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It is shown that for the spin-8 exchange-interaction model of ferromagnetism the 28-"in-
dependent" multipolar (48-polar) phase transitions are in fact exactly degenerate with the
usual dipolar transition.

The Heisenberg Hamiltonian lineax' in S&' S~
which forms the point of departure for most modern
theol'1es of Inagnetlsxn ls 1Q fRct OQly tIle lowest-
ox'der slgnif1CRQt term 1n R yerturbatlon expRnslon
which when carried further leads to terms non-
linear in S&' S~. Because of the yx'esence of these

3(small? ) nonlinear terms in 8& 8~ for systems
of spin S & —,, there exists the possibility of yhase
transitions associated with the various multipole
moments of the system'& in addition to the one
usually associated with its dipole moment. There
is as yet no rigorous statistical mechanical cal-
culation which goes very far in taking such terms
into account. ~ Recently, howevex, the Schrodinger
exchange operator which is an essentia, lly non-
linear operator in Sz ~ S~ (for 8 &—', ) has been used
to fox'm Rn exchange-1ntel Rct1on xnodel of fex'1 0-
magnetism. y The coefficients of the terms in
(8& S~)" (1&n&2$) are chosen suchthat this op-
erator permutes the spin coordinates of atoms
labeled f andg. For the case 8=l, the coefficients
of the terms linear and quadratic in S& S~ have
equal magnitude. A large numbex of terms in the
high-temyerature expansion of various thermody-
namic quantities have been obtained by the use of
group-theoretic techniques. Vfhile these combi-
nations of nonlinear terms may not be realized in
nature, considerable insight into the effect of non-
linear terms in the Hamiltonian on critical prop-

erties has been obtained. ' For this model, the
critical index y which characterizes the divergence
of the (diyolar) susceptibility is quite different
from that of any other model (for 8 &-', ). Further-
more, it ayyears that experimental" values of
y are bracketed from below by those of the ex-
change model and from above by those predicted
fox' the Heisenberg model The purpose of the
present paper is to show that for this model all of
the 28-independent multipolar (48-polar) transi-
tions Rre in fact exactly degenerate with the diyolar
transition. This means that considerable care
must be exercised in the interpretation of yroyosed
exyerimental attemyts to observe such transitions.
For the case 8= 1, a null result in attempts to re-
solve dipolar and quadriyolar ordering effects
couM equally well be used as evidence for the fact
that the ratio of biquadratic to bilinear terms in the
Hamiltonian is very small, or quite close to unity.

The Hamiltonian for the exchange-interaction
model of ferromagnetism ls

Z ping Q=Z S.y
&f~z&

and 7 is the magnitude of a nearest-neighbor ex-
change interaction, P&~ is the Schrodinger exchange
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operator, IJ is an external magnetic field, N is the
number of spins in the system, and rn =gILt, a, with

g the gyromagnetic ratio and p, & the Bohr magneton.
The low-field susceptibility is given by

8 QX 2X=lim P- 2 lntre =m PE(Q),
H-O

(8)

p=(&a~) ', and &(Q)=&Q'&g-&Q&g

is the zero-field thermal fluctuation of Q with

&Q&z =trQe 0/tre

(4)

ka is the Boltzmann constant and T is the thermo-
dynamic temperature. As 7- 7'„ the susceptibility
X-~, and hence b.(Q)-~.

As previously mentioned, for systems with spin
8 &—,', there are other kinds of order parameters
besides Q with which phase transitions might be
associated. In older to study the posslblllty of
such transitions, we consider first the following
modified Hamiltonian:

&a=&0-&Q ~
(8)

Here F=2S+1, and j. is the identity operator. The
primes in the double sums over f and g mean that
terms for which f=g are to be excluded. Since
&S«&«=S(S+1)=X, it immediately follows from this
result and Eq. (11) that the left-hand side of Eq.
(12) diverges at the same T, as X in exactly the
same way.

Since both X„and gI «&Pz« —(I/I') 1&~ are exten-
sive quantities, it follows from the cluster-ex-
pansion method' that we need only prove Eqs. (10)
and (12) for all finite clusters. Let us define a
quantity W„(S) by'

W(S)=Y ' g mn

%'e now prove the following two theorems.
Theorem I. Let f andg be any two sites in a

finite cluster of N sites. Then

&s,",s,",), -&s~&, &s"„&,=(w,„-w„') ~-'&s, s,), .
(14)

Proof. It is shown in the Appendix that for any
element P of the symmetric group G of degree N

trs«yP = W„trP, f & N .

N

Q„=Q 8",g, n = 1, 2, ~ ~ ~, 28

and f is some (fictitious) external field. We define
a generalized susceptibility X„by

It is then straightforward to show that

&s".y&8
= w. .

Hence

&s."ys".«&e -&Ry&s &s".,&a

(16)

, a'
X„=lim P-~

2 lntre
gg2

By definition X&™X. Since 6' and Q„commute, as
did'' and Q, we have

x.= p~(Q. ) .
%e are then able to prove that

x/x, = D.(s), (lo)

I

&Py, -(1/I")1&g=(4/I')Z &8«8,&«.

where D„(S) is a quantity which is independent of
both lattN:e and temperature. This means then that
for a given lattice, all of the X„-~ at the same
temperature T', in exactly the same way.

Since the (dipolar) susceptibility, Eq. (3), can
also be written in the form

x=-,'m'pg &Sy 8,&t,
f«s

it is really necessary to investigate quantities of
the form g&«&(8& 8«)"&z for 1&n&2S. However,
for both computational and theoretical reasons, we

have restricted our attention to the single quantity

gz «&P««&~. We are then able to prove that

r(ts"„g 6'" - W.
' ~.=0 &~ -0

withe=PJ. It is also shown in the Appendix that
for f, g&N and PEG,

trs,"&S~P = W2„trP iff=g or f,g belong to the
same cycle in P

= W„ trP if f,g belong to different
independent cycles in P . (18)

If the finite cluster of N sites contains l, nearest-
neighbor pairs, there are xl, terms in6 ". Each
term is the multiplication of x group elements P«
and hence is also an element in G. Denote the sum

of terms with f,g in the same cycle by s,'" and

the sum of terms with f,g in different independent

cycles by 6 „'":

(p
(1) + (p(2) (»)

It then follows from Eq. (18) that for any r in Eq.
(IV)

trS"„8"„S'"—W„'tr6 "= (W,„W„')tr a „'-" . {2O)

Hence
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&s, s,&, =8(s„s„&,

=X P —trS'„"' Z —
t
tr8'",

r=0 r= 0

Comparison of Eqs. (21) and (22) immediately
yields the statement of Theorem I, Eq. (14).

Theorem II. Let f and g be two different sites
in a finite cluster of N sites. Then

&pg, —(I/y) I&g = (4/y) &~g
' s,&s (2

Proof. From a consideration of Eqs. (5) and
(22), we need only prove for each r that

tr[P„- (I/F) 1] 6 "= (12/y) trS~ S„o'". (24)

(s".ys" &s
—&s",~&s &s"*,&s

K"
(~ SP

=(W,„-W„')g —,tr+„"& P —,tr6" . (21)Rtf tt ~ f r-0 +

For n= 1, (S~~&8 ——Wq
——0, Wq= gX, and Each element of the symmetric group can be

written as a product of commuting cycles. Any
group element, say P, can be written in the form

P = (abc ~ ~ de)(it% ~ ~ m) ~ ~ ~ (&y' ' ' ~) ~ (Al)
where

(abc" «)=(«)(ad) "(ac)(ab)=p p . ..p p

(A2)

The indices in each cycle refer to different lattice
sites.

%e first prove the following three results:

tr(iju "m) =g g g "Z (5.
g f 8' Sgy gttt,

. . . 5 . .,...) = Z (1)= F . (A3)

susceptibility series are completely characteristic
of this model. '

APPENDIX: PROOF OF EQS. (15), (18), AND (25)

It is shown in the Appendix that for any pair of
sites f,g and for PEG,

trP&, P = & trP if f,g belong to the
same cycle in P

= Y ' trP if f,g belong to different
independent cycles in P.

Hence from Eqs. (19) and (25)

tr[p~, —(1/Y) 1]a "=(F —1/I') tr6'„'"

=(4X/r) trs „"& .

{2s)

All sums in this equation, and the next two, range
from -S to +S. Similarly,

trS"„(itu "m)=g gg ".g {S"., 5,
gtn

"5. . )=Z(s".;)=Fw. (A4)
8 '

tr S"„Sgg(R ~ jl ~ ~ m)

Now let n= 1 in Eq. (20):

trS„S„6'"= —,'Xtr ~„'" .
Equation (24), and thence (23), follows directly
from Eqs. (26) and (27), so that Theorem II is
proved.

Performing the appropriate sums over lattice
sites, Eqs. (10) and (12) follow directly from
Theorems I and II, respectively. Note that The-
orems I and II also hold for f,g belonging to dif-
ferent (disconnected) clusters, and they contain
considerably more information in them than that
which we have utilized. For example, since for
T&T„(S,~ S &~=3M'/m'=0, it follows from
Theorem II that (P, —F '1) = 0. Here the sub-
scripts indicate the limit of infinite separation and
M is the spontaneous magnetization per spin. It
also follows from these theorems that for S= 1,
&S.ss.r S.~ss.&a=0~ f~g.

Hence we conclude that for the exchange-inter-
action model the 2S-"independent" multipolar
(4S-polar) phase transitions are in fact exactly
degenerate with the dipolar transition. This means
that the unusual values of y (for S & —,") predicted
on the basis of an analysis of the high-temperature

= Z Z "Z Z " (s.",s.", 5, ,„„~~ ~ 5„,.„„8t i Ssk ~gj Scl

~ ~ ~
?~

~ ~

ssi~szl Sgt ~em

(As)=g (s,'", )=I'w,„.
8gi

Now, in Eq. (Al), since there a.re no common
indices in each cycle, P may be considered as the
direct product of each cycle:

P=(abc ~ ~ ~ de)x(ijk ~ ~ ~ m)x ~ ~ ~ x(xy ~ ~ ~ g) . (A6)

(fg)(fa ~ ~ ~ bgc ~ ~ ~ d) = (fa ~ ~ ~ b)(gc ~ ~ d) (A7)

(fg)(fa ~ ~ ~ b)(gc ~ ~ ~ d) = (fa ~ ~ ~ bgc ~ ~ ~ d) . (A8)

Equations (A7) and (AB) imply that for any group
element P, (fg)P has one more cycle than P if
f,g belong to the sa.me cycle in P and one less cycle

Since the order of the individual cycles, as well as
the first index in each cycle, is arbitrary in Eqs.
(Al) and (A6), Eqs. (15) and (18) of the text follow
immediately from Eqs. (AS)-(As), since trAx 8
= (trA)(trH).

It is straightforward to show that
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than P if f,g belong to different independent cycles
in P. Since by Eq. (AS) the trace of each cycle is

just l', use of Eq. (A6) and the trace property of the
direct product then directly gives Eq. (25).
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Optical absorption, refractive index, dielectric constant, nonlinear optical coefficients,

and linear electro-optic coefficients are reported for single-domain crystals of Ba~NaNb50~5

between room temperature and the Curie temperature. Orthorhombic (.mm2) barium sodium

niobate, a filled tungsten-bronze structure, is stable to intense laser radiation, and its phase-

matchable nonlinear coefficients are 3 times those of LiNb03 and LiIO3. For the 1.064-pm

laser fundamental, the observed phase-match temperatures and the angular half-widths of

the phase-matched second-harmonic intensity due to the coefficients d3& and d32 are found to

be in good agreement with the values calculated from refractive-index data. The dielectric

constant and electro-optic half-wave voltage data indicate that Ba2NaNb50~5 is a useful elec-

tro-optic modulator material. The temperature variation of the spontaneous polarization

P~ is deduced from the birefringence, electro-optic, nonlinear optical, and pyroelectric

data. It is concluded that the ferroelectric transition in Ba2NaNb50&5 is of the first order.

I. INTRODUCTION

A large number of single crystals of a series of

ferroelectric mixed alkali- metal alkaline- earth ni-
obates ' have been grown that have very advanta-

geous nonlinear and electro-optic properties. These
compounds have structures that are related to te-
tragonal tungsten bronze with a general formula
(Al), (&2)4(c)4(&i),(&2),0,0. The term "tungsten
bronze" derives from the potassium tungsten oxide
compositions that have this structure, which have

been discussed by Magnelli and Blomberg, Vfadsley, ~

Francombe and by Jamieson, Abrahams, and Bern-
stein. The unit cell contains 10-NbO6 octahedra

which can accommodate up to four cations in 10-
coordinated tricapped trigonal prismatic (A. 2) sites,
two cations in somewhat smaller 12-coordinated
cubo-octahedral (A. l) sites, and four cations in rel-
atively small 3-coordinated planar trigonal (C)
sites. The number of A and C sites occupied is de-

termined by the cations available in accordance with

the requirements of electroneutrality. %hen all of

the A1 and A2 sites are occupied by cations the

structure is termed as "filled" whereas a, "com-
pletejy filled" structure implies that the C sites are
occupied a,s well.

A very attractive property of these filled and

completely filled tungsten-bronze-type niobates is


