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A theoretical study is made of nonlinear responses of a dirty type-II superconductor to mi-
crowaves. The generation of a large third-harmomc current is found, arising from the non-

linearity of the dynamics governing the motion of the order parameter in the vortex state.
Furthermore, the harmonic currents reveal interesting anisotropy, viz. , a dependence on

the angle between the direction of the microwave current and that, of the dc magnetic fieM.

I. INTRODUCTION

Recently, there has been an increa, sing amount

of theoretical work' ' on the dynamical behavior
of the ox'der parameter in superconductors. Abra-
hams and Tsuneto, ' among others, have shown

that in the vicinity of the transition temperature,
where the order parameter is small, one ean
write a set of equations governing the behavior of
the order parameter (i. e, the time-dependent
Ginzburg-Landau equations). In this temperature
range, the order parameter obeys a diffusionlike
equation. More generally, in a gapless supercon-
ductor, where excitation of quasiparticles does
not require any threshold energy, one can con-
struct a more general formalism to deal with the

dynamical behavior of the order parameter, as
discussed by Caroli and Maki '~ and by Gor'kov
and Eliashberg, ' In a series of papers, Caroli
and the present author ' studied the fluctuation of
the order parameter in the vortex state in type-II
supex'coQductox'8 and found a class of collective
modes with different helicity along the dc magnetic
field. Furthermore, these modes are strongly
coupled to the electx'omagnetlc waveq r'esultlQg 1Q

a large anisotropy in the electromagnetic surface
impedance of the vortex state.

In these articles, ' we limit our discussions to
the linear response to the electromagnetic wave.
Since the basic equations which describe the mo-
tion of the order parameter and the electromag-
netic wave are essentially nonlinear, "we expect
large nonlinear effects in the vortex state.

In the present series of works, we shall study
systexnatically the nonlinear response of a type-II
superconductor in the high-field region. In this
work we further limit our consideration to a dirty
type-II superconductor, where the electronic mean
fl ee path 18 xnuch sholter' than the cohel ence dis-
tance. W'e find that, owing to the nonlinearity of
the equation, a large third-harmonic current,

easily accessible to experiment, is generated. %e
would like to stress here that these nonlinear re-
sponses are intrinsic to the vortex state and re-
flect directly the existence of the collective fluctu-
ation of the ordex' parameter. This is in sharp
contrast to the nonlinear response in a normal
metal, which is mainly due to dislocations in the
crystal. ' In fact, we neglect in the following con-
sideration any effect which xnay arise from the
existence of dislocations or pinning centers in a,c-
tual crystals.

IQ Sec. II, we treat the nonlinear response in the
framework of the time-dependent Ginzburg-Landau
(TDGL) equations. In spite of their limitation
(i. e. , TDGL applies only in the temperature re-
gion close to T„ the transition temperature), the
author believes that TDGL is quite useful in clax'-

ifying the underlying physics. Furthermore, we

can easily extend the results obtained in the frame-
work of TDGL to all temperatures, at least for a
dirty super'conductor„ this is done in Sec. III.

In order to give a general insight into the prob-
lem of the nonlinear response in the vortex state,
we start with the following set of equations, found

by Abrahams and Tsuneto' and by Schmid. In
standard notation, we have

8A
~(~, t) = o ———.(~- v'-4teA)

«(r„ t) a'(r't) ~r= r' (3)

Where &= (Iv/3), the diffusion constant, eo(T)
=3D&. (T), &=4(3)/»'T„C= {er/4T,)D, t(3)
= I. 303 ~ is the Riemann's g function, and ~„(T)
is the upper critical fieM. '
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The above set of equations [i.e. , the so-called
TDGL equations describe the motion of the super-
conducting order parameter h(r, t) in the presence
of the time-dependent vector potential A(r, t)]. 2)Ve

do not enter into the discussion of the validity of
TDGL, ' but note that in the vortex state the above
set of equations hold in the vicinity of the transi-
tion temperature.

According to Abrikosov, " in a magnetic field
slightly smaller than H, 3(T)(we assume that a uni-
form field Ho is applied along the z axis), the or-
der parameter [i.e. , the static solution of Eq. (1)]
is given by

oo

&o(r) = Z c„e'""exp —eB x-, (3)2eBf1= Oo

which represents the two-dimensional lattice struc-
ture of vortex lines in the x-y plane. Here C„, k
are constants, n is an integer, and B is the induc-
tion. Abrikosov" showed further that the magne-
tization is given by

M= cln, (r)l' (4)

which can be easily checked by substituting Eq. (3)
in Eq. (2) and by solving the Maxwell equation for
the magnetic fields. From the equilibrium condi-
tion, "the amplitude of (20(r) is also determined by

——D(V 2ie-A )0+ 4e DA, (t) —co(t)
8$

~ )) (~o(2) (' 2') 2', (2) 2 = 2

Multiplying Eq. (10) by no(r) and taking the space
average, we obtain

(
2eD(H, 2 -Ho)

[g(f)& 1]
sf 1.16[1—(2((' ) ']

4e ))A(t)
) 2(t,) = 0,

which is also yielded by Eq. (4) and the relation'

—(&o(v)[D(V — i2eA )o' +co(T)] (2~o(r))

=R&l~(-r)l'& . (12)

that h(r, t) does not depend on z, owing to the sym-
metry of the vortex structure. We note that the
lowest-order modification of the order parameter
is the second order in A, (t) F.urthermore, since
the term A', (f) does not mix the equilibrium state
with the collective fluctuations of higher helicity
(i. e. , with those of higher magnetic quantum num-
ber along the z axis), we can assume without loss
of generality that the solution of Eq. (8) is given by

&(r, &) = ~0(r) 4(f), (9)

2eD (H, z
—B)

RIP„[I-(2x')-'] + (2")-'] (5) Making use of the fact that A', (t) (2- e '"', we can
solve Eq. (10) by iteration

where ~ is the Ginzburg-Landau parameter, I3&
= 1. 16, and (a(r)) is the space average of a(r).

Now let us consider the electromagnetic re-
sponse of the vortex state. For this purpose we
introduce into Eq. (1) the microwave field through
the vector potential A(r, t) and then calculate the
resulting current by making use of Eq. (2). It is
very convenient to distinguish two situations for the
following consideration.

4 2Dg2 -3i~t
e( )=—

(4e'DA'e ""')
[ —4i&u+ 2k(H, )][-2i~+ 2k(H, )]

3k(H )
—2iz ~ 22(Ho) )

(13)

A. Parallel Geometry

First let us consider the situation where the
microwave electronic field E„ is applied parallel
to the dc magnetic field. We can take then the
vector potential

A(r, f):-- (0, A()(r), A,(t)), (6)

where Ao(r) describes the dc magnetic field:

A()(r) =H22 A, ( )=A()„e '"' . (7

Substituting A(r, t) given in Eq. (5) into Eq. (1) we
have

(
——B(i —2 'eA, )

' ~ 4e ')IA'.() ) —~,(2))

2eD(H„—H())where k(H ) 1.16[1—(2x') ']

Thus, if we retain only the lowest-order correc-
tion, we will have

2e DA(-) ()
2e llew()),
—i &u+ k(HO)

Now substituting this expression of h(r, f) in Eq.
(2), we get the linear as well as nonlinea, r current

J,=i(2)oA, (t) —4eC(
l no(r)

l )

&& A,(t) (1 —J24eDA (f)/2[ j(()+ k(HO)]))3 . -(16)
&«'(r, f)+Rl ~(r, f) l'~'(r, f) =0.

Here we have already taken into account the fact

(8) Here we replaced I h, (r) l' by its space average

(leap(r)

I ), since the penetration depth of the elec-
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= f16(eA„)'/[-2~+ k(H, )]]DI)IfI, (Iv)

while the fundamental response current is given
by the usual expression ~"

(Z.),= (2~e —4eC(I ~,(r) I'))A

= (i{d{r—4e
I
MI)A„, (16)

where 1t/I is the magnetization, already defined in
Eq. (4). The third-harmonic field which will be
emitted from the specimen is derived by solving
the Maxwell equation

—V'(A, „)= 422{2(3i{dX,„)+422(J, ) .
A"hen the penetration depth of the electromagnetic
wave is much longer than the coherence distance,
as is usually the case of a dirty superconductor,
Eq. (19) is easily solved because of the simple
spatial dependence of J3„

~,„(x) IA„(x) I' e~f-2[(1+2)/5]x},
where x is the distance from the surface and 5 is
the normal skin depth of the microwave with the
frequency {d [i.e. , 5 = (2)){der) ']. We have, in
fact~

( )
I

[ ( )
16[eA„(x)]'DIMI

62{dCT 62{d{T[—2{d+ k(HO)]
(20)

and the corresponding electric field E,„is given by

Eq ~ = —3$(dA3 ~ ~

In order to estimate the relative importance of the
third-harmonic field, it is convenient to compare
it with the incident field E„
E „Si~168 A„DI1Vf I Be'A„DjM
E~ 62{de[ 2{d+ k'(HO)]-{d{2I

—2{d+k(HO) I

Furthermore, making use of the fact H„=-5A„, we
have finally

E,„,&,(T) k(H{))
E {d

~

—2{d + k(H{))

(22)

tromagnetic wave is much longer than the coher-
ence distance $(T) associated with the spatial vari-
ation of Iho(r) I'.

From Eq. (15) we find easily the third-harmonic
current

16CD(eA )'( I bo(r) I)'
—i{d+k(HO)

frequency dependences due to the denominator —i~
+k(H ).

In fact, it is always possible to choose the ex-
perimental conditions so that v is in the vicinity
of k(Ho), where we can observe these dependences
easily. k(HO) in the denominator is exactly the re-
ciprocal of the characteristic damping term as-
sociated with fluctuations in the amplitude of the
order parameter with a fixed lattice structure.
We will see in Sec. III that the more general
treatment, which is valid at aQ temperatures, re-
sults in the same expression for the third-harmon-
ic current as given in Eq. (17). This fact implies
a Posteriori that YDGI is useful even in handling
the phenomena at low temperatures, at least in the
case of the dirty type-II superconductor

9. Perpendicular Geometry (Ho&E~)

Next we shall consider the perpendicular geome-
try where the microwave field E„is applied in a
direction (which we will take as the x direction)
perpendicular to the dc magnetic field. In the
present case, the microwave exerts a I orentz
force on each vortex line and sets them in motion.
Because of this possibility, some special care is
required in solving the equation for the order pa-
rameter [i.e. , Eq. (1)]. In the present geometry
we choose the vector potential

X(r, f) = (A„(f), A, (r), O). (23)

Then Eq. (1) may be written a.s

—D(V —2ieAO) + 4ieD(V —2ieAo)A„(f)

~ 4e'DA,'{{)—a,{T))d{2, {)

+ H
I
s(r, t)

I
'n'(r, t) = 0 (24)

and A„(i) =A„e '"2. Here we assume that the pen-
etration depth of the electromagnetic wave 5 is
much la, rger than $(T), the coherence length of the
superconductor [i.e. , IVA„(t) I =0] for sxmpiic)ty.

As in the case of the linear response discussed
in the Ref. 8, we can eliminate the linear term in
A„(i) in Eq. (24) by making use of the moving solu-
tion, which satisfies the following equation:

~~ ~~

~

——D(V —2ieAO) + 4ieD(V 2ieAO)A„()t)—

~ 4 'DA. '{{)—28DB 4e'B D„f'{tl)

x~',(r, i)=o, (25)

where H„ is the incident microwave magnetic field.
We have here an appreciable third-harmonic field,
because of the presence of large factors such as
eo(T)/{d and [5/$(T)], where &(T) = [2eH,2(T)] '2 .

We also point out that E,„/E„has interesting
2e,(T) A„(t)

2&0(T) —i{d B (27)

n4

n, ',(r, t) =Q C„e""' exp eH x- "-if(i) (26)-
2eI3
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(28)a'(r, t) = &q(r, t) y~(t),

and substituting this in Eq. (24), we have

4](, t) (
—

At(t) ~ 44'DA!(t)(1-9'( )]At(t)

~ (2eDB —4 (2)]tet(t) ~ R]et(e, t)] Dt(t)) =9, (29)

This solution represents a helical oscillation of the
vortex structure. In the limit m-0, the above so-
lution reduces essentially to that in the flux-flow
regime ' (i.e. , the uniform motion of the vortex
structure in the x direction). Now assuming that
the complete solution in the present geometry is
given by

and the third-harmonic current

4e'D[1 —2)'((d)]
2mp(T) —i(d —i(d+ 2t(& )

16[eA„(t)] 2(d 4ep —2(d

—2(d+ k(Hp) 2&p(T) —i (d 2('.p
—i(d

Making use of an analysis similar to that in Sec.
IIA, we find easily that at the surface of the speci-
men the third-harmonic electric field radiated
from the specimen is given by

Itf(t) 2~,(T)where 2) (v)
A„(t) 2e (T) —t(d

(30)
a(eA„)' Ad

tt —tte 9(H ) 24 —4 )
Here we have made use of Eq. (25). Finally, mul-
tiplying Eq. (29) by i]&(r, t) and taking the space
average, we have

—+ 4e DA(tl(l t) (te)] 9(H-)(t](t)-tl)9 t( )=tot.

(31)

Equation (31) is of the same structure as Eq. (11)
and we can solve it by iteration. Keeping only the
lowest-order term in A„(t) we have

4e'D 1 — (d

2[- i(d+ t2(Ifp)]
A'„(t)+ O(A„'(t)) (32)

or

As in the case of the parallel geometry, tt)&(t) de-
scribes the fluctuation of the amplitude of A~&(r, t).

Since the factor I -2]'((d) vanishes for (d-0, we
conclude that in the perpendicular geometry the
fluctuation in the amplitude of 6 (r, t) is suppressed
by a factor [1—2}'((d)] in comparison with that in the
parallel geometry. Substituting then n2(r, t) thus
found in Eq. (2), we have

Z„(2; t) =i(doA„(t) —4e&
2

xA, (t)( ] tet ]

' ) l —
( „( )]

A, ( t)) .4e'D[1-2]'((d)]

(34)

From this we have the fundamental current

(2 ) =4 (:rr —49C . (] A,
l ')) A.(t)

2&p T —2(d

x( " '.

) D]et]

As is seen in Eq. (34), the third-harmonic re-
sponse in the present case is strongly reduced by
a factor ((d/ep)' in the low-frequency limit in com-
parison with that in the parallel geometry. How-
ever, in the frequency range (d-&p(T), the third
harmonic in the present geometry becomes appre-
ciable. Furthermore, the amplitude of the third-
harmonic current in the present geometry has a
much stronger frequency dependence. This dif-
ference comes from the fact that in the parallel
geometry the microwave excites the fluctuation of
the amplitude of the order parameter, while in the
perpendicular geometry the microwave excites the
helical oscillation of the vortex structure, reducing
the amplitude fluctuation. Since the nonlinear re-
sponse is essentially related to the amplitude fluc-
tuation of the order pa, rameter (as seen above), we
have a smaller nonlinear response in the perpen-
dicular geometry.

C. Arbitrary Geometry

It is not difficult to consider the nonlinear re-
sponse in the arbitrary geometry, where the micro-
wave field E„ is applied with an angle to the dc
magnetic field. Ne have then the third-harmonic
currents both in the parallel and in the perpendicu-
lar direction to the dc field. For this purpose let
us consider the case where the vector potential is
given by

A(r, t) = (A„(t), A()(r), A,(t)),

where

A, (t) =A(t) sin& and A,(t) =A(t) cos8 . .

=i(d a — . A„(t)
4e la t

2f p T —2(d
(35) It is then easy to see that now A(r, t) [the solution

of Eq. (11)] is given by
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t '(r, t) = n,'(r, t)

x 1 — . Agt+ ~ —7) Q7 A~t

2e'DA'(t)
—iv)+ k(Ho)

(ln T/T, o+ g[—,'+ A/4v T] g-(-,')}At(r, t)

and

BA eiN
&(r, t)=o —+ (q&-qg) (2~i+As-~i)

+ [1/16(w T) ]tt' '(—,+ p)
~

n(r, t)
~

n(r, t) = 0
(41)

x (««'«+I& -«'( )I ««'0), (36)
1 2Q)y+ A2 1 -1x g' —+ —P —+ ~+(2&@2+6,—Az)

where n, ~&(r, t) has already been defined in Eq. (26).
Making use of this expression for the order pa-

rameter, the third-harmonic currents in the paral-
lel direction and in the perpendicular direction to
the dc field is given by

x t (1)n'(2)
' 1=2=(t, t) (42)

and

D
~

18 ~(cos'8 + sin'8[1 -q'(~)]}cos8—i&u+ k(Ho)

(39)

16(eA )'
—in+ k(H0) 2@0(T)—i&a

&&D~M~(cos 8+sin 8[1-g (u)]}sin8 . (40)

III. THIRD-HARMONIC CURRENT

In Sec. II we studied the nonlinear response of
the vortex state in the framework of TDGL and
found a large third-harmonic current. We are go-
ing to show in this section that most of the results
obtained there hold in wider context (i. e. , at all
temperatures) by making use of the general equa-
tions for the time-dependent order parameter as
obtained by Caroli and the present author. In fact,
in a dirty superconductor and in the relatively low-
frequency region [i. e. , ~/eo(0) «1], we will have
exactly the same expression for the third-harmon-
ic current as that found in Sec. II. In adirty super-
conductor in a high magnetic field Ho [slightly small-
er than H,2(T)], the motion of the order parameter
is described by the following set of equations:

Equations (39) and (40) show that the third-harmon-
ic currents have a strong anisotropy, depending
on the angle 0 between the microwave field E„and
the dc field H0. As already explained, this reflects
the fact that the parallel microwave excites only
the amplitude fluctuation of the order parameter,
while the perpendicular microwave excites both
the helical motion of the vortex structure and the
amplitude fluctuation. Therefore, the measure-
ment of the nonlinear response provides a useful
means of studying the dynamic behavior of the vor-
tex state.

where A; are the operators defined by

2
A) = cog+ Dqyy

8
CO 1

gg

A2 ——(@2+Dq~2

8
CO 2 et2

(43)

q, = - tV& —2eA(1), q2= —t v2+2eA(2)

and g«), P&,)) are the digamma and the trigamma
function, respectively. Furthermore, p is de-
fined by

p= DeH, 2(T)//2wT

The above set of equations may be called the gen-
eralized TDGL. In particular, in the vicinity of
the transition temperature, where u&/wT and A/vT
are small operators, Eqs. (41) and (42) reduce to
Eqs. (1) and (2), respectively.

In the following, we assume as in Sec. II that a
static magnetic field Ho (slightly smaller than H,2)
is applied in the z direction. We shall consider
again the same special geometries.

A. Parallel Geometry (HOIIE)

First let us consider the case where the micro-
wave electric field is applied parallel to the dc
magnetic field. Then, as previously, we assume

A(r, t) = (O, A (x), A, (t)) . (44)

where co(T) = 2DeH, z(T).
Then we can recast Eq. (41) in the form

Substituting A(r, t) in Eq. (41), we can in principle
determine h(r, t). However, we are only interest-
ed here in the second-order corrections to n(r, t)
in A, (t); thus we first simplify Eq. (41) by ex-
panding g( —,+ A/4vT) in the vicinity of g(~+ p):

1 y(l) 1 ~0, 45



TYPE-II SUPERCONDUCTORS. I

—-))(i —Re)X(r, i)]'-i,(T))i"(~, i)

(46)

4(IT ()("(-,'+p) ' (47)

Then the solution of Eq. (46) is readily found to be

which has exactly the same form as Eq. (1), where
8 is now given by

still holds in the present, more general context.

B. Perpendicular Geometry (Ho J.E)

As already mentioned in Sec. II in the present
geometry the microwave induces the helical motion
of the vortex lattice. However, we can still use
the same simplification as described in Sec. IIIA.
We find now that the order parameter is given ex-
actly by Eq. (33) with k(HO) defined in Eq. (49).
Here we assumed the vector potential Z(r, t) =

(A„(t), A(oI), 0) as in Sec. II. Substituting t] I(r, t) in
Eq. (42), we obtain the current

(46)

with k(HO) now given by

u(H, ) =(2eD[H„(T) -H,]/1.16[1-(2~',(T)) 'j]. (49)
jEOx g 2

— +p —g {~+p)
( )

. A~{t)

Equation (48) is exactly the same that obtained us-
ing the TDGL. However, note the appearance
of the parameter (Iz{T) in the definition of k(HO).

Now substituting the order parameter h(r, t) in
Eq. (42) and noting that

A~(r, t) = ~,(T)tl(r, t),
we have

J,(r, i) = s (- —A.(i))
——(]a, (r)

]

')

~+ p A, t -2m'T -2j+

4e'DA', (t)x [(-', —i&a/IIT+ p) —g(z+ p)], ~(H )
~ (50)

From this the third-harmonic current is easily
found to be

(Jg„),= 2&&
I
t]0(r) I')(I/- I&)

4e'DA', (t)x[y(-,' i~/IIT+ p) -4(k+ p)] .-~(H )

"""*'"-
&l~.(r) I'&~'"(-' p), »)

~T[ i~+I {Ho)j-
(~ -).= '6[eA.(t)]'Dli]4 I/[-t~+ I (H.)] (52)

Thus we find in the low-frequency limit &u «&0(0)
exactly the same expression for the third-harmon-
ic current that we have already obtained in Sec. II.
We may conclude, therefore, that as long as we
are interested in the low-frequency response the
TDGL are extremely useful.

Now the calculation of E,„can be done exactly
as described in Sec. II. Consequently, we shall
not pursue this problem further here. A'e note
only that the ratio E,„/E„ is exactly given by Eq.
(21), where k(Ho) is now given in Eq. (49).There-
fore, the estimate of this ratio made in Sec. II

[1-n {~)']4e'DA„'(t)
2eo(T) —i (() —i&u+ k(H, )

The third-harmonic current is then easily found to
be

[1-Il'(~)]4e'DA'„(t)
3 (2e 0

—I,())) ) —I(() +k (Ho)

x@)[-,' —3i~/211T+p] —y(-,'+p)] &Ia~l'&, (54)

«s ).=——
„T t"'(l+ p)&l &II'&

'-&{ ) 4. DA(t)
2eo —i(() —'ltd + k(Ho)

16[eA„(t)]' t(u
—(u+), ()i, ) sa, ()')-)a)

x " '
DIMI

2eo(T) —i~

which is equivalent to Eq. (36). In the passage
from Eq. (54) to Eq, (55), we have made use of the
Rppl'oxl111R'tl011 (() «E'o(0)) which ls llsuRlly valid fol'
the microwave range. We again find that the full
microscopic treatment results in the same expres-
sion that we obtained with the help of TDGL if we
limit ourselves to low-frequency phenomena.

C. Aribitrary Geometry

It is unnecessary to repeat the calculation here.
We can easily extend the validity of Eqs. (39) and
(40) to lower temperatures following the same
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reasoning. %6 conclude, therefore, that in a dirty
type-II superconductor we can use the results ob-
tained in the framework of TDGI at all temperatures,
provided the frequency of tI16 microwave (d ls suf-
ficiently low [i.e. , ~ «e, (0)]. For the Pb-In al-
loys, for example, with T,= 6 K, the above con-
dition gives ro«10' sec ', which is completely
satisfied in the usual experimental conditions. On

the other hand, for experiments using a frequency
in the far-infrared range and specimens with rel-
atively low T~ (say, T~ —1 K)~ we have to use a
more general form as given in Eqs. (51) and (54).
However, under these conditions we can no longer
use the simplification of Eq. (41) as achieved in

Eq. (45), and a more delicate treatment of the
problem is then required.

IV. CONCLUDING REMARKS

%6 have here considered the intrinsic nonlinear
responses in the vortex state of a dirty type-II
superconductor, first in the framework of TDGI
and then in the generalized TDGI.. %'6 find as
long as we are concerned with the low-frequency
limit [i.e. , &u «e, (0)], TDGL gives results essen-
tially valid at all temperatures. Substantial gen-
eration of third-harmonic current can be observed,
which is associated with the amplitude fluctuation
of the superconducting order parameter in the vor-
tex state. The emitted third-harmonic field is es-
timated to be of the order of

Eg~ eo(T) &d

E ~ (d 2eo(T) —f(d

Here E„and H„are the incident microwave elec-
tric and magnetic fields, respectively. Since in

the dirty type-II superconductor the factor [5/$(t)]4
is extremely large, we expect a large third-har-
monic response. %6 note also that the third-
harmonic response is reduced by a factor (&u/2eo)

in perpendicular geometry from that in parallel
geometry. This follows from the fact that in per-
pendicular geometry the microwave excites the
helical motion of the order parameter, which can-
cels a part of the amplitude fluctuation giving rise
to the nonlinear response. In the surface-sheath
regime of a dirty superconductor, we expect sim-
ilarly large nonlinear responses. However, the
mathematical treatment is somewhat different from
what we have done here. A discussion of such a
situation will be presented in a future work.

In the pure superconductor also, we have large
nonlinear responses as discussed here. However,
we cannot simply transcribe the result obtained in
86c II for this case because the basic equations
describing the changes in the order parameter and
the current are much more complicated. '~ A

detailed discussion of the nonlinear response in a
pure type-II superconductor will be given in the
second paper in this series.
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