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The critical values of the ratio of interaction energies at which the ordering of spins in the
ground state is indeterminate (and probably 7,=0) are calculated exactly for a variety of Ising
lattices with antiferromagnetic next-nearest-neighbor coupling, and for anisotropic nearest-
neighbor coupling. Using these results and the exact two-dimensional solutions, the general
dependence of the critical point on interaction ratio is sketched. The complex case of the anti-

ferromagnetic fcc is reconsidered.

The effects of introducing higher neighbor inter-
actions in an Ising model have been investigated re-
cently by series expansion methods '~ by exact two-
dimensional solutions *° and by closed-form approxi-
mations =% One of the problems is to determine the

dependence of the critical point (Curie point 7',) on
the strength and sign of the next-nearest-neighbor
interaction. It is generally expected that an anti-
ferromagnetic next-nearest-neighbor interaction
will depress the critical point, and if sufficiently
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strong will alter the structure of the ground state.
For some critical value of the ratio of next-nearest-
neighbor (nnn) to nearest-neighbor (nn) interaction
energy, it is expected that T, will vanish. Domb
and Potts' showed that for the square lattice 7,=0
when the nnn interaction is antiferromagnetic and
half the strength of the nn interaction. Some pre-
liminary estimates of the critical ratio have been
made on some three-dimensional Ising lattices by
Dalton and Wood.® In the present paper, we calcu-
late the critical interaction ratio exactly for a vari-
ety of Ising lattices, and sketch the general depen-
dence of critical point T, and disorder point? T, on
nnn interaction strength (Fig. 1). Finally the prob-
lem of the antiferromagnetic face-centered cubic
(fcc) lattice with anisotropic nn interaction is con-
sidered in the same context.

Consider an Ising model with “spin” variables
oz=+1 at lattice sites ¥, and Hamiltonian

Z(’:—Jl E O'i.O'i::—Jzz(J'f.O}l, (1)
nn nnn

where the first sum is over all nn pairs of spins and
the second sum over all nnn pairs of spins. Each
coupling is ferromagnetic or antiferromagnetic ac-
cording as J,,, 2 0. Letq,, g, be the coordination
numbers of lattices containing, respectively, nn and
nnn bonds only. There will be two equivalent nnn
sublattices for loose-packed (nn) lattices and more
than two for close-packed lattices. At T'=0 the
spins acquire a configuration with the energy of the
ground state, which is at least twofold degenerate.
If |J,1 > |J,| the ground state is that of a lattice of
spins with nn interactions J, only, which is ferro-
magnetic if J, >0. On the other hand, if [J,]>> [J,],
the ground-state configuration of spins on each sub-
lattice of nnn spins is that with respect to nnn inter-
actions J, within each sublattice only. Ground-state
configurations of the nn and nnn (sub)lattices may
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be compatible, as in a completely ferromagnetic
lattice with J, J,>0, for which all spins are par-
allel in a ground state. But when nninteractions are
ferromagnetic (J; >0) and nnn interactions antiferro-
magnetic (J, <0) then ground-state configurations for
[Jy1 > [Jal and |J,1 > |J)] are not compatible, in
general. A similar situation obtains when all
interactions are antiferromagentic (J,,J,<0). Let
r=dJ,/|Jd,| and p=q4/q,. If we start with a ground-
state arrangement for |J;| > |J,| and increase the
strength of the antiferromagnetic nnn interaction,
then at some “critical” value p, of the ratio p, the
ground-state configuration will change over to that
appropriate to a lattice with |J,| > |J;|. We are
assuming that there is no third configuration which
is the ground state for some intermediate range of
p. (This question is discussed further below.) p,
may be determined by equating the expressions for
the ground-state energies calculated for the cases
[Jy 1> |J,l and |Jgl > |J,], and solving for p=p..
The value of the ground-state energy is a maxi-
mum when p=p,, and the critical temperature T,
is then expected to be a minimum (probably zero).
Our results are summarized for a variety of one-
two-, and three-dimensional lattices in Table I
where values of ., p.,, and the ground-state ener-
gies per spin for |Jy| > |J,] and |J,| > |J,| are
presented. In part A of Table I we include the more
familiar regular lattices with nnn antiferromagnetic
interactions introduced. In part B, we consider
some anisotvopic Ising lattices, which with appro-
priate choice of J; and J, also fall into a scheme
of nn lattices with nnn interactions. For example,
the two-dimensional triangular lattice may be re-
garded as a square lattice, with nn interaction Jy,
and one set of diagonal bonds, with nnn interaction
J,. Similarly, we may regard the fcc as a nn bee
lattice and a set of nnn quadratic layers, by choos-
ing the interactions within a principal plane to be

)

TABLE I. U0 (0), U® (0) are the ground-state energies per spin when |J;|> or < | Jy|. g¢y,q, are the coordina-

tion numbers of nn and nnn lattices.

The critical ratio is p,=qq7./q1=q2J2/q1 | J1! .

Lattice @ a5 U 0), 1d;] > | dyl U2 (0), |dyl > 1y 7 Pe
lc(1,2) 2 2 — 1 dyl + 1 dyl — | dyl -3 -3
lea(1,2) 2 12 —1dyl +5 1,1 -3 1 dyl -1 -1
sq(1,2) 4 4 =2 1Jdy] +2 |yl -2 1yl -3 -3
n(1,2) 3 6 -3 1Jdy1 +3 |yl =1 dyl =311 -3 -3
A sc (1,2 6 12 —3 [ dy| +6 | Jy] -2 1dyl = |yl -% -3
bee (1, 2) 8 6 —4 | Jdyl +3 | d,] -3 |yl -2 -1
fee (1,2) ;>0 12 6 -6 [Jyl +3 | d,l -3 |yl -1 -3
fee (1, 2) J1<0 12 6 —21d1 +1d,] -3 1yl -3 -1
Diamond (1, 2) 4 12 —21dy] +6 [ dyl -2yl -i -3
Triangular 4 2 =2 |Jdy[ +1Jyl = 1dyl -1 -3
B Union jack 4 22 =2 1dil +1dy) = 1dyl -1 -3
fee 8 4 —4 1 dyl +2 [yl -2 | dyl -1 -1

2Effective g, is quoted.
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J,, and that in the four extraplanar directions to

be J,. Also the union-jack lattice may be construct-

ed out of a square lattice by introducing nnn bonds

along alternate diagonals. And the linear chain may

be augmented by all nnn bonds Ic (1, 2), or with only

alternate nnn bonds, Ica(1,2). When the nn lattice

is loose packed, we need not take special account

of the sign of J;, but the cases of the close-packed

fce (1, 2) with J; 2 0 must be considered separately.
The mean-field approximation gives

T (p)/TL0)=1+p

so that T,=0 when p=p,=-1. However, the mean-
field method does not take lattice structure into
account properly, and so cannot be expected to give
correct results for the Ising model. We now show
that p,= —é quite generally for loose-packed nn lat-
tices with loose-packed nnn sublattices, so that
both ¢, and g, are even. The ground-state energy
per spin when |J,| > |J,] is, independent of the

sign of Jy,

UP(0) =3 (=g 111 +q51d51). (2)

Next, since each nnn sublattice may be subdivided
into two equivalent sublattices (by meaning of loose
packed), a twofold degenerate ordered antiferro-
magnetic ground state is obtained on each nnn sub-
lattice when [J,| > [J;|. The net energy contribu-
tion from nn interactions is then zevo, since the g,
nn spins to a given central spin lie in pairs on ad-
jacent sites of the other nnn sublattice, which has
antiferromagnetic order. So the ground-state en-
ergy per spin when |J,1 > |J,| is, independent of
the sign of J;,

U(Z)(0)=—%‘I2|le- (3)

Equating (2) and (3) gives p,=—3. The fcc(1, 2) may
be dealt with similarly when J; >0, but requires
special consideration when J; <0. Lattices with
close-packed nnn sublattices, such as the sc and
diamond which have two fcc nnn sublattices, must
be treated separately. For comparison with our
exact results, we quote the “bounds” for », esti-
mated by Dalton and Wood®: sc, —0.4<7,<-0.2;
bce, —0.8<7,<-0.6; fcc, =1.0<7,<~-0.17.

Our implicit assumption that only two types of
ground-state configuration occur, and that a unique
p. is determined by equating their ground-state en-
ergies needs justification. A rigorous proof seems
difficult, but we are able to provide a heuristic ar-
gument. The energy of any specific arrangement
of spins on a lattice is a linear function of the in-
teraction J; and J,, and is given by (2) and (3) for
the two types of configuration which yield a ground
state for an appropriate range of values of J;, and
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J,. Let p, be determined by the intersection of

(2) and (3). We have to demonstrate that no lin-
ear combination of J; and J, corresponding to

the energy of a spin configuration can lie below

the energies in (2) and (3). It is sufficient to
consider the energies of spin configurations at
p=p. for a fixed value of |J;|. The effect of

fixing |J,| is to normalize the energy. Clearly,
the ground-state energies are given correctly by
(2) when [J,]> |J,| and by (3) when |J,1 > |J;].

(2) and (3) continue to be correct right up to p,
unless a linear combination of J; and J, corres-
ponding to the energy of some other spin configura-
tion lies below the energy value U® =~ iq,[J,1
appropriate to (2) and (3) at p,. A proof that U®
is indeed the ground-state energy at p, has eluded
us. The ground-state spin arrangements when

[Jy 1> |J,] and |Jy] > |J)] do exhibit simple period-
icity compatible with the lattice structure, and
have energy U® at p.. But they are not neces-
sarily the only spin arrangements with energy
U® at p,. It is our belief that other less simply
periodic spin arrangements have energies greater
than or equal to U® at p,.

Let us next summarize the qualitative depen-
dence of T, on p for exactly soluble two-dimen-
sional models. (Assume J; >0 for simplicity in
describing the phases.) Figure 1(a) shows this
dependence for the union-jack lattice.*'? While
pe<p <0, T, is a monotonic increasing function
of p, with T, p) =0 at p,=—3. At temperatures
below T, there is ferromagnetic long-range or-
der. In a range of temperatures above T, there
is ferromagnetic short-range order up to a tem-
perature T, the disorder point ® above which the
short-range order is oscillatory. The nnn axis
pair correlations are antiferromagnetic above Tp.
If —1J,] <Jp; <=0.907 X |J;| there is an interven-
ing antiferromagnetic ordered phase, with upper
and lower critical points 7¥. The ordering of this
antiferromagnetic phase, which extends below T:‘
for —« <p<p.. is with respect to the nnn lattice,
which is itself a two-dimensional quadratic lat-
tice. The dependence of T, on p for the triangulay
lattice, 1! regarded as a quadratic lattice with
a single nnn interaction, is displayed in Fig. 1(b).
There is no antiferromagnetic ordered phase (T’:
=0) for —o <p<p,=—-3. Thismay beattributedto
the fact that the nnn lattice is a set of disconnected
one-dimensional chains, which do not exhibit
long-range order. The short-range order above
Tp is oscillatory with temperature-dependent
wavelength.®'*  [The situation for the completely
anisotropic triangular lattice is more complex.
Different sets of bonds may be regarded as form-
ing the effective nn lattice above and below p..
The dependence of T, and T: on p is similar to
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that in Fig. 1(c).]

On the basis of these results for the two-di-
mensional lattices, and the existence of a critical
ratio p,, we suggest that the qualitative features
of the phase diagram for three-dimensional lat-
tices will be as follows when J; > 0:

(i) There is a critical point T,(p) when p,
<p<w, below which there is ferromagnetic
long-range order (p, <0). 7T.0) is that of the
nn lattice, and T (») is that of the nnn (sub) lat-
tice. T, p,) =0 and T,(p) increases with p at
least up to J,=J; > 0.

(ii) When p > 0 there is ferromagnetic short-
range order above T,

(iii) When p, < p <0, there is ferromagnetic
short-range order between T, and the disorder
point T'p.

(iv) Above T, the short-range order is os-
cillatory, at least along the nnn axes. [The wave-
length of oscillation may be dependent on tem-
perature, as for the triangular lattice (7, point
of first kind), or independent of temperature, as
for the union-jack lattice (T, point of second
kind). ]

(v) There may be an intervening antiferro-
magnetic long-range order phase between upper
and lower critical temperatures T [Fig. 1(a).]
Otherwise the phase diagram is similar to Figs.
1(b) or 1(c).

(vi) When p < p,, there is a critical point
T:‘ (p) below which there is antiferromagnetic
long-range order on the nnn (sub)lattices, pro-
vided these are two or three dimensional. Tc(— o0)
is that of the nnn (sub)lattice alone. [Neighbor-
ing spins on different (sub)lattices are uncorrelat-
ed at 7 = 0 when both nn and nnn lattices are
loose packed, and generally are (weakly) corre-
lated by the nn interaction J; at finite tempera-
tures. ]

(vii) There is antiferromagnetic short-range
order above TF on the nnn lattices, whose nature
is probably related to the type of short-range
order above T, when p,<p <0. [HK T, is of the
second kind, we expect that the antiferromagnetic
short-range order above T,, for p,<p <0, con-
tinues above T: for p <p,. Whereas, if T is
of the first kind, so the short-range order above
T, for p. <p <0 has temperature dependent wave-
length, then there may be a disorder point Tp

which terminates the antiferromagnetic short-range

order phase above T, Allowance may be made
for the intervening ordered phase in (v) if neces-
sary. ]

The case J; < 0 may be dealt with similarly,
provided the nn lattice is loose packed.

To provide discussion on these suggestions,
we take as an example the antiferromagnetic fcc
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FIG. 1. Schematic dependence of T,, T¥, and Tp,
(scaled) on interaction ratio p=gqyJy/q;|J;| (also scaled)
for various Ising lattices. Discussion of the regions
(i)—(vii) is in the text.

lattice,'®'*® which may be assembled from quad-

ratic layers, so that the spins of one layer are
located over the squares of adjacent layers. The
bce lattice constructed from all interlayer bonds
will be taken as the nn lattice with interaction

Jy; < 0. The quadratic layers form the nnn lat-
tices with interaction J, < 0. Then ¢q, =8, ¢, = 4,
and p,=—3. When p,<p <, bec antiferromag-
netic ordering is predominant at sufficiently low
temperatures, and we expect there to be a crit-
ical point T,(p). When p <p,, the ordering is that

of the antiferromagnetic quadratic layers (i. e. two
dimensional), so we expect T (p) to exist. In fact,
estimates of the critical point T (~%) on the basis
of quadratic layer ovdering have been made for the
“isotropic” fcc by Danielian,'? by Betts and Elliott,'
and more recently by Wortis,* who obtains kT /1J|
=0.61+0.06. This suggests that the fcc behaves as
in Fig. 1(a), though some other possibility, such as
Fig. 1(d) cannot be ruled out.



2706 J.

*Research supported in part by the U.S. Air Force
through Grant No. AF-AFOSR-1310-67.

!C. Domb and R. B. Potts, Proc. Roy. Soc. (London)
A210, 125 (1951).

%C. Domb and N. W. Dalton, Proc. Phys. Soc.
(London) 89, 859 (1966); N. W. Dalton, ibid. 88, 659
(1966).

’N. Dalton and D. W. Wood, J. Math. Phys. 10, 1271
(1969).

Y. G. Vaks, A. I. Larkin, and Yu. N. Ovchinnikov,
Zh. Eksperim.i Teor. Fiz. 49, 1180 (1965) [Soviet Phys.
JETP 22, 820 (1966)].

5J. Stephenson, Can. J. Phys. 47, 2621 (1969).

R. W. Gibberd, Can. J. Phys. 47, 809 (1969);

STEPHENSON AND D. D. BETTS 2

J. Math, Phys. 10, 1026 (1969).

'W. Bitterlich and R. J. Jellito, Phys. Status Solidi
28, 365 (1969).

“C. Fanand F. Y. Wu, Phys. Rev. 179, 560 (1969).

%J. Stephenson, Phys. Rev. B 1, 4405 (1970).

R, M. F. Houtappel, Physica 16, 425 (1950).

3, Stephenson, J. Math. Phys. 11, 413 (1970); 11,
420 (1970).

2A. Danielian, Phys. Rev. Letters 6, 670 (1961);
Phys. Rev. 133, 1344 (1964).

Bp. D. Betts and C. J. Elliott, Phys. Letters 18, 18
(1965).

1M1, Wortis (private communication).

PHYSICAL REVIEW B VOLUME 2,

NUMBER 7

1 OCTOBER 1970

Possibility of Multipolar Ordering in the Exchange-Interaction
Model of Ferromagnetism
H. H. Chen and R. I. Joseph

Department of Electvical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
(Received 12 March 1970)

It is shown that for the spin-S exchange-interaction model of ferromagnetism the 25-“in-
dependent” multipolar (4S-polar) phase transitions are in fact exactly degenerate with the

usual dipolar transition.

The Heisenberg Hamiltonian linear in §f' §g
which forms the point of departure for most modern
theories of magnetism is in fact only the lowest-
order significant term in a perturbation expansion®
which when carrled further leads to terms non-
linear in Sf . S Because of the presence of these
(small ?%) nonhnear terms in S, §, for systems
of spin S >}, there exists the pos51b111ty of phase
transitions associated with the various multipole
moments of the system® * in addition to the one
usually associated with its dipole moment. There
is as yet no rigorous statistical mechanical cal-
culation which goes very far in taking such terms
into account.® Recently, however, the Schrodinger
exchange operator® Wthh is an essentially non-
linear operator in S P S (for S>3) has been used
to form an exchange —1nteract1on model of ferro-
magnetism.” ® The coefficients of the terms in
(§, * S.)" (1<n<2S) are chosen such that this op-
erator permutes the spin coordinates of atoms
labeled f and g. For the case S=1, the coefficients
of the terms linear and quadratic in § 5 .S.g have
equal magnitude. A large number of terms in the
high-temperature expansion of various thermody-
namic quantities have been obtained by the use of
group-theoretic techniques.® While these combi-
nations of nonlinear terms may not be realized in
nature, considerable insight into the effect of non-
linear terms in the Hamiltonian on critical prop-

erties has been obtained.'® For this model, the
critical index y which characterizes the divergence
of the (dipolar) susceptibility is quite different
from that of any other model (for S>3). Further-
more, it appears that experimental!! values of
v are bracketed from below by those of the ex-
change model* and from above by those predicted
for the Heisenberg model.'? The purpose of the
present paper is to show that for this model all of
the 2S-independent multipolar (4S-polar) transi-
tions are in fact exactly degenerate with the dipolar
transition. This means that considerable care
must be exercised in the interpretation of proposed
experimental attempts to observe such transitions.
For the case S=1, a null result in attempts to re-
solve dipolar and quadripolar ordering effects
could equally well be used as evidence for the fact
that the ratio of biquadratic to bilinear terms in the
Hamiltonian is very small, or quite close to unity.
The Hamiltonian for the exchange-interaction
model of ferromagnetism is

B=-Je —mﬂéﬂ_éo—mfié, (1)
where
g — N -
¢®= 2 Py, (-5:2 Sers (2)
<f,&> f=1

and J is the magnituge of a nearest-neighbor ex-
change interaction, Py, is the Schrédinger exchange



