain each peak intensity, and
the actual counting time for the (300) reflection
was 2. 5 times that for the (1 00) reflection.

The long-range order parameter M is plotted in
Fig. 2 versus the reduced temperature f = 1 —T/T, .
The top part of this figure is a linear plot, where-
as, the bottom part is a double logarithmic plot
displaying the power law[Kg. (2)] for the data near
T,. It is obvious that the two sets of data of the

(100) and of the (300) reflections are consistent,
although the corrections for extinction and lattice
vibrations are quite different for the two reflections
as seen from Table I.

Theoretical predictions of M(T) are, also, shown
in Fig. 2. The dashed line in the upper part of Fig.
2 represents the magnetization obtained from the
mean field approximation with S = —,

' . The lower
full line is the prediction for the rigid, incom-
pressible Ising bcc lattice and was obtained by the
Pads approximant method. ' Essam and Baker
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I I I I TABLE II. Amplitude and exponent of the long-range

order for 0.003& t&0.03.

MEAN FIELD, S =

RIGID ISING LATTI

COMPRES. ISING L

EXPERIMENTAL:

Theoretical value for
compressible bcc lattice-
Essam and Bakex

Least-squares fit of
data in Fig. 2 varying
BandP

Least-squaxes fit of
data in Fig. 2 varying
B vgth P fixed equal to 0.293

1.49

0.315+ 0.007 1.63 + 0.05

0.293 (fixed) 1.50 + 0.01
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I I
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0.2—

have estimated the effect of the compressibility of
the lattice using Domb's model. In this model the
lattice can only expand uniformly, i.e. , fluctua-
tions in the nearest-neighbor distance are neglect-
ed. The variation of 1', versus volume was obtained
from Yoon and Bienenstock's measurements
T, versus pressure and their estimate of the com-
pressibility at the critical temperature. The vari-
ation of the lattice parameter versus temperature
was taken from the x-ray data of Omen and Pickup.
The results of Essam and Baker are shown as the
uppex full line in Fig. 2. It is x'emarkable that the
experimental data fit this theoretical curve so well

ii I I l I I 1 I llil I 1 I I l I llll I I

I.O 0.50 0.20 0. I 0 0.05 0.02 0.0 I 0.005~ REDUCED TEMPERATURE t = (Tc —T)/T0

FIG. 2. Long-range order parameter M(P in P brass
as determined by the intensity of the (100) and the (300)
supexlattice Bragg reflections at constant pressure.
The data wexe normalized to 0.996 at room temperature.
Also shovm are theoretical predictions for M(T) in the
mean field approximation (dashed curve), for the Ising
magnet at constant volume (lovrer full line) and for the
Ising magnet at constant pressure (upper full line).

over the whole temperature region, since only near-
est-neighbox interactions were assumed in the theo-
ry.

Within the temperature region 0. 003& t & 0. 03, the
theoretical prediction for the compressible Ising
lattice is well approximated by a power law with
an effective value of P = 0. 293 and D = I.49. With-
in this temperature region a least-squares fit of
our data to a power law gives the results shown in
Table II. It should be noted that there is a pro-
nounced correlation of probable values of P and D.
This is seen by keeping one parameter, say P,
fixed and allowing the other parameter to vary in
the least-squares fit, as shown in the last row of
Table II. Since we did not take much data close to
T, and since the small size of our sample led to
low intensities, we expect our value of P to be
less accurate than values obtained earlier. '

We conclude that there is excellent agreement
between experimental data and the theoretical
results for the compressible Ising lattice at all
temperatures and this is clearly brought out in
Flg. 2.

Finally, it should be noted that the experimental
data on the order-disorder transition in P brass
as a whole are in slightly better agreement with the
compressible Ising lattice than with the rigid lat-
tice —the final comparison will be published else-
where.
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Many-Electron Effects in the Optical Conductivity of Simple Metals by Kubo Formula*
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Starting from the Kubo formula for the optical conductivity, we review, reformulate, and
generalize our previous one-electron theory of the optical absorption of solid and liquid al-
kali metals to include many-body effects due to electron-electron Coulomb interactions. The
optical matrix element (g&, ) V'( (&), which was previously calculated in terms of an "optical
pseudopotential, " is rederived from a second-order scattering of an electron (quasiparticle
in the many-body theory) by the Coulomb field of the ions and the applied photon field. The
result is then represented by Feynman graphs similar in the lowest order to the "bremsstrah-
lung" of quantum electrodynamics, and shown, accordingly, to give rise to four categories
of many-electron effects, viz. , screening effects (usually incorporated in the one-electron
approximation), electron self-energy effects, electron-photon and electron-ion vertex cor-
rections, and final-state interactions. The changes of the one-electron result due to self-
energy and to vertex corrections counteract each other in sodium and potassium, leading to
no more than 10% net change; accordingly, the only appreciable enhancement comes from
final-state interactions involving virtual exchange of plasmons, considered previously by
Mahan.

I. INTRODUCTION

In this paper we shall review, reformulate, and
generalize our previous calculation' (hereafter
referred to as AI and AII) of the optical conduc-
tivity o(~) of solid and liquid alkali metals, to in-
clude many-body effects due to electron-electron
Coulomb interactions. In a subsequent paper, we
shall consider a second aspect of many-body ef
fects, namely, that due to electron-Photon-ion
interaction —its effects on the optical effective
mass and its implications on photon-induced su-
perconductivity recently introduced by Kumar and
Sinha. The calculation to be reported in this pa-
per will be based on the Kubo formula' and the
optical pseudopotential method introduced in AI,

since these approaches have been found to be both
simple and in reasonable accord in the one-elec-
tron approximation w'ith the recent measurements
of the optical properties of sodium and potassium
by Smith. However, since many calculations of
optical. properties, both in the one-electron ap-
proximation' and including many-body effects,'

exist in the literature, our emphasis will be on

providing a simple and complete picture which will
transcend all previous quantitative calculations,
and furnish a basis for future investigations in this
area. This simple picture —consisting essentially
of a second-order scattering involving an elec-
tron-ion vertex and an electron-photon vertex
similar to the "bremsstrahlung" of quantum elec-
trodynamics —will be derived in Sec. IIB.


