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The problem of the behavior of helical spin structures and the phase transitions they exhibit
in applied magnetic fields is studied theoretically. We have obtained a numerical solution
valid for the planar helix at T= 0'K with an arbitrary number of interplanar exchange inter-
actions, an arbitrary form of in-plane anisotropy, and an external magnetic field applied in
the plane. We calculated the phase diagram for the case of two interplanar exchange con-
stants and no anisotropy, and found different behavior in the intermediate field region from
that predicted by the previous theory. As a new result, in the case of an in-plane anisotropy,
the angle dependence of the transition fields has been obtained.

I. INTRODUCTION

A large number of materials are known, such as
the rare-earth metals Tb, '

Dy,
' Ho, ' Eu, and the

manganese compounds Mn02, ' MnAu2, and MnP, '
which exhibit planar helical spin structures below
the ordering temperature T„. The model which is
invoked to describe this situation is that of a suc-
cession of exchange-coupled ferromagnetic layers
with the moment of a given layer lying in the plane
of the layer. If the competing interlayer exchange
constants are of sufficient magnitude, the classical
ground state may be shown to be a. spiral (helix),
in which the angle between the magnetic moments
of two consecutive layers is a constant Q'0.

When an external magnetic field is applied paral-
lel to the plane of the helix, transitions to other
types of spin structures can be induced, resulting
in discontinuities in the net magnetization and in
the susceptibility. Nagamiya et al. and Herpin
et a/. have developed an approximate analytic
theory for the planar spiral by series expansions.
In weak fields the energy of the spin system is
developed in powers of the applied field, assuming
that the deviations of the spins from their direc-

tions in zero field are small. High field solutions
are obtained by expanding the energy in powers of
the angles of deviation of the spins from the field
direction. The fields at which transitions between
low and high field solutions, i.e. , between two

phases, occur were obtainedby extending the curves
which represent the energy as a function of the
magnetic field to their intersection in intermediate
fields. When there is anisotroyy in the plane, this
theory has been worked out in the special case of
the magnetic field applied along a symmetry axis.
The preceding theory and its molecular field gen-
eralization to finite temperatures' have had wide
application, but because of the ayyroximations
made, its validity for intermediate fields was not
known. A more exact treatment is therefore
needed.

We present here a numerical solution for a
planar spiral at T= 0 K, whose axis of rotation is
normal to the planes, with an arbitrary in-plane
anisot~opy and an exfexnal field applied in the
plane at an arbitrary angle with respect to the in-
plane anisotroyy axes. The spins are assumed to
be always constrained to the plane of the layers,
as, for example, in the typical case of a strong
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out-of-plane anisotropy. The method will, in
principle, handle any number of interlayer ex-
change constants, but the present calculations are
limited to the case of exchange constants a& and
e2 between first- and second-nearest-neighbor
layers, respectively. We describe applications
to experimental bulk magnetization measurements.

Helix

Pn =nq+&n

2

2

I ~

5
Fan

g„=2arc sin(Asin(nq))+~„

II. NUMERICAL METHOD

We first consider the mathematical model of a
"unit cell" of N layers of spins, each spin of mag-
nitude S. Since all spins in one layer are parallel
to each other, their exchange interaction is not a
variable and need not be considered. Therefore,
the "unit cell" will contain only one spin per layer.
Periodic boundary conditions are applied, making
the Periodicity q a rational multiple of 2m. The
average energy per spin E of this system is

1 N

E = —P f n& cos(p&+ i —p J) + np cos(p;+ p
—p J)j -" 1

—pslSH cos(P'Qp) p~ sgSHg cos+gP ),
(1)

where n, (np) is the exchange constant to the first-
(second-) nearest-neighbor layer, H is the external
magnetic field applied at an angle &f& p relative to an
arbitrarily chosen axis of minimum in-plane an-
isotropy (an 'easy axis"), P&is the angle the spin
the jth layer makes with this axis, and H& is the
anisotropy field of multiplicity n„(n„-fold anisot-
ropy a,xis). The boundary conditions require g„,&

=Q; for all j.
For given initial va, lues of the N variables Q&

one solves the N coupled transcendental equations

=0, i=1, 2, .. . , N (2)

by a generalization of Newton's method. This
finds the local minimum of energy with respect to
the variables Q, nearest the initial values of P;.
If H is incremented by only a small amount each
time the above equations are solved, using as ini-
tial values the solution for the preceding value of
H, thenet magnetizationand energy can beobtained
numerically as a function of H for a given spin con-
figuration (solution type) subject to the constraint
of a fixed periodicity. The manifold of phases
(solution types) used as initial values in the calcu-
lations is shown schematically in Fig. 1 along with
the corresponding analytic expressions for the
angles Q„ for the helix and fan. The structures are
shown distorted as they would be in a finite exter-
nal or anisotropy field. One has not proven that
the solution of lowest energy is one of these types,
but these are the only types found experimentally
or theoretically under the conditions of our

3-Sublattice System (q = l20')
2

FM

3,4

I

AFM I

l, 2
AFMII

FIG. 1. Schematic representation of the various
phases of a planar spiral spin arrangement in an ex-
ternal magnetic field applied in the plane. The expres-
sions for Q„give the corresponding analytic solution for
the angle of the spin with respect to an arbitrary fixed
axis parallel to the plane of the spin in the nth layer. The '

periodicity of the spiral is q, &„is a field-induced dis-
tortion, and A is dependent on H only (( A ) &1). The
numerals on the spin vectors denote consecutive layers
in one unit cell. For the helix and fan, N denotes the
maximum number of layers in the unit cell. The diagram
shows the example N=5. The abbreviations FM, AFMI,
and AFMII are explained in Sec. III.

problem.
A complication which must be taken into account

is that the periodicity q of the helix and fan phases
is a field-dependent variable, as has been observed
by neutron diffraction. ' '" The energy must also
be minimized with respect to q, and Fig. 2 outlines
the basic procedure for doing this. Having fixed
n„np, H&, n„, and &f& p, one determines a, grid of
rational values of q, q = 2vm/N (m integer), chosen
to cover the region in which the periodicity is ex-
pected to vary over the range of the field H. It is
found that since q is a relatively slowly varying
function of H, a grid of about ten rational values
yields sufficientaccuracyover wide ranges of H for
a given phase. Corresponding to each rational q,
there is a "unit cell" of minimal I and N in which
the evolution of the energy and magnetization with
H may be determined as previously described.
For practical use, N should be less than about 70.

The initial values for f„in each cell are obtained
from the analytic expressions reproduced in Fig. 1
which can be evaluated at certain limiting values of
H as follows: For the helix, at H = 0, one has

q(H= 0) =qp= are cos( ——,
' ni/np) ~

For the fan, the solutions are started at H slightly
less than the saturation field Ho given by
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HA, flA anisotropy field and multiplicity

angle of external in-plane field
l

Choose different trial values of q:q, K=l, 2--X&q(K) =27rmiN. To each
q(K) corresponds a unit cell of N layers
of spins.

Choose a
monotonic set of
values H( J ) of
the external field

I

q(X)
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,
M(I,X)

I

I

I

E(J,X)
M(J,X)

I

I

E(Y,X)

M(Y,Xj

tep Analytic forms of phases at
~ ~

limiting values of H determine initial
values of spin angles in each unit cell;
e.g. helix at H=O:'f„=nq

t I

q(l) q(K)
]I

E(l, l ) E(I,K)

I
M(I, I ) il(I,K)

I
I

I

I
tep4

I I

H(J) -- ~E(J,I)
M(J, I )

I I

I
I

E(Y,I)
H(Y) -M(Y', I)

Interpolate for fixed
H(J) over K to find
minimum of E (J,K).
This yields E, M,
and q as functions
of H.

E(H(l) )
= M(H(l))

q(H(l))
I

I

I

E(H(J))
= ~(H(J))

q(H(J))

E(H(Y))
= M(H(Y))

q (H(Y))

FIG. 2. Flow chart of the numeri-
cal method used to determine the be-
havior of a planar spiral spin struc-
ture in an external magnetic field.

Step Determine transitions at Hc,

E(H) PHASE 2

Hct Hc2

with

H. = (~(q, ) -~(O)j/V, .gS,

d(q) = 2a, cosq+ 2n, cos2q .
When H approaches IIO, the fan periodicity ap-
proaches qo, as shown analytically by Nagamiya
et al. ' The field is incremented (increased for
the helix, decreased for the fan) in steps hH of
the order of a ~» Ho until the energy and magnetiza-
tion of each unit cell are obtained for the set of field
values for a given phase. For a particular value
of H, the energy is found to be a smoothly varying
function of q with a well-defined minimum which
can now be obtained byinterpolating a curve through
the energy values corresponding to the grid of q
values. The physical solutions for the average
energy per spin E, and the relative magnetization
M for the given value of H are obtained by evalu-
ating the corresponding interpolated curves at the
value of q for which E is a minimum.

Carrying out this procedure for each value of H,
then, yields finally E, I, and q numerically as

functions of H for a given configuration. IlA'st-
order phase transitions (such as helix-fan) are
obtained by locating the point at which the energy
curves of two configurations of lowest energy
cross. Second order ph-ase transi tions (such as
fan- ferromagnet in zero anisotropy) are obtained

by locating the intersection of the corresponding
magnetization curves.

III. PLANAR HELIX WITH ZERO IN-PLANE ANISOTROPY

E —&g cosq + &2 cos2q . (6)

By minimizing this expression with respect to q,

In order to check the above method and to obtain
comparisons with the previous approximate calcu-
lations of Nagamiya et c/. , we have computed the

/&2„H phase diagram for the planar helix with
no in-plane anisotropy. From the limit H= 0, we
conclude that there are four cases (A, B, C, and D)

to be considered, depending on the relative signs
of the first and second interplanar exchange con-
stants, n~ and a2. From Eq. (1) with H = H„= 0
and Q &, , —Q, = q it follows that
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one finds the following stable configurations in
zero external field:

A. nq &0 and o.'~ &0, ferromagnet (FM)

B. n&&0 and &z &0, type I antiferromagnet

(AFMI)

C. &, & 0, o'a& 0: 4+2 & —+„helix with acute

turn angle (0&qo&z v)

4&2~ —&g, FM

D. &, &0, np&0: 4O', &&), helix with obtuse
turn angle (—', v & qo & p)

4a&& a&, AFMI.

I,25

1.00

.75

.50

0
CX

(

AFM I

The designation AFMI refers to the usual two-sub-
lattice antifexromagnet (each layer parallel to its
second nearest neighbor). This is in contrast to
AFMII, which denotes a foun sublatfi-ce antifexro
magnet (in zero field, pairs of adjacent parallel
layers with neighboring pairs antiparallel). Cases
A and B above need not concern us further, since
the application of an external field causes no phase
changes except for the second-order AFMI- FM
transition at H =HO [Eg. (4) with qo= m].

The numerical method described in Sec. II allows
the determination of the complete phase diagram,
shown in Fig. 3, starting from the four configura-
tions found at H = 0 in cases C and D above. The
coordinates of the phase boundaries are given in
Table I. One finds very good agreement with Nag-
amiya et al. for the helix with acute zero-field
turn angle (lower half of diagram), but for the
more complicated case of the helix with obtuse
turn angle (upper half of diagram), the behavior
in intermediate fields is rather different, as will
be explained. The transitions fan —FM and
AFMI- FM are of secor' order; all other boun-
daries in Fig. 3 mark first-order transitions
except in the region surrounding the three-sub-
lattice system, where the transitions are of
hi ghee order.

If the turn angle is acute and I o'z/o. , I is not too
large, increasing H from zero distorts the helix
and induces a small net magnetization with a nearly
constant susceptibility until a critical field is
reached at which there occurs a large discontinuous
jump in magnetization, from -10% to - 90% of the
saturation magnetization. This marks the well-
known helix- fan transition, which has been ob-
served in several rare-earth metals. ' The fields
required to cause transitions are relatively small
compared to the exchange field, and the periodicity
of the helix and fan changes very slightly (- 1/0)
over the entire range of fields.

By contrast, for the spiral with obtuse turn angle
the fields required to reach the region of transi-

-.25— cx, (0
ca, )0

—.50

-.75

-I.OO

-I 25 I.O 2.0 3.0 4.0
pBg SH/10t l

I

5.0 6.0

FIG. 3. Phase boundaries for a planar helix with
firs t- and second-neares t-neighbor interplanar exchange
constants a& and &&. The external magnetic field H is
applied in the plane. The solid line represents the
numerical calculation. The dashed line represents the
analytic approximation of Nagamiya et al. (Ref. 6).

IV. PLANAR HELIX WITH IN-PLANE ANISOTROPY

The introduction of even a small in-plane anisot-
ropy of the order of 10 to 10 of the exchange

tions are generally of the order of the exchange
field, and the periodicity of the helix and fan con-
figurations changes significantly (- 10/o) over the
intervals of H in which these phases exist. For
o'2/o. ', in the neighborhood of 0.5, q approa. ches —,

'
v,

varying roughly as the square of the field. When q
reaches 3 m, the spins are in the three-sublattice
system. There is no discontinuity in the magneti-
zation, but there is a discontinuity in the derivative
of q with respect to H; the susceptibility is constant
in this phase. Qualitatively the behavior is as pre-
viously described by Nagamiya et al. ,

' but we find
that the region of the three-sublattice phase is
considerably reduced; and there appears in the
neighborhood of o.'z/a, = 0.95 a boundary of first-
order helix- fan transitions not previously found in
this region. In all cases the numerical solutions
agree with the analytic approximations in the limit
of high and low fields.
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TABLE I. Transition fields in units of pz gSII/I && t for various values of the ratio of second- to first-nearest-neigh-
bor interplanar exchange constant &2/&&, for the case of the planar spiral with no in-plane anisotropy. pzgS: magnetic
moment of the ion. H: external magnetic field. The numbers in parentheses refer to the type of transition as follows:
(1) helix AFMI; (2) APMI fan; (3) fan FM; (4) helix fan (5) helix AFMI ~ (6) AFMI —fan (7) helix three-sub-
lattice; (8} three-sgblattice fan; (9) AFMI- FM. See also Fig. 3.

—l.25
—1.20
—l.15
—l.10
—1.05
—l.00
-0.95
—0.90
-0.85
-0.80

—0.75
—0.70
-0.65
—0.60

0.55
—0.50
—0.45
—0.40
—0.35
—0.30

—0.25
—0.20
—0.15
—0.10
—0.05
—0.00

0.05
O. 10
0.15
0.20

0. 25
0. 27
0.29
0.31
O. 33
0.35
oa 37
0.39
0.41
0.43

o. 94 0.)
0.92 (1)
o. 9o (1)
o. se (1)
o, se (1)
0.83 (1)
o. so (1)
o.vv (1)
o.v4 (1)
o.vo (1)

o. oo (5)
O. 25 (5)
0.5s (5)
0.88 (5)
l.42 (5)

0 0

l.71 (7)
l.70 (7)
l.ee {v)
1.67 (7)

Transition fields

2.52 (2)
2. 29 (2)
2.os (2)
l. sv (2)
1.66 (2)
1.46 (2)
1.26 (2)
l. ov (2)
o. ss {2)
o.vl (2)

o.e2 (4)
o.54 (4)
o.4e (4)
o.ss (4)
O. sl (4)
O. 24 (4)
o. le (4)
0.10 (4)
O. o5 (4)
o.o2 (4)

o. oo (4)
0 ~ ~

4, oo (6)
3.94 (e)
3.82 (e)
3.41 (6)
2.41 (6)
l.v5 (e)
1.V4 (6)
1.76 (6)
l. eo (e)
l. se (e)

s.22 (3)
s.o2 (s)
2.82 (3)
2.63 (3)
2.44 (s)
2. 24 {3)
2.oe (s)
1.87 (3)
l.vs (3)
1.50 (3)

l.32 {3)
1.15 (3)
o. 98 {3)
0.82 (3)
o.v5 (3)
o. 5o (s)
0.36 (3)
o. 22 (s)
0.12 (3)
o.o4 (3)

o.oo (3)
0 I ~

~ ~ ~

4. oO (9)
4.oo (9)
4.oo (9)
4. oo (9)

4. oo (3)
4.ol (s)
4.02 (3)
4.o4 (s)
4. ov (3)
4, 1o (3)
4. 14 (3)
4. 20 (3)
4. 24 (3)
4. 29 (3)

0.45
0.47
0.49
0.51
O. 53
0.55
O. 57
O. 59
0.61
0.63

o. 65
0.67
0.69
0.71
0.73
0.75
0.77
0.79
0.81
0.83

0.85
0.87
0.89
0.91
O. 93
0.95
0.97
0.99
l.01
l.03

l.05
1.07
l.09
l. 11
l. 15
1,16
l. 17
l.19
l.21
le 23

l.ee (v)

l. 65 (7)
l. eo (v)
1.51 (V)

l. vo (v)
l.v9 {v)
l. 84 (7)
l. ee (v)
1.89 (v)
1.92 (7)

1.95 (V)

1.99 (v)
2.os (v)
2.ov (v)
2.12 (7)
2. 16 (V)

2.21 (7)
2. 25 (V)

2. 29 (v)

2. 34 (V)

2. 38 (v)

2.43 (7)
2.48 (7)

~ ~

2. 68 (1)
2.64 (1)
2. 61 (1)

2. 58 (1}
2. 54 (1)
2.51 (1)
2.48 (1)
2.45 (1)
2.42 (1)
2. 4O (1)
2. 3V (1)
2.35 (1)
2. 33 (1)

Transition fields

1.93 (8)
2.os (8)
2.19 {8)
2. se (8)
2. 25 (8)
2. 2o (8)
2. 2o (8)
2. 2o (8)
2. 2o (8)
2. 2o (8)

2. 21 (8)
2. 22 (8)
2. 24 (8)
2. 2e (8)
2. 28 (8)
2. so (8)
2.33 {8)
2.se (8)
2. s9 (8)
2.42 (8)

2.44 (8)
2.4v (8)
2.50 (8)
2. 52 (4)
2. 56 (4)
2. 59 (4)
2. 63 (4)
2.73 (2)
2. 92 (2)
S.ll (2)

3.28 (2)
3.45 (2)
3.61 (2)
3.77 (2)
3.91 (2)
4.oe (2)
4. 2O (2)
4.34 {2)
4.46 (2)
4.59 (2)

4.34 (3)
4.41 (3)
4. 4V (3)
4. 53 (S}
4, 59 (3)
4.66 (3)
4.v2 (s}
4.vs (3)
4.85 (3)
4. 92 (S)

4.98 (3)
5.O5 {3)
5.12 (3)
5.19 (3)
5.26 (3)
5.34 (S)
5.41 (3)
5.48 (3)
5.56 (3)
5.63 (3)

5.70 (3)
5.78 (3)
5.85 (3)
5.92 (3)
5.99 {3)
6.06 (3)
6.1S (3)
6.21 (3)
e. 28 (3)
6.36 (3)

6.43 (3)
6. 5O (3)
6.5v (s)
6.64 (3)
e.vl (3)
6.V9 (3)
e. 86
6.9s (3)
v. oo (3)
v. ov (s)

field profoundly alters the behavior described
above. Because of the additional variables II&, g&,
and $0 it is impractical to attempt a complete
description of this problem. In order to illustrate
the effects involved, we limit ourselves to the case
of a uniaxiai (twofold) anisotropy in the plane and
study the dependence of the helix-AFMI (or AFMI)
transition on the angle of the external field and on
the magnitude of the anisotropy.

Theresults for a certain choice of the parameters
are shown in Fig. 4. If H„ is very small (H„

H„,h „), the helix is distorted so that the
spins do not uniformly cover a circle of radius Sin
the plane tItIt are more concentrated in the seg-
ments of minimum anisotropy energy. For fixed
a, /aa, the periodicity changes so as to approach v
with increasing H„, and there occurs a critical
value of H„above which the AFMI (or AFMII) phase
is the state of lowest energy with the spins lying
along the easy axis. The application of an external
field at an angle close to the easy axis can then
restore the helical phase, and at still higher fieMs
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ticularly important for applications to experiment.
The angle dependence of transition fields can be

obtained for comparison with experiments on single
crystals, and if only the c axis of the sample is
defined, comparisons with experiment may be made
by numerical averaging of the solutions over all
in-plane angles. The material VF2, "' a planar
spiral with qo= 96', should be a good subject for
this type of study. High-field magnetization
(HJcaxi.s) at T«T~=7 K on this compound would
permit an instructive application of the theory here
described; behavior similar to that depicted in

Fig. 4 should be found, if as reported" the in-
plane anisotropy is uniaxial and small.
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Metallic Alloys and Exchange-Enhanced Paramagnetism .
Application to Rare-Earth —Cobalt Alloys

D. Bloch and R. Lemaire
L,aboratoire d'Electrostatique et de Physique du Metal,

Centre National de la Recherche Scientifique, 38-Grenoble-Gare, France
(Received 30 March 1970)

A phenomenological theory is presented of the magnetic properties of two-component alloys,
one of whose components has a permanent magnetic moment. and the other an exchange-en-
hanced paramagnetic susceptibility. The paramagnetic susceptibility, magnetic-ordering tem-
perature, and magnetization at low tempera. ture are discussed in terms of this theory, and the
results obtained are applied to cubic alloys &Co& between rare earth (A) and coba. lt.

INTRODUCTION

The behavior of intermetallic alloys between
rare earths and transition metals is often complex. '
Cobalt does not possess a magnetic moment in
YCoz or LuCo2. In the alloys with magnetic rare
earths, the magnetic moment of cobalt varies with
the spin of the rare earth. In GdCo, or TbCo„ the
magnetic moments of the rare-earth and cobalt
atoms are antiparallel, whereas in NdCo, or PrCo2
they are ferromagnetically aligned.

We present a phenomenological theory for these
alloys, and using this theory we study their para-

magnetic susceptibility, magnetic-ordering tem-
perature, and magnetization at low temperature.

I. MODEL AND ITS MAIN CONSEQUENCES

We consider an alloy formed with two types of
atoms, A and B, located in two different crystallo-
graphic sites. We assume that A possesses a well-
localized magnetic moment and that B gives rise,
in the crysta, „' to electronic energy bands leading
to an exchange-enhanced paramagnetic suscepti-
bility. In the high-temperature range, the magne-


