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Inelastic neutron scattering cross section for a simple model of itinerant electron antiferro-

magnets is calculated in both the ordered and the disordered temperature regions. The de-

pairing effect due to impurity and phonon scattering is taken into account in terms of a phenom-

enological electron level width. It is found that at low temperatures, where the electron life-

time is long, the neutrons interact with spin waves as described by earlier theories. As the

temperature is raised, the spin-wave lines broaden continuously with very slight change of

velocity. Near, but below the Noel temperature, the energy gap vanishes, and the spin-wave

lines become ill-defined peaks having a flat top centered at the magnetic reciprocal-lattice

point. Finally, above the Noel temperature, the excitations are the well-known paramagnons.

The Stoner type of mode is found to be extremely broadened even at low temperatures (T =—0.5'T&),

so that they are not observable by means of neutrons. The electron mass enhancement due

to magnon and paramagnon interactions is also discussed.

I. INTRODUCTION

Chromium and some chromium-rich alloys are
found to be antiferxomagnetieally. .ordered at low

enough temperatures but possess no localized mag-

netic moment above the ordering temperature. '

These are classified as itinerant electron antiferro-
magnets because the magnetic ordering comes about

as a condensed quantum state of the conduction

electrons (spin-density-wave state) very similar
to the superconducting state in metals. Con-

sequently, one expects the collective excitations
in these metals to be quite different in nature from
the spin waves in Heisenberg-type antiferromagnets.
The most powerful method to use in studying these
excitations is the inelastic neutron scattering tech-
nique, and experimental results for CrMn alloys
have been reported by Als-Nielsen and Dietrich
and by Sinha et al. ' In this paper we follow up Ref.
19 and report the details of our theoretical study

on this subject.
The fact that the ordered state of chromium is

a static spin-density wave of the conduction elec-
trons was first recognized by Overhauser. 8' Lomer'
pointed out that the spin-density-wave state should

be energetically more stable than the paramagnetic
state because the Fermi-surface structure of
chromium allows different pieces of flat suxfaces
to nest into each other. A mathematical model

utilizing the nesting of Fermi surfaces was worked
out by Fedders and Martin. ' In this model one

assumes two parabolic bands, one for electrons
and one for holes. The Fermi surfaces of these
bands are identical spheres which nest into each
other at every point. As a result of the exchange

interaction between the electrons, the electrons of
one band move coherently with the holes in the
other band and form a condensed state with long-
range order. An energy gap develops at the Fermi
level, and the thermodynamic and magnetic proper-
ties of the system are expressible in terms of the
energy gap. Thus, the gap may be regarded as an
order parameter. A number of subsequent papers
deal with more realistic energy-band and Fermi-
surface models &2-16 Zittartzi7 showed that the
coherent motion of the electron-hole pair can be
broken up by scattering with phonons or impurities.
In fact, when the scattering is sufficiently strong,
the energy gap may disappear even though the
system is still in the ordered state. Therefore, a
realistic theo1y must dlstlngulsh between the enex'gy

gap and the order parameter, a situation analogous
to the theory of gapless supel conduct1vlty.

The collective excitations of the spin-density-
wave state have been discussed by Fedders and

Mart1n on the basis of a two-band model and by
Sokoloff' in terms of the Hubbard model. The
purpose of this work is to carry out the spin-wave
calculation at finite temperatures and to include
the scattering effects. We use the diagrammatic
technique to evaluate a double-time nonlocal sus-
ceptibility function for the electron gas and then
relate this function to the neutron cross section.
The method is very similar to that for calculating
the transport coefficients of supereonductors,
except that we must generalize the calculation to
include the wave-vector dependence. One should be
able to use this method to calculate the nonlocal
xesponse functions for supereonductors as well.
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lI. MODEL

We choose to work with a one-dimensional energy-
band model as shown in Fig. 1. We assume that
there are two straight bands for electrons and holes
and that the band energy depends only on the z com-
ponent of the wave vector, i.e. ,

E,&= v/u,
/

for electrons, and

E,-„= 2l1 - v~u, --,'g~ (2. l)
for holes, where p, is the Fermi energy and g is
the length of the reciprocal-lattice vector g in the
z direction. The bands are cut off somewhere in
the x, y directions. The entire band structure re-
peats itself in the z direction with the periodicity
g, and the wave vector of the spin-density wave is
—,'g. Although this model is very simple, it is rather
close to reality because the nesting portions of the
Fermi surface in chromium are very flat and the
separation between the surfaces is nearly one-half
the reciprocal-lattice vector. Adding a few percent
of manganese makes the magnetic structure com-
mensurate with the lattice structure, and the mag-
netic periodicity is exactly as described by our
model.

The Hamiltonian of the system is taken as
H= Ho+H~+H2,

where

H0 ~ (E1kc1k sc1k s+E2 ck2k cs2k )s
ks

which is the band energy of the electrons,

t„
Hf 2 P ~ CgksC& k-f, sC2k', -sC2, k'+z, -s

kk 'qs

which are relevant to the antiferromagnetic cou-
pling, i. e. , the repulsive interaction between elec-
trons with opposite spins in different bands. The
scattering is from a random set of fixed impurities,
although, in the end, the scattering lifetime will
be treated as a temperature-dependent quantity in
order to include also the phonon scattering. The
assumption of elastic scattering makes it possible
to sum up certain diagrams in a straightforward
manner.

We define a two-component spinor operator

.:1k'
ks

t

Cf
~

t~2, R+ (1/2)g, -s

and a 2x 2 Green's function

(2. 3)

G„-,(ys) = ( Tg„",(&) &)&.
' (0)) (2 4)

where

( )
-s&sN H&

~
v-(NN H&-

ks

N= ~ C„k,C„
nks

(2. 5)

which is the number of particle operator, y is the
imaginary time, and T is the imaginary time-or-
dering operator. The symmetry between up and
down spin implies that Gk, (1.) is independent of the
spin. The Fourier transform of Gk(r) is defined by

(2. 6)

where v, = (2l + 1)»/p, p = 1/kHT, and f is an integer.
In the absence of scattering we can write down the
zeroth-order Green' s function

(2 2)

which is the exchange energy between the elec-
trons, and

ff, =uZ Z c„„-,c„f„ei (k '-k) % f.

i nkk 's

[G(0& (i )]-1 k 1

—Ek —ZP)

where

E1k 4 v(~ ~s~ ~N )

(2. V)

(2. a)
which is the scattering interaction. The exchange
interaction is truncated to allow only the terms and k~ is the Fermi wave vector defined by vk~

= p. A self-energy correction due to the exchange
interaction is ignored because this term should be
regarded as a part of the band energy. The energy
gap 24 is given by

VZ k(C1ksc2, k+ (1/2&%, -s) (2. 9)

FIG. 1. One-dimensional band model for the suscep-
tibility calculations.

The expectation values on the right-hand side of
Eq. (2. 9) may be related to the off-diagonal ele-
ments of the Green's function. One then obtains an
integral equation for 4, and this reproduces the
Fedders-Martin theory.

When the scattering interaction is included, we
find in general, with a proper choice of the phase
of 4,



(G(k, v, ) E(k, v, )

(E(k, p, ) —G(k, —pg) j
where the relationship between C and G'o' j.s

Z(k, v, ) =n;iud Zf. G(k', v, ),

where n; is the density of scatterers. Then, the
matrix 8 has the form

Z)k, p) Z2k, pg

Z(k, v, )= i

Z2k, p, —Zqk, —v~

If we define two new functions Z and 4,

Z((k, v, ) = i v, [Z(v, ) —I],

(2. 13)

&2(k, v, ) = & &(v—, ) Z(vg),

then we can solve Eq. (2. 12) and find

Z(v, ) = 1+ I'/2E,

Z(v, ) = a [I + I"/Z, ],
6g+ 7 pg

Z( ) '+~ +5'( )

1 a(v)
F(k~ vr) =

Z(„) 2 ~a ga( )

G
-1

( G (0))-1 (2. 11)

and Z is the self-energy due to scattering. Pol-
lowing the work of Abrikosov and Gor'kov and
Zittartz we write the self-energy as

To solve this equation one must analytically con-
tinue the equation into the real frequency domain
and solve the resulting integral equation numeri-
cally as done in Ref. 21. If we set p, = —i(d+0'
and define

5( —i(o+ 0') = n, ((u) +ia2((o)

then 2&,(0) is the energy gap of the system. The
condition for gaplessness is I" ~ ~.

In our numerical analysis, we choose I" as a
function of the temperature

where I"0= V. 8 meV is the line broadening due to
impurity scattering as estimated from the residual
resistivity and o. = 0. 13 meV/K is the temperature
coefficient for the phonon scattering broadening as
estimated from the McMillan formula. This
formula for I" should be reliable for high temper-
atures, but is not valid below the Debye tempera-
ture, where I'(T) should obey a higher power law.
In this study we are interested only in the behavior
of the material at room temperature and above.
The quantity N(0) V= 0.43 ls chosen to fit 'the ob-
served Neel temperature of 515 K for an alloy con-
taining 2/0 Mn, and the Fermi level p is taken as
1 eV. The results of solving the gap equation are
plotted in Fig. 2, where the order parameter ~,
the half-gap 6,(0), and the electron level width I'
are shown as functions of the temperature. The
magnetic moment per ion is proportional to the
order paraIQeter. The linear drop of + at lowtem-
peratures results from the assumed linear tem-
perature dependence of I". If we use a higher power
law for 1" we would get a more gradual drop of the
order parameter with increasing temperature. The

&f = &g/Z(v, )

@r= [vi + ~ (vi)]

I =2vn, iui9r(0)

(2. 16)

n; is the density of scatterers, and fi(0) is the
density of states for one band and one spin at the
Fermi level. The value of N(0) depends on the
cutoff wave vectors of the energy bands, in x, y
directions. However, there is no need to specify
these cutoff wave vectors because we will use
N(0) as a parameter in the theory The. quantity
I" is the width of the electron level. The self-con-
sistent equation for the order parameter has the
for Dl

200—

g l50

IGG

I 00 200 500 400 500 600
TE;MPERATURE IN K

or equivalently
FIG. 2. Order parameter, energy gap, and electron

linewidth for the model of CrMn alloy.
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energy gap at low temperatures is calculated to
be 310 me V compared with the measured value of
370 me V for a comparable alloy. The discrepancy
may be partly due to the crude a,ssumption of I'(T)
and partly due to the band model, because imper-
fect nesting of the real Fermi surfaces always in-
creases the ratio 2&,(0)/ksT„. ' The energy gap
disappears at about 35 K below the Nhe 1 tempera-
ture .

III. CALCULATION OF THE SUSCEPTIBILITY FUNCTION

;i.st(q) &n ) vi)

msgr,

pr(q ~ vi) (3 6)
St

where

el;;, p„(q, ~„, v, ) =Z „G-pp(k, v, )G„,(k+ q, v, + m„) . (3. 6)

Equation (3. 6) is diagrammatically represented in
Fig. 3. The matrix p is solved by a simple inve r-
sion.

It can be verified that, after conside ring the
translational and spin symmetries,

The differential scattering cross section of
neutrons by a magnetic system is of the form

d o p (6
~ ~

)
Img~p(q, (d)

dodec " ~ ~' 1 —e -)3
m~

(3. 1)

b, c, d,
d) c)

d) 0) b)
C) b) 0)

(3. I)

where q and & are, respectively, the momentum
and energy transfer from the neutron to the elec-
tron gas (h = 1), P = 1/ksT, and we have omitted
factors which are slowly varying in the neighbor-
hood of the magnetic reciprocal- lattice point. For
an electron gas the susceptibility function X,p(q, u&)

as the form 22'

x.&(q, ~) = x.&(q, ~.)
~ „=;..0'

X.,(q, ~„)=-,'Z X f '
( Te-„', (~)o'

kg k Ps '

a, = Zp G(k, v, )G(k+q, v, +&a„)

&
~

= Z f, E (k, v, )F(k + q, v, + &u „)
c, =Xf, G(k, v, )E(k+q, v, +u„)

d, = Z f. F (k, v, )G (k + q, v, + (u „)
The matrix g is found to be

(3. 6)

where the rows and columns of the matrix are
labeled by the pairs of indices 11, 22, 12, 21, and
the matrix elements

xg;,(w) g
~ (0)a' g-„., ",, , (0) ) e'""'dv,

(3 2)

where o (n = 1, 2, 3) are Pauli spin matrices,
= 2mn/P, and n is an integer.

In the Hartree -Fock approximation, we contract
the electron operators in pairs and obtain

X",(q, (u„) = —
p

Z 2 o';, G,,(k, v, )
f,~pr k~

x op„G„,(k+q, v, +(u„) (3~ 3)

~pe~ / 4g ~ ~ +ij @ji pr+pr
fgpr

(3. 4)

where G;,. are components of the matrix G . Because
of the exchange and scattering interactions, we

must make two sets of corrections to this result.
Consider first the scattering from impurities .

By examining the structure of the Hartree -Fock
term, we may infer that, after the scattering cor-
rection is made, we should get

(3. 9)

where

a, +b, +c,+d,'" "=1-,
] ~'(. ..k, ",+d, )

(3. 10)

j
S
I

X
I

1

t

There must be an even number of minus signs in
Eq. (3~ 10).

Now we consider the exchange interaction whose
basic diagram is shown in Fig. 4. We want to
emphasize that only electrons with opposite spins
are coupled by the interaction. Hence, of all the
possible terms of p

'
~, only those involving a spin

flip are enhanced. These terms are

Then the matrix @ must satisfy the equation
6 ji, pr

fit

iBjI,pl'
+ 2 Bj i,st Q st,pr

st

I 1 2~ji,pr(q~ ~n ~ vt) = jir( p~qn& vt) +, &p IM
I

FIG. 3. Diagrams for scattering correction to the
unenhanced susceptibility func tion.
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X,'"(q, ~.) = X".'(q, ~.) =- (1/P)+& p& (3 11)

The ladder diagrams for g, are shown in Fig. 5.
%6 denote

x~(q, ~.) = x. {q,~„)= ~ f, ( &c„-'-,(7)c„-,(~)

x c„', (0)c(",.„-,(0)) 8' »'d7

j.n the actual experiment; so, if k is in the electron
band, k+q must be in the hole band and vice versa.
Hence, in the expl'6sslon fox' og» we may put cj
= v j k, j

—p a,nd tp, ~
= p, —e j k, + Q j in the Green's

functions. Fox' k'8 & 0, we have cg = 5k'g —p»
= —&p —eQ. Then„ the contxjbutj, on to g) js

—,'N(0) f d&(-, |"(k, v, ) G(k+q, v, +(0„)

We replace the limits by +~ and close the contour
above the real axis. The integration over &„" yields

--iv(0) 1+L 1+—'-
4 E, 8). —ivQ+E)+F )+ I'

j@Q +E ) +8 ) ~ + I'

g c,'„(0)c,.„, ,(0))e'""d7

Without the exchange interaction„we find

x&"{q,~.) =-(1/0)&, p&

x2"(q, ~.) = (1/0)&-& t&

(3.13)

(3.14)

From these we find

~
(0)

~
(0) ~

(0) ~(0)

1 —v(xP x' ') ( —('(x ' —xV'))

(3.15)

(0)1+0)+5(+cg+dj
2p ) 1 —n; ~B

~
(Q, +(5(+c+((d)

Then we can sum the diagx'ams in Fig. 5 by solving
the equations

where v, = v&++„and E~ = [v( +& (v( ) j
—3 i/2

part k, &0, we have &(", = —»,—P, &(-,.;= —&(", +~9*
The contx'lbutlon to Qg ls given by a slDlllax' expres-
sion except for a change of sign of Q. Therefoxe,

a, = ——'wN{0)(l+ v, v, ./E, E g.)E(Q, v„(o„),
(3. 17)

J'(Q, v„(o„)= 1/(ivQ+E, +E,.+ &)+o.o. (3.18)

In a similar manner we find

5, =-,'mX(0) [Z(v, ) Z {v,,)/E, E, ,jF(Q, v„(u„),

c, =i—,'mN(0) [v, 5 (v, .)/E, E, .jF(q, v„(o„)
(3. 18)

d, =i,'~X(0) [Z (v, )v, ./E, E, .jE(Q, v„(o„)

In the next step we convext all the quantities in
Eq. (3.15) into the real frequency domain As.

shown by Ambegaoka, r and Tewordt 3 the unenhanced
susceptibiliti. es have the spectral representations

Thus, the susceptibj. lity function that is needed for
computing the neutron cross section is completely
determined.

As mentioned earlier, the susceptibility function
g„ is not enhanced in our calculation. This apparent
violation of rotational symmetry arises fx'om the
assumed form of H, . If we assume a rotationally
invariant exchange of the form s ~ s we would have
to enhance the zz component of the susceptibility
by summing a set of bubble diagrams.

We now return to Eq. (3.8) and evaluate the sums
over k. To excite spin waves the neutron wave
vectox q must be close to the magnetic wave vector
—,'g. %'e define @=q-—,'g and denote the z component
of Q simply by Q. The condition jg j«k„ is valid

xt0( ~ x (0

'x(0)

—
{O)
— —

0)

+ x2(N ) [x( )

PIG. 5. Dtagrarns for exchange enhancement
cB,Icujahon
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y(0)(q ~ ) y )i(0)(q 0) ) p 1 d0)2 +k ((d(i (d2) Rk(0) (i (02) (3 20)
P 1

2)( 2)( (0)1- iv))(0)2 —Xv) —i0)„) (0)1 —iv))((d) —(02+ L(0„')

We write Eq. (S.16) in a condensed form as

XI"((I,0)„)+X2 '((I, 0)„)=-(1/p) EP, (v„v, +0)„),
l

(s. 21)

then the spectral densities A, and &, are related to
P, by

are put into Eq. (S.15) to compute the enhanced
susceptibility. In the actual calculation, the steps
from Eq. (S. 21) on are carried out on a computer.

For the paramagnetic phase we can find the
expression for the susceptibility function from Eq.
(3. 16) by putting E(v) = 0. This gives

—&,((01, (02) = P,( —i(01+ 0', —u02+ 0') —P+( —2(d1+ 0',

—i0)2+0 ) —P,( —i0), +0, —iu&2+0')

+P~( —14&1+0, —i(d2+ 0 ),

~,(0)1, ~2) = o. (3. 22)

It follows after summing over E that

(0) + (0) d~l ~2 g (& & )
f(0)2) f(~1)

27 2' (d co + sco

where f((A)) is the Fermi distribution function. Now
we put in ie„=e+ i0' and find the imaginary parts
of the unenhanced susceptibility functions to be

R,(q, (d) = Re [X,
' '(q, (d) + X2 '(q, (d)]

1 I'" I,(q, (d ')
'tl' CO —(d

Q ~ao

The above integral can be made to converge much
faster by making a subtraction

R,(q, (d) = R,(q, 0) — —,', ', ——,— d(d'
2&@

" I,(q, (0')

(3. 24)

where

R,(q, 0) = —(1/P)Z ) P,(v„v,) (s. as)

When the sum is converted to an integral, we find

R,(q, 0) = (i/2))) J [P,( —i(0 + 0', —i0) + 0')

—P,( —i0) +0, —i0) +0 )] tanh2p(d d0) .
(s. 26)

Finally, the expressions

X)
' a X2

' = R,(q, (0) + ii,(q, (0)

l,(q, ~) = 1m[X,'0'(q, (d) a )(2(')(q, (d)]

— &,(~1, ~2) [f(~) -f(~1+~)] .1 GLg

(3.23)

The real parts may be obtained from the dispersion
relation

(s. 27)

for v, (v, +0)„)&0, and a) =0 otherwise. Similarly
we have b, = c,=d, = 0. The subsequent steps of the
calculation are entirely parallel to those for the
ordered phase.

It is interesting to examine the structure of the
susceptibility function in the antiferromagnetic as
well as the paramagnetic phase. One can easily
show that, in the antiferromagnetic phase,

(3. 28)

at Q=O and +=0, and that this condition is equiv-
alent to the gap equation [Eq. (2. 17)]. For a
small but finite Q, Eq. (3. 28) can be satisfied by
a small complex u. In other words, the enhanced
susceptibility has a complex pole, and this pole
defines the spin-wave mode with wave vector Q.
So the stability of the antiferromagnetic state and
the elementary excitations of the system are both
determined by the second term on the right-hand
side of Eq. (3. 15). Sokoloff'0 pointed out that, in
absence of scattering, the first term has a pole
at Q=O and co=2&. This is a Stoner-type mode
directly across the energy gap. It will be shown
in Sec. IV that this mode is very strongly damped,
so that it is probably unobservable. In the para-
magnetic phase we have X2

'= 0, so the two terms
become equal. The temperature at which the en-
hanced paramagnetic susceptibility diverges for
Q= 0, & =0 is the Neel temperature of the system.

IV. RESULTS OF NUMERICAL ANALYSIS

We have calculated the imaginary part of the
enhanced susceptibility for the model defined in
Sec. II in the antiferromagnetic phase at 300, 400,
and 500 K, and in the paramagnetic phase at 530 and
600 K. The results are plotted in Figs. 6-10,
where in the line-shape plots, the susceptibility
function is normalized by the unenhanced static
susceptibility )(0 at T= 0. ()(0 is a constant whose
value depends on the material. ) Aside from a boson
distribution factor, the curves represent the in-
elastic neutron cross section for constant energy
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FIG. 6. Magnon line shapes at a low temperature.

scans with infinitely sharp resolution. As is clearly
seen in Figs. 6 and 7, there are well-defined mag-
non peaks at e = vQ at 300 and 400 K. So the mag-
non velocity is very close to the band velocity,
except that the temperature and scattering cause
a downward shift of the order 5-10%%. The magnon
lines remain well defined until the magnon energy
reaches the gap energy 2&,(0), and thereafter they
broaden very rapidly as shown in Fig. 8. This is
easy to understand because below the gap energy
the magnons decay due to electronic viscosity, but

above the gap energy they decay by electron-hole

T=400K

2 xlo3

1u =20 meV

O
OC

3.
Cf
x IO&
E

IOO50
hvQ IN meV

FIG. 7. Magnon line shapes at an intermediate
temperature.

30
E

X
Cl

z:20

O
C9

IO

I I I

I 00 200 300
MAGNON ENERGY IN meV

FIG. 8. Magnon linewidths as functions of energy
and temperature.

pair production. At 500 K, which is 15 K below the
Noel temperature, the lines have a flat top centered
around Q = 0, i. e. , the magnetic reciprocal-lattice
point (Fig. 9). In Fig. 10 we show the line shape
at 530 K, 15 K above the Noel temperature. The
lines are now peaked at Q = 0, and represent short-
ranged short-lived excitations called paramag-
nons. ' ' The lines at 600 K are very similar but
much broader. Thus, the transition from magnons
to paramagnons takes place gradually over a range

T = 500K
(TN - l5K)

2 x IO

0
X

10

X
E

I

50
hvQ IN meV

I

IOO

FIG. 9. Magnon line shapes just below the Noel
temperature.
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IOO

by Lorentzian functions, but the fitting parameters
depend on the energy. The lines at 500 K cannot
be fitted by any simple formula.

The present theory predicts that the damping rate
of very long-wavelength magnons is finite. This
conclusion is in disagreement with the predictions
of the hydrodynamic theory of spin waves, which
predicts a damping rate proportional to the square
of the wave vector. " However, the hydrodynamic
theory is developed for a uniform spin system
where the magnon damping arises entirely from
magnon-magnon interactions. The system consid-
ered in this paper is inherently nonuniform because
of the impurity and phonon scatterings, and the
magnon damping mechanism is also totally differ-
ent. Therefore, there is no real conflict between
the two theories.

Above T„we find

FIG. 10. Paramagnon line shapes just above the
Noel temperature.

of temperature around T&. For example, with re-
alistic momentum resolution one can not experi-
mentally detect the difference in line shapes at
500 and 530 K.

At low energies and temperatures the unenhanced
susceptibility is well approximated by

Re&f(0&(Q ~) Re&f(0&(0 0) ~12(~2 c2QR)

fmX "&(Q, (u) = r'(u,

2(1 —e) Av
im&i(Q, v

N(0)v [ + ( +pQ )] +b', (4. 2)

where e =1n(T/T„), and a, b are functions of scat-
tering and temperature. ' At 530 K, we find e
=0. 029, g= 2. 73 x10 '(meV) ', and b=4.25x10-'
(meV) ', for the model of Sec. II.

For fixed neutron energy transfer I~, the inte-
grated intensity of the neutron line is

Icc (1 —e-'")-' J "imp(Q, 'u)dQ. (4. 3)

The integral can be estimated by using Eqs. (4. 1)
or (4. 2). The result is

where o. ', y', and c are constants. It is more con-
venient to work with the quantity V&t' '(Q, (u) be-
cause it is dimensionless. We define

o. = (v'v)~', y =- vy';

I~(1 —e ") ' —Re
1

co.' &i(n ~u —iy&a)

for T« T„, and

2&&(1 —t ) 1

vaN(0) V g(e a+~ —ib's)

(4. 4)

then n and y have the dimension of inverse energy.
Thus, the enhanced susceptibility has the imagi-
nary part

rm&f(Q, (u) = r&u/(V[o&'((u'-c'Q')'+y'&u']] . (4. 1)

It is found that the theoretical line shapes at 300
K for the model described in Sec. II can be closely
fitted by o.'= 2. 13x 10 (meV) ', y = 1.36 x10 ' (meV) ',
and c = 0. 96v, with v as an adjustable parameter.
This formula resembles very closely the result
derived from the Heisenberg model except for the
broadening. 3 The magnon linewidth at 300 K is
y/n~= 3 meV. Since this value is very small com-
pared to the instrumental resolution, it is a good
approximation to treat the line shape as a & function
as we did in Ref. 19. Therefore, the intrinsic line-
width of the magnons does not affect our analysis
of magnon velocity at room temperature.

The line shapes at 400 K can be fitted individually

(4. 5)

do
t

imp(Q, v)
dQ g 1 —e

(4. 6)

In the paramagnetic phase, the integration may be
carried out for small Q with the result

da K&T
dQ c+g vQ

(4. 7)

for T& T„. If we take the line for ~~=20 meV, we
find

I(530 K)/I(300 K) = 0. 6.
This shows that when the temperature is increased
from the antiferromagnetic region to the paramag-
netic region, the neutron line merely broadens with
very little loss of intensity.

For a fixed momentum transfer Q, the differen-
tial neutron cross section is given by



2672 S. H. I IU

O
X

3
O
X

I 0.0—

100 200
IN meV

300

loys. The Fermi surfaces of these metals resem-
ble two cubes, so they may nest into each other at
a vertex after a, translation along a (1, 0, 0) axis.
The Fermi velocities of the two surfaces are along
(1, 1, 1) directions. Thus, if a. magnon is excited
along (1,0, 0), the band velocity that enters into
the theory should be the component of the Fermi
velocity in this direction, i. e. , v=v~/v3. That
the magnon velocity is close to v&, /v3 also holds
for the Fedders-Martin model. '~ In reality, the
band velocity is further modified by mass enhance-
ment effects due to electron-phonon and electron-
magnon interactions. The latter interaction is dis-
cussed in Sec. V.

V. ELECTRON MASS ENHANCEMENT BY MAGNON

AND PARAMAGNON INTERACTION
yi&'IG. 11. Line shapes for the Stoner mode.

Since e = (T —T„)/T„, it follows that Eq. (4. 7) is
of the same form as that derived from the Heisen-
berg model in the quasistatic approximation.
However, the analogy with the Heisenberg model
breaks down when one studies the dynamical effects.
For example, Eq. (4. 2) is totally different from
the result of the spin-diffusion theory. There-
fore, the paramagnon mode is a different dynamical
phenomenon from spin diffusion. It is also very
easy to find the first and second moments of the
neutron line in the paramagnetic phase:

(v) = 0, (v') = e/a'+ v'Q',

where e/a ~ T —T„. For the Heisenberg model the
first moment is nonvanishing, and there exists no

second-moment formula in the vicinity of the crit-
ical temperature.

As was mentioned in Sec. III, there exists in
itinerant electron antiferromagnets a Stoner-type
mode, i. e. , excitations directly across the energy
gap. However, when the gap is broadened by scat-
tering, this mode becomes strongly damped. We
show in Fig. 11 the quantity imp(Q, &~) for v near
the gap energy at 3QQ, 4QQ, and 50Q K. The curves
diverge sharply at low energies as a result of the
slightly diffused magnetic Bragg peak. The Stoner
mode gives rise to a peak at .u = 280 meV at 300 K,
very close to 26, (0)=300 meV. At 400 K, the
Stoner peak is at 190 meV, which is closer to 2~
= 240 meV than the gap energy 2&, (0)= 55 meV. At
500 K, where the gap disappears altogether, the
Stoner peak also disappears. However, a compar-
ison of the vertical scale of Fig. 11 with those of
Figs. 6, 7, and 9 makes it clear that the Stoner
mode is too weak to be detectable by neutron dif-
fraction.

In Sec. V, we will compare these calculated line
shapes with the experimental results for CrMn al-

Z(k, v)=iV f [d qd~u/(2m) ]y(q, v)G(k —q, v —&u).

(5. 1)
To obtain a first estimate of the effect, we calcu-
late the integral under some simplifying approxi-
mations. We use the spherical Fedders-Martin
model for the electron bands, and the spin-wave

propagator

y(q, ~) = [4n'/f&'(0) v'j/(m —c q ), (5. 2)

as found from the collisionless model. The elec-
tron propagator is, in real-frequency representa-
tion,

Cp+ V
G(k, v)= 2 ~g ~ &

F(k& v)=
~,+a -V ' 6p+ 6 —V

where e, is measured from the Fermi level. Sub-
stituting these into Eq. (5. 1) and integrating over
v, we obtain

Zq~(k& v)= 3
— 1+

d' 1l e 1

x(0) (2.)' .q
~

E. . .—E

X(q, cu)

X(k,V) =
G(k-q, v-a )

I
FIG. 12. Self-energy

diagram due to paramagnon
interactions.

The electron mass enhancement due to electron-
magnon and electron-paramagnon interactions in
ferromagnetic systems has been discussed by many
authors. 3 ' ' ' We will show here that this in-
teraction also leads to a small mass shift in itin-
erant electron antiferromagnets. The self-energy
diagram for the itinerant system is shown in Fig.
12. In mathematical terms we have
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q M

&me 1

Ep v+ Ep q+ cg

where E=(» +4 )' . We write this result as

(5.3)

" d'qF(»„»')=,5(» —»„)6(»'- cq).
J (2'IT)

For small q, we find

vpg cos8,

Qa , 1" & 1
Zll(k~ V) = d» d» t 1+ g

+~1--~, F(»„"),Eiv+E+»

Then the integrations in E can be easily carried
out. Thus,

P p

F(»„» )=, , u 1—4' VJ;C SE'

where s = v„/c, and u(x) is the unit step function
which vanishes for negative values of x. After in-
tegrating over e we find

4'll N(0)vpc aga E v —E - I» —»l I/s E v+E —I» —»pl/s
(5.4)

where we assume a spin-wave cutoff energy of 2h.
Near the Fermi energy we may expand

Z„(u, v)=Z„(kr, 0)+», " +v
BEp ~k 0

where the first term gives rise to a shift of the
Fermi energy, and the other terms lead to a mass
correction

(5. 5)

magnetic state. This would give a theoretical spin-
wave velocity

c(theory) = (vr//3)(m/m ~) = 2. 5 x 10' cm/sec,

which is almost a factor of 2 too high compared
with the measured value. The discrepancy is prob-
ably due to subtle band effects not accounted for in
this simple model. '

ln the paramagnetic phase, we use Eq. (4. 2) for
A similar calculation leads to

The derivatives are quite easy to evaluate. The
results are

VE 1 —E' g gP=1+ 3 3 gin 1+
m 4119&(O)v'u' E'

+~~ 1

(
85 6 2
B»l o 4m N(0)v~c s —1

In(4sa - 3) .
(5.8)

where q,„is the cutoff wave vector for paramag-
nons. It is reasonable to take a v q =&. To-
gether with v= vz/v'3, we find

m*/m= l. 14.

So the effective Fermi velocity which determines
paramagnon line shape is

vr(theory) = vr(m/m*) = 4. 5 x 10' cm/sec.
In the following, we estimate the size of the mass

correction. The density of states of Cr is' 0. 09
electrons/a. u. Ry = 30x10" electrons/erg cm .
About half of these states will go into the condensed
state, so the effective density of states per spin
per band is N(0)=4 x10 per erg cm1. We use the
experimental va.luce 6= 200 meV, c= l. 3 x10' cm/
sec, and the calculated vr = 5. 1 x 10' cm/sec for
pal'alllaglletlc Cl' (wl'tll pllolloll ellllallcelllell't ill-
cluded). Then we find b, /4n iV'(0)vrc = 0. OV and
s = 3.9. These values lead to m*/m = l. 2, or that
there is a 20'g mass enhancement in the antiferro-

This is in reasonable agreement with the measured
value of 3.8 x10' cm/sec.
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