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Nonlinear interactions are analyzed for the spin system of a ferromagnetic medium in an
inhomogeneous magnetic field. Attention is focused on a certain class of excitations referred
to as quasistationary spin waves which are in some respects analogous to plane spin waves in
a uniform field. These waves have the property that at some time during their evolution they
correspond to a uniform precession of the magnetization. Such waves are formed by sharp
spatially uniform incident pulses, and conversely, are responsible for the radiation of sharp
so-called “echo” pulses. Large quasistationary waves are unstable in a manner reminiscent
of the Suhl instability of the uniform precession in a homogeneous field. This instability is
accompanied by the exponential growth of small perturbing quasistationary waves and can be
observed experimentally in the form of amplified echo pulses. The theoretical model ac-
counts for the principal experimental features of the amplified echo, namely, the initial ex-
ponential increase with pulse separation 7 and the rapid decrease at large 7, as well as the
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requirement for an inhomogeneous field.

I. INTRODUCTION

The spin system of a ferromagnet is noted for its
nonlinear interactions and its excitations are often
prone to instability. In 1956, Suhl' showed that the
uniform precessional motion of the magnetization
was unstable against certain spin-wave disturbances
and that whenever the precession exceeded a given
value, conditions were created under which pairs
of spin waves of opposite wave vector would grow
exponentially, drawing their energy from the uni-
form precession. This instability may be regarded
as the prototype of a class of processes character-
ized by systematic energy transfer from a large
excitation of the spin system into small perturbing
disturbances. A directly observable example of
such a process is the phenomenon of amplified
echoes, 2 whose origin can be attributed® to the non-
linear interactions among disturbances impressed
on the system by a series of very short pulses.

The ferromagnetic echo is generically related
to Hahn’s spin echo? and to a broad class of similar
echo phenomena which occur as a consequence of
nonlinearity in many complex resonant media.
Typically, a series of resonant pulses incident on
a medium is followed by a number of reradiated
echo pulses at time intervals equal to those between
incident pulses, or to sum or difference combina-
tions of these intervals. The general properties
of these echoes have been discussed by many au-
thors® and it has been shown that the replication of
time intervals does not depend on any particular
physical interaction but is a consequence of phase-
coherence requirements analogous to those which
are responsible for the preferential generation of
sum and difference frequencies in the nonlinear

mixing of continuous signals. In the following, we
shall restrict ourselves exclusively to the sim-
plest echo sequence (Fig. 1) which consists of two
incident pulses of which the first is very weak,
followed by an echo pulse emitted from the sample
after an additional time interval r equal to the
interval between the incident pulses. In a ferro-
magnetic crystal, under proper conditions, the
echo pulse may be many orders of magnitude
larger than the first pulse and we then talk of an
“amplified echo.” As a rule, the amplified echo
initially increases exponentially with the pulse
interval 7, a behavior indicative of an unstable
excitation. Beyond a certain value of r, amplifica-
tion drops sharply, suggesting that the instability
disappears at large 7.

The phenomenon of echo amplification occurs
only in an inhomogeneous magnetic field. This
can be concluded from purely theoretical considera-
tions that apply to echoes in general® and is also
confirmed experimentally. Echo amplification was
first observed in irregularly shaped samples with
highly inhomogeneous demagnetizing fields. Con-
clusive evidence was obtained more recently in
experiments employing spherical samples placed

FIG. 1. Simple ampli-
fied echo sequence.
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in a controlled inhomogeneous field. With increas-
ing inhomogeneity, echo amplification increased
from zero in a homogeneous field to values as

high as 10%. The theoretical study of this class of
phenomena therefore requires an analysis of the
nonlinear interactions in a ferromagnet in an in-
homogeneous field.

Media in which echoes are observed can generally
be described as comprising large numbers of
resonances spread over some frequency range. In
the present case this would suggest a theoretical
approach based on a normal mode expansion in
terms of the stationary disturbances of the spin
system. This procedure would relate directly to
a formal theory developed in an earlier paper®
where it was shown, that in a system of nonlinearly
coupled oscillation modes, instability and echo
amplification may indeed take place. However,
the application of this method of analysis to an
actual inhomogeneous ferromagnetic medium is
extremely difficult. The stationary disturbances,
in contrast to the homogeneous case, have a com-
plex spatial dependence which does not easily lend
itself to mathematical manipulation. Moreover,
in the most interesting configurations, orthogonal-
ity and completeness of the mode system is not
assured.

An alternative approach, which we shall follow
here, is to focus on the simplest types of distur-
bances directly associated with echo phenomena,
namely, disturbances which are produced by very
sharp spatially uniform electromagnetic pulses.
These disturbances are not stationary and cannot
be treated as normal modes of the system. They
start initially as uniform precessions of the mag-
netization with constant amplitude and phase over
the sample, but evolve with the passage of time
into more complex configurations. Under experi-
mental conditions, exchange plays only a secon-
dary rolein this motionand the amplitudes and local
frequencies vary only slightly with time. It is
therefore appropriate to refer to these solutions
as “quasistationary spin waves” (QS waves). We
shall see that at any given time, the local prop-
erties of these solutions are in fact approximately
those of ordinary spin waves, and that the nonlinear
interaction among them is analogous to the inter-
action among truly stationary spin waves in a
homogeneous medium. In particular, the 4-mag-
non process associated with the Suhl instability*
has exact counterparts in the inhomogeneous me-
dium, and is directly responsible for echo ampli-
fication.

From an experimental point of view, the most
important property of these QS waves is that at
some specific time they are represented by a uni-
form precession, i.e., a precession at equal phase
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and equal amplitude over the sample. At that
particular time, and at that time alone, there is
strong coupling to the electromagnetic field. This
coupling is exhibited either in the absorption of a
sharp pulse from the field, or the emission of an
“echo.” According to this picture, the echo is the
product of nonlinear coupling among QS waves,
and echo amplification is the manifestation of an
instability which causes the exponential growth of
these waves.

It does not seem inappropriate to admit from the
outset that no general analysis of nonlinear inter-
actions in an inhomogeneous ferromagnetic medium
is being attempted. On the contrary, we shall deal
mostly with idealized physical models which are
mathematically tractable. Our first and foremost
objective is to formulate a problem whose solution
is mathematically straightforward and physically
clear and which predicts the principal features of
the echo mechanism. Once this is accomplished,
we are in a better position to discuss the more
general problem and evaluate the various compli-
cating factors which exist in a realistic physical
context.

We proceed first with the development of a quali-
tative model which provides a physical explanation
of the process. This is followed in Sec. III by an
equally idealized mathematical model. Sections IV
and V are again qualitative in nature, and attempt
to relate the results to realistic physical configura-
tions. A brief discussion of the canonical formula-
tion of the problem is given in the Appendix.

II. QUALITATIVE MODEL

When a simple model is used to describe a com-
plicated system, it would seem most appropriate
to define in advance a strict regime of applicability
and list all underlying assumptions. We shall, how-
ever, defer this until later in order not to clutter
the presentation at this stage, and also since it
can be done more profitably ex post facto once some
mathematical results are available. We confine
ourselves initially to a one-dimensional (or planar)
model by assuming V H =const and restricting
consideration to disturbances which vary only along
the direction of VH, The magnetic field is therefore
constant along the plane “wave fronts, ” and one
avoids the difficulties arising from the anisotropy
of the medium relative to spin-wave propagation
(see Sec. V). We also ignore boundary effects.

Let us at first neglect exchange. We can then
define a local precession frequency, w(¥), which
depends on the field at the position ¥. Let a(¥)
denote a canonical coordinate’ representing the
precessing component of the magnetization. In the
lineg.r approximation a(r) varies with time as
e?™t  Consider now a disturbance initiated as a
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FIG. 2. (a) Evolution from uniform precession into a

QS wave. Vectors represent the precessing components
of the magnetization and are a function of position along
the vertical line. Locus of the vector end points evolves
into a right-handed helix. (b) Unwinding of a left-handed
spin wave into a uniform precession (only the locus of
vector end points shown).

uniform precession at {=7 by a spatially uniform
pulse that is sharp enough to encompass in its
Fourier spectrum the entire frequency range in the

sample. Such a disturbance can be written in the
form
ap @, {)=Agie@® -1 , 1)

where A is a constant.

For ¢t> T, a, develops into a wave and one may
define an instantaneous wave vector k=~ ‘V’¢>(f),
where ¢ is the local phase angle of the precession.
With ¢ =w(F)(t - T) one obtains

K=K, () ==V -T). (2)

The evolution from uniform precession to a spin
wave of wave vector ET is shown pictorially in

Fig. 2 for the case where VH is parallel to H. The
precessing component of magnetization when plotted
as a function of the appropriate position coordinate
describes a helix. For {> T, the vector k points
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in a direction opposite to Vw and the helix is right
handed.® With increasing time the helix becomes
increasingly tightly wound. Conversely, any spin
wave for which K is along Vw represents a left-
handed helix, which at an appropriate time unwinds
into the uniform precession. Thus, if at ¢=0,
12=12(0), uniform precession occurs at ¢=£k(0)/Vw
[Fig. 2(0)].

The time 7~ T corresponds to the incidence of a
pulse or, alternatively, the radiation of a sharp
“echo” pulse. At other times, coupling of the
magnetization to the electromagnetic field is very
small, because of the disparity between the respec-
tive wavelengths.

Disturbances of the form of Eq. (1) will be called
QS waves. At any instant, they possess the spatial
characteristics of spin waves of constant araplitude
and wave number. Our analysis is based on the
idea that interactions among such waves retain
important characteristics of spin-wave interactions
in a homogeneous medium.

The simplest type of echo experiment consists
of a sequence of two incident pulses, a very weak
one, at t=- 7, followed by a strong one at /=0.

At t=7 an echo pulse is emitted from the medium.
When the echo is very much more intense than
pulse 1, it is referred to as an amplified echo
(Fig. 1). In general, pulse 1 may possess struc-
ture in the form of modulation and this structure is
reproduced in reverse time order in the echo. At
present, we simply assume that both incident
pulses are extremely sharp and therefore give
rise, respectively, to two QS waves, and that the
echo represents a third QS wave arising through
some nonlinear mechanism. The wave vectors of
the three disturbances are given by

K., =-Volt+7),
Ky = - Vot (3)
ﬁ,: -Vel(t-1).
One immediately notes that all times
2Ko=K, +K_, . (4)

This is the familiar matching condition for a 4-
magnon interaction. At ¢=0, Eo =0, E_T: -k,, and
(4) reduces to the familiar relation associated with
the Suhl instability in a uniform medium in which
the uniform precession interacts with a pair of
opposite spin waves with the result that the latter
grow exponentially at the expense of the former.
The transfer of energy among spin waves depends
upon the relation among their phases. A fixed-
phase relation results in a unidirectional energy
flow which makes it possible for small perturbations
to grow indefinitely with time. Equation (4) is the
first of two conditions for maintaining a fixed-
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phase relation among the three QS waves for a 4-
magnon interaction. The second condition, 2w,
=w,+w_, is also satisfied provided exchange is ab-
sent or negligible, since in that case all three fre-
quencies equal w(T) at every point. The echo pro-
cess is a manifestation of the instability of the QS
wave a, associated with pulse 2. The instability is
triggered by the small QS wave, a_,, that was
earlier produced by pulse 1. To start with, only
two disturbances are present, namely, a_, and a,.
Under proper conditions, a third wave, a,, is gen-
erated by nonlinear coupling. If we assume that
the nonlinear coupling among the waves is identical,
or at least similar to that which exists among spin
waves in an homogeneous medium, then in analogy
to the Suhl instability, a_, and a, proceed to grow
exponentially at the expense of the large disturbance,
ay. At t=7, the third wave, a,, evolves into a uni-
form precession and the emission of an amplified
echo takes place. The evolution of the three waves
is presented in Fig. 3.

The role of the exchange interaction has been
neglected so far. However, the inclusion of ex-
change is essential in order to provide a mechanism
for energy transfer between adjacent points in the
medium without which instability must be ruled
out. At first sight, it would seem that purely di-
polar forces, on account of their long range, could
play this role. However, the group velocity of
purely magnetostatic volume waves is zero and
hence no energy is propagated (see Sec. V).°

The inclusion of exchange into our model adds a
dispersion term, Ak?‘, to the local frequency,
where A is an appropriately normalized exchange

coefficient. The frequency of a QS wave at a point
7 is therefore given by
wr(E, 1) =w(@) + AR(). (5)
t=-v t=0 =T
by -
PULSE 1 ) &
:
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FIG. 3. Evolution of a system of three coupled QS

waves, corresponding to two incident pulses and the echo

pulse. Wave vectors obey the relation 2ky=Fk_,+k,.
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If Vo = const, then the addition of this term does not
change the wave vector K (¢) of a QS wave. Indeed,
if we put K,(f) = - ¥/w ,df we find that this equation
is already satisfied by Ky =—- Vw(# - T), since the
latter equation also implies V%% =0. Equation (4)
remains unaffected. On the other hand, using the
definition (5) and the expression (3), one finds a
frequency mismatch

2wp — Wy — W, =—2wg(1),
where

wp(r)=A(VeT)? = AR%,(0). (8)

This mismatch increases with increasing pulse
separation, 7, making conditions for instability

less favorable. At sufficiently large values of 7,
one should expect the instability and with it, the
amplified echo, to disappear. In sum, one is led

to expect an initial exponential increase of the echo
with increasing 7, followed first by leveling off and
then a rapid decrease as the phase match deterio-
rates. This corresponds essentially to the observed
experimental pattern.

I1I. SIMPLE MATHEMATICAL MODEL

The preceding qualitative discussion suggests
that QS waves retain a number of properties asso-
ciated with plane spin waves in a uniform field.

In order to establish this relationship on a theoret-
ical basis, it is most convenient to use a canonical
Hamiltonian formalism. This method is mathema-
tically powerful and leads most directly to the
desired results, but its esoteric nature makes it
somewhat inaccessible. It has been therefore
relegated to the Appendix, and we shall confine
ourselves here to the solution of the simplest
mathematical equation which exhibits the principal
physical features of our problem.

We consider a one-dimensional problem in which
all physical parameters are assumed to vary only
along the x coordinate and introduce a complex
variable a(x, t) to describe the precessing component
of the magnetization.

We assume for the variable a(x, ¢) an equation of
the form

o . 32’1 . 2 (7)
— =ilw x)a—zAW—uﬂa la.

The expression «’x represents the local frequency
which is assumed to vary linearly with x, with a
coefficient of proportionality w’=dw/dx = const.

The second term on the right represents the ex-
change interaction. In choosing a form for the

third nonlinear term, one must recall that only those
nonlinear terms whose time dependence is close to
the natural resonance frequency have any long term
effect on the motion. For example, a term pro-
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portional to a? excites the second harmonic and is
therefore ineffectual. The term |a®|a is the lowest
nonlinear term to occur at a fundamental frequency.
Terms of this form can arise from the dipolar
interaction or from the crystalline anisotropy. Non-
linearities in the exchange which would also intro-
duce products of the spatial derivatives of a(x, t)
are not included since these are insignificant in the
regime of interest, as we shall see below.

Equation (7) has the great merit of possessing
exact solutions which are of the form

aplx,t)=Aexpi¢(x, t-T), (8)

where the constant A can be tacitly assumed, with-
out loss in generality, to be real and where

dlx, t)=w'xt +3 Do’ 3~ qA% . 9)

The solution (8) represents a QS wave. At =T,
¢ =0 and the precession is uniform. The spatial
variation of ¢ can be made more explicit if we
introduce

kT(t) =

(10)

SLECARS N
ax

and put
o, t=T)= (G ARE - gA2)(t = T)—kpx.

In this form %k, appears clearly in the role of a
wave vector. The temporal part of ¢ is composed
of a dispersion term caused by exchange and a non-
linear frequency shift.

Consider now the response of the system to the
pulse sequence of Fig. 1. A weak pulse is incident
at t=~- 7 and is followed by a strong pulse at /=0.
In view of the smallness of pulse 1, we shall aim at
the linearization of the equations with respect to
that pulse. Suppose that pulses 1 and 2 excite, re-
spectively, uniform precessions of magnitude €
and A. At ¢=0, the first disturbance will have
evolved into a wave e exp(iw’ 7x) (apart from an un-
important position-independent phase). At =0,
after the incidence of pulse 2, one sets initial con-
ditions as

alx,0)=A + e exp(iw’ tx) . (11)

The objective is to calculate the “echo amplitude”
at t=7. This is defined simply as the average of
a over the sample,

(12)

and represents the uniform-precession component
in the total disturbance. In practice we shall take
the limit of (12) as L o,

The zeroth-order solution, obtained by setting
€=0, is given by @ =Ae'®, where ¢ is defined in
(9). Before linearizing the equation, it is conve-

@ ono = (1/L) ﬂ,Ladx,
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nient to transform first to an “interaction repre-
sentation” by putting

a=bexpiolx, t).
Substitution into (7) gives

ob_ (P ., ) L
a—t__ZA<8;Z +2iw't o ~iq(bb* = A®)b .

In this representation, the zeroth-order solution is
given by the constant A, and we can proceed to
linearize the equation by substituting b =A + ec and

retaining only linear terms in €. The resulting
equation is

oc_ . (% ., 08c\ . s "
8t--—zA(a}—g+Zzwtax>~wA (c+c*) (13)
and the initial conditions become

c(x, 0)=exp(iw’ tx). (14)

These initial conditions are periodic in x, with a
period

P=2n/w'T.

Since (13) is invariant with respect to a translation
in x, c(x, t) retains this periodicity at all times and
may be expanded in a Fourier series:

c =Emume-imw"rx, (15)
with #,,, in turn, given by
umz(l/P) fopceimw'” dx . (16)

The initial conditions in accordance with (14) are
given by

u,0)=1, u,(0)=0 for m# —1.

Substitution of (15) into (13) and utilization of the
orthogonality relation

P -m?
f(" ei(m m’)wr x dx=P5mm,

results in a system of equations in which each «,, is
coupled only to the corresponding #_,. Because of
the initial conditions, we need to consider only the
equations for m =+1. These are

1:t_1 =i(Aw'r% + 20w %7t — gA®u_; - igA%uk,
7:‘1 =i(Aw"?1% = 200w %1t - qu)ul - iquufl.
By retracing the sequence of transformations one

can put the solution a(x, ¢) in the form

~ i iw? ! 3 -
ale, t)Ze™[Ae™ t +eu e ) L ey, o' T ]

where ¢ =$Aw'?t* - gA®*t. Hence, according to (12)
|@eeno(T)| = €|ty -

u_; and u, thus represent the amplitudes of QS waves
associated with the initial disturbance and the echo,
respectively.
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Equation (17) possesses exact solutions of the
form

we'® =~ (igA%/a) sinhat,

(18)
. (A 12,2 2
u_ e =coshat + z_(__w_;__ﬂ)_ sinhat,
where a and 6 are given by
o = Aw'?r%(2¢A% - Aw'?7?), (19)
6 = A(.U'Zle .
Hence, |doumo(r)| = (egA?/| a|)|sinhar |. (20)

The solution depends strongly on the parameter
a. For real ¢ it is exponential in character, for
imaginary a, periodic. If one defines a critical
7=71,such that 7 =2¢A%/Aw'?, then for r< 7, «a is
real, provided ¢ and A are of identical sign. For
7> 71, a is imaginary. The expressions gA® and
Aw'?r? represent, respectively, the nonlinear
frequency shift, and the dispersive shift caused by
exchange. « attains its maximum value when these
two contributions are equal and goes to zero when
the second is double the first. The functional de-
pendence of the echo on 7 therefore exhibits a
pattern predicted in the qualitative model, and ob-
served experimentally which consists of an initial
exponential rise, followed, after a leveling-off
period, by a rapid decrease to zero.

The effect of relaxation can be taken into account
by including on the right-hand side of Eq. (7) a
phenomenological term, — va. One follows the same
procedure to arrive at Eqs. (17) for «_, and u, except
that A must be replaced by Ae™’ in those equations.
The echo is represented by elu,le"®". By a series
of transformations the equations can be combined
into a Bessel equation of nonintegral order, but
there is little advantage in giving the solution ex-
plicitly. What concerns us most is the condition
for instability, given by A(2gA% ™ - Aw'?7%)>0. It
indicates that for large / the solutions always be-
come stable. In fact, because of the exponential
dependence on v{, echoes will not increase with 7
much beyond »7~1, and are negligible for vr>1.

IV. PHYSICAL CONSIDERATIONS
A. Physical Regime

Equation (20) in combination with (19) enables us
to arrive at estimates for the physical parameters.
This will, in turn, permit us to consider the effect
of relaxing some of the assumptions underlying the
calculated model.

It is convenient to define certain characteristic
parameters. We define a characteristic wave vec-
tor, k, =w'r, an exchange frequency shift, wg =A%kZ
and a nonlinear frequency shift, wyg,=qA%. For
given w’, A, and wy;, the exponential coefficient o
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attains its maximum value for 7 such that o =wg
=wyp, and |@.., | then equals € sinhar, where €
corresponds to the input excitation produced by
pulse 1.

The time scale in echo experiments is dominated
by relaxation. In YIG the relaxation times are of
the order of 1 usec and peak echoes are typically
observed at 7=5x10"7 sec. The highest measured
amplitude amplification factors are of the order
4x10%. This corresponds to a~10" sec™. Hence,
under these conditions also wg~wyy,~107 sec™.
Since the typical operating frequency is w ~ 10,
both wg and wyy can be legitimately regarded as
very small. A characterization of the regime can
be given in terms of the three dimensionless param-
eters wy,7=¢A%r, wgT=Aw'?r®, and wr. The first
two are of the order of unity or slightly larger while
the third is of the order 10°-10°. From wy=Ak% we
obtain for A~0.1 cm? sec™!, £,~10* cm™. In turn,
from k,=w’T we get w’ ~2x10' sec™ cm™ which
corresponds to a magnetic field variation of 1000
Oe/cm, a value consistent with experiment.

A group velocity can be formally defined as
dw/8k. For a given experiment an average char-
acteristic group velocity is thus given by v, =A%k,
~10% cm/sec. During the interval 7 energy travels
a distance roughly given by v,7~10" cm, or a
distance comparable to a characteristic wavelength,
2.=2mn/k, Interactions within the medium are
therefore confined to extremely small neighborhoods
during the time of an experiment. Summarizing:

(a) The characteristic wavelength of the dis-
turbances is most of the time very small compared
to sample size and to the relative field inhomoge-
neity (that is, 2> VH/H). Surface effects are
therefore unimportant except during the very short
periods of time when the precession is nearly uni-
form.

(b) Dynamic exchange fields are very small com-
pared to the magnetic fields. Under conditions of
high echo amplification they are roughly equal to
the third-order nonlinear terms in the dipolar
magnetic fields. Nonlinearities in the exchange
itself are therefore unimportant.

(c) The interaction is semilocalized, and energy
is transferred only over very short distances
during the process.

The last conclusion is of particular importance
in connection with the signal processing properties
of an echo amplifier. Each position in the sample
corresponds to a particular local frequency and
the amplitude of the local precession is proportional
to the corresponding Fourier component of the
exciting pulses. Because of the local nature of the
interaction each Fourier component interacts only
with an extremely narrow frequency band surround-
ing it. To a very good approximation, the echo
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amplifier can therefore be considered as acting on
each Fourier component independently of all others.

In the mathematical model we assumed infinite
boundaries, a uniform field gradient, and uniform
excitation of magnetization by the incident pulses.
These assumptions can now be relaxed to a con-
siderable extent.

B. Boundary Conditions

A fundamental difficulty in matching finite bound-
ary conditions to QS waves as given, for example,
by (8) is that the exchange energy of the excited
system increases with increasing %2 and therefore
varies with time. This creates no difficulty in an
infinite sample, but in a finite sample any flow of
energy through the system must be interrupted at
the boundaries.

The distortion of an ideal QS wave because of
the mismatched boundary can be described as a
disturbance propagating inward from the bound-
aries. In the short time of the experiment only
the components of the disturbance that are associ-
ated with high group velocities, and therefore with
wavelengths extremely short compared to those of
the QS waves, can penetrate deeply into the inte-
rior. One should also bear in mind that the ex-
change energy in the QS waves is only a minute
fraction of the total energy and therefore a minor
adjustment of amplitudes should suffice in order
to balance it. It thus seems unlikely that boundary
conditions will greatly interfere with the inter-
actions inside the sample.

C. Nonuniform Field Gradient or Nonuniform Excitation

Because of the semilocalized character of the
interaction one can extend the model to fields with
a nonuniform gradient. Provided

(5)/G) <=

one is justified in applying a “local approximation,”
which consists in assuming at any position x a so-
lution of the form (18) with «'=w’(x). The total
echo is then obtained as an average over the sam-
ple. Since the exponential coefficient « is a func-
tion of w’r, amplification will peak at different
values of 7 in different parts of the sample. The
phases of the echo signal will also vary with posi-
tion, although this variation is smaller than might
at first seem to be the case. One should note that
in the absence of exchange the phase-matching
relation (4) holds exactly even when w’ is not uni-
form. The phase variation of the echo over the
sample therefore arises entirely from the nonuni-
formity of the frequency dispersion term Aw 22,
The contribution of this term over a time 7 to the

total phase is approximately given by Aw'?7%. In
the regime defined above this corresponds to about
one period of revolution or less. For moderate
nonuniformity of the field gradient the echo phase
variation over the sample can be only a small
fraction of this value, and therefore not very sig-
nificant. We therefore find that a nonuniform

field gradient will result in echoes whose Fourier
components are modified in amplitude and, to a
lesser degree, in phase.

Unequal excitation of the sample by the electro-
magnetic pulses (more specifically by pulse 2
which dominates the amplification process) can be
treated in essentially the same way. The “local
approximation” applies only when spatial variation
is relatively smooth. If this is not the case then
one must consider some additional effects discussed
in Sec. IVD.

D. Single Pulse Effects

In Sec. I we have solved Eq. (7) for initial con-
ditions given by Eq. (11), which can be put in the
form

alx,0)=A +ee-tFe*, (21)

Strong amplification occurs for k, such that A%,
~qA%. For k, much larger or much smaller than
this value, the echo is small. The disturbance
described by Eq. (21) was assumed to have been
caused by a weak pulse at {=- 7 followed by a
strong pulse at £=0. Suppose now, that only a
single pulse is incident at /=0, but that this pulse
is not perfectly uniform over the sample. A
Fourier expansion at =0 will contain in addition
to a uniform component also components corre-
sponding to various values of the wavenumber %.
Each Fourier component represents a QS wave
which evolves into uniform precession at a time
t=k/w’. Those waves whose %k values fall within
the amplification range are strongly amplified re-
sulting in the emission of sharp spikes of radiation
at the appropriate times. Such spikes are occasion-
ally observed experimentally under conditions fa-
voring irregularities in w’ or in the coupling of the
electromagnetic field to the sample.

V. THREE-DIMENSIONAL CASE

The analysis of three-dimensional spin-wave
propagation in a nonuniform field is so difficult
that we cannot go beyond some heuristic arguments
for the existence of QS waves with interaction pat-
terns similar to those described above.

As in Sec. II, we initially ignore exchange. We
also ignore all surface or boundary effects. The
spin waves which we consider are so-called “volume
magnetostatic modes” and we would like briefly to
review the properties of these waves in a uniform
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medium. The dispersion relation, that is, the
functional relationship between w and %, is aniso-
tropic. However w does not depend on the magni-
tude of % but only on its direction relative to the
magnetic field. In other words, all spin waves
propagating in one direction have the same frequen-
¢y, and so do all one-dimensional disturbances
(that is, disturbances which vary only along one
direction) which result from the superposition of
these waves. In addition, such disturbances re-
main stationary in position since the group velocity
dw/0k equals zero. In particular, a disturbance
that at a given time is confined to a narrow neighbor-
hood of a plane and is uniform along the plane will
remain thus confined. This behavior is, of course,
a direct consequence of the fact that the dipolar

(or demagnetizing) field lines all end within the
disturbance itself. In spite of the long-range char-
acter of dipolar forces, their action in certain
types of disturbances is thus strictly local. ?°

Suppose that we now depart from field uniformity
by allowing variation perpendicular to the plane of
the disturbance while maintaining a constant field
along the plane of the disturbance. Precession
within the plane is unaffected by the inhomogeneity
and continues to occur at a frequency determined
by the local value of the field and by the orienta-
tion of the plane relative to the field. More gener-
ally, a disturbance with parallel plane wave fronts
perpendicular to the field gradient will remain in
this geometric configuration, with each plane
precessing at its proper local frequency. Such
configurations fall within the one-dimensional case
discussed in Sec. IV.

It is possible to conceive of more general fami-
lies of surfaces with the same property. Let a
surface be represented by z =z(x, y), where x, v,
and z are the surface coordinate. One can define
a formal local frequency by putting

9z 9z =
wf(x,y,z)=w<a,@,H(x,y,2)>,

using the functional form of the dispersion equation
for a uniform medium (still neglecting exchange).
A solution of the differential equation w,(x, y, 2)
=const is a surface along which the formal local
frequency is a constant (such a solution is usually
not unique). One can construct a continuous non-
intersecting family of such surfaces and define,
with respect to this family, a formal local fre-
quency wy(x, y, z) everywhere in the sample.

Let us now define a QS wave relative to such a
surface family by considering a disturbance which
is constant along each surface. If we assume that
the characteristic wave vector k&, is very large
compared to the surface curvature, then a QS wave
can be locally approximated by a plane spin wave
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with a local frequency given by the formal frequency
ws. A disturbance corresponding to a QS wave can
be set up by assigning to each surface a phase ¢
proportional to the frequency, putting

dr)=cwslr),

with uniform amplitude over the sample. If this

equation holds at =0, then at subsequent times
p=cws+wit=(c+tw;.

The phase therefore remains constant along each

surface and proportional to w;. In particular, at

t==c, $(r)=0 and the disturbance reduces to a

uniform precession.

In theory it thus seems possible to construct QS
waves with all the desirable properties. In practice,
things are unfortunately not that simple. The uni-
form precession represents a singularity where
wave fronts are no longer defined. Starting with a
uniform precession, it is not clear in advance into
what kind of a configuration it will evolve. In an
infinite sample with uniform VH and uniform exci-
tation, symmetry arguments favor the exclusive
generation of the one-dimensional (planar) configu-
ration. In finite samples, the evolution during the
initial period following uniform precession is
strongly influenced by surface magnetostatic inter-
actions, and although the disturbance remains only
a short time in this ambiguous regime the effect on
the subsequent evolution may be crucial. Since the
difficulties of a rigorous calculation seem insur-
mountable at this point, the general problem of
three-dimensional excitations must remain open.

VI. CONCLUSION

The introduction of the concept of QS waves
makes it possible to apply ideas familiar from the
study of nonlinear interactions in a uniform mag-
netic field to a ferromagnet in an inhomogeneous
field.

The mathematical analysis is strictly applicable
to the case of a uniform field gradient and sharp
incident pulses, but leads itself readily to general-
izations. The principal processes are semilocalized
in character, that is, they depend primarily on the
local value of the physical parameters as it can be
shown that effective interaction among separate
points in the sample is limited to extremely small
distances. This property makes it possible to
extend the analysis to arbitrary smoothly varying
magnetic fields.

In particular, the theory provides a model for
the phenomenon of amplified echoes, predicts its
main features, and defines the regime under which
it occurs.

APPENDIX

The similarity between the behavior of one-di-
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mensional QS waves in an inhomogeneous field and
that of planar spin waves in a uniform field is best
displayed in a canonical Hamiltonian formalism.
For a detailed exposition of this formalism the
reader is referred to Schl8mann.” The precession
of the magnetization is represented by a canonical
variable s(r, t) which is the classical equivalent of
the spin deviation operator introduced by Holstein
and Primakoff.!! The equation of motion is given
in the form

S-':i_* ’

ds (A1)

where the Hamiltonian 3¢, which is given in fre-
quency units, is proportional to the total energy of
the spin system.

We start by putting

=10, +7C (a2)

where %, represents the Zeeman interaction, and
¢’ the part of the Hamiltonian that is independent
of the external field. 3C, is given by

Ky = [ 5% (F Do@)s F, )d%, (A3)

where w(T) is the Zeeman frequency, and integration
is normalized per unit volume. We shall assume
that w varies linearly with a coordinate £ and put
W= (n'£ .

In the standard manner, s(r, ¢) is decomposed into
a Fourier series

s(F, )= sp(te~ 7 (A4)
k
One can put
=w [s*(F)Es(F)d
’ x(— 10
=W kzsk<ak5 >Sk. (A5)

[Since % is a discrete parameter, 9/8k, assumes

its usual meaning only at the limit where s, can be
regarded as a continuous function of 2. A more
elegant formulation could be obtained by putting

(A4) and (A5) in the form of integrals, but the fine
points of normalization and functional differentiation
would require lengthy discussion.] The equations
of motion are now in the form

osglt) .9 asg

o7 —la—é—%;—w ok, +iFg(sg.), (A6)
where
are’
Fk(sk'):ask* ’

and where the argument s stands for all spin-
wave amplitudes. Since Fj is independent of the
external field its functional form is identical to its
well-known form in a uniform field.
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The term w’8s;/0k, can be viewed as represen-
ting a transport term in %2 space, which causes the
disturbance to flow towards lower values of 2,. By
transforming to a new set of moving coordinates
one can eliminate this term. We shall, from this
point on, confine ourselves to spin waves propaga-
ting along the £ direction, putting 2,=k. We now
define

ap(t)=s,t), (A7)

where & is regarded as a function of ¢ and T given
by

B, T)=-w'(t-T).

ap is thus the amplitude of a QS wave originating
at t=7. One has
3s, s, dk(t, T)

ap=—t+

ot ok at (a8)

= iFar.),
where F,(a) is obtained by substituting a ;. with
T'=k'/w'+t for s, in F,(s,).

Formally, (A8) represents a set of equations for
QS waves which is essentially identical to the set
of equations for plane spin waves in a uniform field.
However, these equations are of no practical use
unless the linear part of F, is diagonal in s,., that
is, contains only an s, term. Otherwise, individual
QS waves as defined by (A7) do not by themselves
constitute solutions of the linear problem, but are
linearly coupled to each other. In general, F, will
be diagonal only if H, VH, and k are along the same
direction.

For VH along an arbitrary direction £ the proce-
dure can be modified as follows. Again, let us
confine ourselves to one-dimensional (planar) dis-
turbances with wave fronts perpendicular to VH.
The second-order dipolar component of the Hamil-
tonian can be written as Cp, = [ Twy (s +s*)?dE,
where wy=47M. The combined Hamiltonian %Cy,
=%, +%p, can be diagonalized by a change of vari-
ables, v =Xs +us*, to give '

oz = [0*(E)w (&) (E)dE
with
WH(E) = w5 (E)[ w5 (£) + wy sin?6],

where 0 is the angle between the £ direction and H.
If one now puts w(£)=w’%, the procedure leading
from (A3) to (A8) can be repeated with » replacing
s.

In this formulation F, no longer contains any
linear terms from the dipolar interaction. On the
other hand, the transformation from s to v results
in off-diagonal terms in the exchange interaction.
However, in the regime of interest these can be
neglected in view of their smallness relative to the
total diagonal terms.



2596

When studying nonlinear effects such as instabili-
ties, which evolve slowly with time, one need con-
sider only the so-called “slowly varying” terms in
the Hamiltonian, i.e., those products of s,’s and
$¥’s which contain equal numbers of either type.
These terms affect motion at the fundamental fre-
quency whereas all others excite harmonics of the
motion.

In the %2 representation the nonlinear terms obey
certain selection rules, e.g., aterm s,s,sks¥
will have a nonvanishing coefficient only if 2 +7 —m
-n=0. These constraints lead directly to similar
constraints among sets of interacting QS waves,
e.g.,

Ty+Ty—Ty—Ty=0, (A9)
and account for the rules governing the intervals

between echo pulses.
As an example, consider the Hamiltonian

3C=f([w’£|s]2+A 2—%q{s‘4]>dx.

This Hamiltonian generates an equation of motion
identical with Eq. (7) in Sec. III. A straightforward
calculation yields the equation

as
0§

ar=ilew ®(t = TVap—iq) apapoao. (A10)

as the explicit form of (A8), where summation is
over all 7°, 7"/, and T'"’ such that 7+ 7" = T'"
- T=0. Consider now the set of three coupled QS
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waves associated with the simplest echo process,
namely, a_,, a, and a,. Assuming, as we did in
the main text, that _, and a, are very small, we
may neglect all except first-order terms in a, and
a_. and arrive at three coupled equations,

i =iho(t +7Va_, - 2iq|ay|%a_, —igada’t
(A11)

(g =1 A"ty - i q|a,|%a,,
a, =il (t - 7Va, - 2iq |ay|%a, —iqaia X .
Putting
ag=4e®, a_.=u_,e®, a,=ue®,
where A is a real constant and V¥ is given by
V=% Aot ~iqA%,
one obtains a pair of coupled equations identical
with Eqs. (17) derived in a more roundabout way in
Sec. II.

The reduction of the infinite set of Eqs. (A10) to
three coupled equations is only possible when a_; is
very small. In general, a_. and a, will couple to a
large number of QS waves with 7'=n7, resulting in
multiple, equally spaced echoes. From (A9) it is
also clear that one can couple three incident pulses
with T,=0, Ty=7, Ty=7', to an echo at Ty=7+71/,
the so-called three-pulse echo. These four pulses
couple also to higher-order echoes with T=n7+mT’,
where n and m are suitable positive and negative
integers.
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