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similar results for line shaye and power absorbed.
We also have found that when the rf frequency is
swept by keeping Ho fixed, the shift of the peak po-
sition for thicker samples is to lower frequencies,
for both calculations. This is contrary to the graphs
given in Ref. 2.

In conclusion, CESB in superconductors is at
least theoretically possible and would be exyeri-

mentally easier the higher the critical field since
the power absorbed P~ ~a~oand also since the sig-
nal-to-background ratio H, /H, ~ Ho.
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We consider a dirty superconducting material above its transition temperature. Using a
perturbation expansion, we study the effect of the fluctuations of the order parameter on the
electron Green's function G as well as on the fluctuation Green's functionS. Our main re-
sults are: (a) G and S can be determined separately. (b) The behavior of S can be analyzed
using the Ginzburg-Landau functional where the only nonlinear term present is the lowest-
order one. (c) As a result of this analysis, the corrections to the mean field theory are
generally small as far as S is concerned. They become important only at the onset of the
critical region, where our perturbation approach breaks down. We derive a criterion for the
onset of this critical region and compare our estimate to previous ones. (d) On the other
hand, G is well described by taking only the lowest-order correction to the electron self-
energy due to the fluctuations, even inside the critical region. (e) We propose a scheme for
the analysis of the critical region. (f) We establish in this way the complete equivalence be-
tween the critical behavior of the interacting Bose system and that of a superconductor.

I. INTRODUCTION

The fluctuations of the order parameter in "dirty"
one- or two-dimensional superconductors (thin
films or whiskers) have been studied extensively
both theoretically and experimentally. ' Many
experiments on the electrical conductivity" seem
to be successfully accounted for in terms of the
Aslamazov-Larkin theory, which is a mean field
approach, although there exists still a question
about the completeness of that derivation. "'

On the other hand, there has been a number of
suggestions' that the mean field theory will be
no longer valid in the immediate vicinity of the
transition temperature, where the fluctuation spec-

trum of the order parameter may be modified
drastically.

In the present work, we use a perturbation ex-
pansion technique to study systematically the effect
of the fluctuations of the order parameter on the
electron Green's function G as well as on the fluc-
tuation Green's function S . As a preparation of a
more complete analysis, we start with a study of
the first-order correction to G (Sec. II) and to ',b
(Sec. III). We find that the effect of the first-order
correction is much more important on S than on
G. A detailed analysis of the higher-order correc-
tions are carried out in Sec. IV, which results in
the following conclusions.

(a) G and G can be determined separately.
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since we are close to T,.
The above relations have been obtained using for

S the expression &0 obtained by the mean field
approximation

uo((o„, q) = [1/N(0) ) [(o/8T)
~
s) p ~

+ r) + Xq' ] '. (l. 6)

In (l. 6), N(0) = mPo/2x is the density of states at
the Fermi level

X = (x/8 T) D, D = Ipo/3m

being the djffusion constant of our dirty material.
(d) As far as D is concerned, the self-energy

corrections to the fluctuation propagator, 5q, are
also yielded by a power expansion such as

6q/q =Z „b„y(,
where the b„are coefficients of the order of one,
Depending on the dimensionality, we have

&, = (I/pof()q-»o

yo = (I/pofd) &

&, = (~/Ido po) ~-o&o

(I.8)

(1.10)

(e) From the consideration of points (c) and (d),
it is clear that, in the analysis of the critical be-
havior of the system, we can neglect the modifica-
tions of the electronic Green's function due to the
fluctuations. It is sufficient to concentrate on the
modifications of the fluctuation Green's function

(b) The behavior of S can be analyzed using the
Ginzburg-Landau functional where the only non-
linear term present is the lowest-order one.

(c) As far as G is concerned, the self-energy Z
due to the fluctuations of the order parameter is
yielded by the following expansion:

Z= Z c„x", , (l. 1)
5 ~ 1

where x= x, (i = 3, 2, 1) depends on the dimension-
ality of the sample. Thus, in the three-dimensional
case

x, = I/I&p,' . (l. 2)

In the two-dimensional case (a film of thickness d)

xo = (1/ po Id) In(1/g) . (l. 3)

In the one-dimensional case (a whisker of cross
section d )

x =(hip'Id')n "' (l. 4)

In the above relations, the c„are coefficients of
order I/r, o4 7' being the mean collision time; I is
the mean free path, Po is the Fermi wave vector, $

is the coherence length of a dirty superconductor
[i.e. , $ = ()of)' ], and q is given by

q = ln(T/T, ) - (T —T,)/T, ,

using the Ginzburg-Landau functional. The modi-
fications of G are in terms appropriately described
if one retains only the first-order corrections due
to the fluctuations, provided that the proper S is
inserted in the calculation.

Consequently, we establish that the critical be-
havior in a superconductor is equivalent to that in
the interacting Bose system as far as the thermo-
dynamical (or equilibrium) properties are con-
cerned. On the other hand, let us point out that
this equivalence does not necessarily hold for dy-
namic transport properties such as the conductivity
mentioned above.

(f) We define the onset of the critical region
(i. e. , the breakdown of the mean field theory) by
the condition y= 1. Depending on the dimension,
this criterion can also be written g =g, , Thus

'q, o
= 1/(pof ) popo,

q„= 1/p', Id,

n,g=[$o/(pod)'&]' ',

(1.11)

(1.12)

II. CORRECTIONS TO ELECTRON GREEN'S
FUNCTION G

In the absence of any impurity, we start with the
following Hamiltonian:

X =~ $~a~a~+ ~ (g, a~+, , a»+g, a~+, , a ~, ),
Pty Poe

(2. 1)
where a&~, and a~, are the electron creation and
annihilation operators, respectively, $~=P'/2m —p
is the energy of the electron measured from the
Fermi level. t)t

t is such that

= Ig'f ~pap+ (2. 2)

Our criteria agree with estimates made in Refs.
16 and 20-22 but disagree with estimates resulting
from Refs. 1V and 18. In the two-dimensional case,
the condition (1.12) gives a good account for the
deviation of the electrical conductivity from the
T, /(T T,) law in t-he immediate vicinity of T, as
observed by Glover. ~ Qn the other hand, the pre-
sent result cannot explain the thickness dependence
of the shift in T, observed in the same experi-
ments. 3~ Indeed, the estimate from the Quctuation
effect gives a shift by a factor of 10 smaller than
that observed. This implies the existence of an-
other cause, such as a proximity effect as pointed
out in Ref. 26.

Finally, as a byproduct, we derive the expression
of the tunneling density of states where an addi-
tional structure due to the fluctuations is present.
This expression agrees with a result obtained by
Abrahams, Redi, and Woo, "and also accounts for
the experiments carried out by Cohen, Abeles, and
Fuselier. '
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(a) (c)

FIG. 1. Diagrammatic representation of the vertex
corrections. The diagram E'a) is the zeroth-order
vertex.

IgI being the BCS interaction.
The correlation function of the order parameter

(i. e. , the Green's function for (i)t ) is determined by

I' II

) P

Z, (p, ar„) =TZ„Z, [A(~„,~„,„, (I)]'

where

xa)(-(I, (o„)G,[p+(I, —((o„.„)j, (2. I)

with

g„=~„(I+I/2rI~„I) . (2. 5)

The self-energy Z(p, e„) is given by the diagram-
matic expansion shown in Fig. 2. In Fig. 2, the
dotted line corresponds to the scattering of the
electrons on the impurities.

Now, we want to evaluate the lowest-order terms
in Z(p, (d„). This is obtained by the summation of
Figs. 2(a) and 2(b). If Z, denotes the contribution
of Fig. 2(a) to Z(p, (d„), then Z, is given by

))(a~.)=&Z„f( ), (5+q, ~. ~.; —i, —~.)

xG((d„+(()„, p+(I)G( —(d„, -p). (2. 4)

l2~„+(d„l+7 '
2Q) ~ + QJ p } + DQ'

fo r (d ~
' 47~ ~ p & 0,

G(p, (o„) '=G() (p, (d„) ' —Z(p, (d„) . (2. 5)

In (2. 5), Go is the electron Green's function in
the absence of fluctuations.

Now, we limit our considerations to "dirty" su-
pereonductors, where the electron mean free path
is much shorter than the coherence length. The
relevant average on the randomized scattering
centers can be achieved according to the standard
technique. Thus, in standard notations

Go(p, ~„)=(f~„—$) '

Here G((d„, p) is the renormalized Green's function
of the electron and Cl is the irreducible vertex.
is given by a diagrammatic expansion (see Fig. 1),
for example. In Fig. 1, the wavy lines correspond
to the fluctuation Green's function X}while the
straight lines correspond to G. In first approxima-
tion, 2 is given by Fig. 1(a).

On the other hand, the electron Green's function
is given by the following expression:

(2. 8)

&(0) n+&q'+xi~„i/BT,

We recall also that &o„= (2n+ 1)v T and that ar „
=2m T. In a, dirty material (2v T, 7'« I), E(I. (2.V)

can be reasonably approximated by

z.(p, ~.)=GO(p, -~.)F(I~.I)
This separation is possible, since the momentum
involved ln the fluctuation propagator (which ls of
the order of the inverse of the temperature-de-
pendent coherence length) is much smaller than
the momentum characteristic of the conduction
electrons P() (see also Ref. 15).

After the summation over v, E(la&„i ) is yielded
in terms of digamma functions. In view of the
summation over q, it is sufficient to replace ())(s)

by its expression for small arguments, i. e. ,
—I/z. Finally, keeping the most important terms,
we can write (see the Appendix)

BT 1 1 2 2 1

mN(0) ' (i 2~„ I
—e)' &+Dq' (e+ i 2(d„i +2Dq' (i 2+„i —E) (&+ i 2(d„i +2Dq')'

(2. 11)

The su&nmation over q results in

F(I~„I)=~„'w,(I~„I),
depending on the dimension. Thus

2T 2 I 2
w N(0)D)(T) (2i(o i

—e)'

—,'+ I(()„I/e
(2 + 4 i (()„i /&)»2

(2. 12)

A
2

X(0)Dd (i2~„i —e)'

ju„) 1 I 2m„I —&

2 I2~„I +&

f)I(0)Dd' (i 2~„i —~)'

3)(d„) +~& 1
(2 „( ~ c (2+4(w„(A)'" )

(2. 14)



BREAKDOWN OF THE MEAN FIE LD THEORY 2563

In (2. 13)-(2.15), $(T), the temperature coher-
ence length, is such that

$(T) =(D/e) ~ with g= (8T/v)rI . (2. 16)

Now, the consideration of Fig. 2(b) yields for Z,

~ ~

d'p' lu(e ') I' F(~„)
(2v)' (i&a„—t,.)' f~„+)~.

= (i/4r) sign(co„)A([&u„() .
Hence Z = Z, + Z& is such that

z sign„

(2. 17)

(2. 18)

2T& 2 1

v N(0)Dd (2i~ + &)'

1 2iM+6 (2.21)

iE

(b)

In (2. 17), n is the number of impurities per unit
volume and u is the impurity potential. Finally,
within the present approximation, the renormalized
Green's function is given by

«1

i:(i, .)=Ii .-i-'. -" f-li".&(l~.l)I

(i~„—g) {i~„[I+2A(l&u„l)]+&)
~ (2. IS)

The above expressions for A( l~„l) result in an
anomalous behavior of the tunneling density of
states, as observed experimentally by Cohen,
Abeles, and Fuselier. ' From (2. 13)-(2.15), we
can deduce the value of this anomalous component.
Thus, if v(&u) = [N(~) N„(~)]/N„(0-), N(&u) being
the total density of states and N„ the density of
states when the fluctuations are not taken into
account,

2T' 2

N(0)Dt(T)

1 2
—i &d/t

(2i ~ a)' (2 —ii /&)' ' )
(2. 20)

A similar result has been obtained by Abrahams,
Redi, and Woo. " Although these authors neglected
the contribution of Fig. 2(b) in the calculation of
the self-energy P, they found the same density of
states, since in the local quantity associated with
the single-particle Green's function like the density
of states, Z, does not contribute because Z& can be
viewed as the density vertex correction with a
large momentum transfer. On the other hand, in
the consideration of the self-energy correction to
D (which is discussed in Sec. III) we cannot neglect
Fig. 2(b).

In the consideration of the thermodynamical
properties where t„l is always much larger than
E, we can further approximate A( l&u„ l) by

"'~~""~~=(~) ii(o)ii&(r) i
i' ( ~")

(2. 22)

(ir) N(0)Dd I re I' (
I

)
(2.23)
(2.24)

2T ~ vg(T) 1
N(0)Dd' i~ i' '

III. FIRST-ORDER CORRECTIONS TO S

and, apart from numerical factors, the A, can be
identified to the x, defined in (1.2) -(1.4).

We note also that the above results [i.e. , Eqs.
(2. 22)-(2. 24)] are more simply obtained by ne-
glecting completely the summation over frequencies
in the calculation of Z(&u„) and retaining only the
fluctuation with ~„=0, associated with $(0, q). In
other words, in the analysis of the thermodynam-
ics,l properties (or equilibrium properties), it is
sufficient to consider the effect of the fluctuations
of the order parameter with „=0 only.

We shall conclude this section with a discussion
of the higher-order corrections to the electron
Green's function, as are represented, for example,
by Figs. 2(c)-2(e). Since the momenta involved
in the propagator of the fluctuation are of the
order of $ (T) = (&/q) ~, while the momenta in

the electron Creen's function are of the ore.er
of Po, we can always perform the integrals over
the momenta in the fluctuation propagator sepa-
rately. It is then easy to notice that the higher-
order terms give rise to corrections in higher
order in x;, where the quantity x& is defined in
(1.2) -(1.4).

However, we will see in the next sections that the
effect of the higher-order terms is extremely
small, in the case of 6, compared to those in the
correction of D.

{c) {d) {e)
To zeroth order, i.e. , when the self-energy and

vertex corrections are neglected, the quantity
II(q, &u„) is yielded by the diagram (o.') of Fig. 3,

FIG. 2. Diagrammatic representation of the
electronic self-energy.
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u +
rj %' ~ I

(0) (~) (~)

7((q, up=

FIG. 3. Diagrammatic representation for the
quantity II(q, &uP entering the calculation of the tluctu-
ation Green's function. The diagram (n) is associated
to the mean field theory expansion for II and the dia-
grams P, y, 4, P', y', 5' are associated to the flrst-
order corrections.

which results, from (2. 3) and (2.4), in the expres-
sion (l. 6) for &. This is the expression adopted,
for example, by Caroli and Maki.

Now, we go one step further and sum all the
first-order corrections for II(q, &u„). In such a.

case, II is yielded by the sum of diagrams repre-
sented in Fig. 3.

Each diagram can be easily evaluated using the
same technique as previously. Summing all of
them, we have (see the Appendix)

II(q, ~„)= 2m'(0)

From (3.1), (2. 3), and (2.4), we can deduce

&(q, &u„). Assuming

„&(-'.) ~, "(»)
Ã(0)D~ (0

7f (3) 1 In(ti ') l
2m' Jq(0)Dd

„7&(3) ((0)
N(0)Dd' tl'"

In (3.5) and (3.7), $ (0) = (vD/8T)'~a.

(3.5)

(3.6)

(3.7)

The graphical representation of g&, g„g3 as a
function of p can be qualitatively seen in Fig. 4.
If, in the three-dimensional case, the first-order
corrections we have considered result in a finite
shift in g, those corrections become divergent in

rection appears only in &(q, 0) while the correc-
tions to B(q, &u„) (for v WO) are always negligible.
On the other hand, it will be worthwhile to point
out that in the discussion of the dynamical proper-
ties, we cannot neglect the dynamical corrections
mentioned above. Furthermore, the problem may
be much more complicated due to the appearance
of the new singularity associated with the vertex
renormalization of the scalar potential term as
has first pointea out by Gor'Kov and Eliashberg.
We point out also that the correction to X given in
(3.4) is practically negligible. In fact a more im-
portant correction to & comes from the next-order
correction in the fluctuation (see Sec. IV).

In fact, the correction term can also be ex-
pressed in powers of the y &

already defined in Sec.
I. This behavior differs completely from what
Kadanoff and Laramore had predicted from a phe-
nomenological analysis. '

Using (2. 22)-(2. 24), we can write three different
expressions for g, depending on the dimension of
the system,

1 1

Iq(0) tI + Q'+ m l~„ I /8T '

we obtain the following relations:

~=~.2 T Z '
~(~ „~),

n&0 ~n

(3.2)

(3 3)

i=A. 1 —BT
m~0

(3.4)

We did not consider here the dynamical corrections
to n (i. e. , the modification of the coefficient of
1&v„l in B) for two reasons: First, because the
lowest-order term considered here [i.e. , II(q, ~„)
given in (3.I)] is practically independent of &o„so
that II(q, &u„) = II(q, 0), the second, because we
are only interested in the following in the equilib-
rium properties of the system. In this situation
we can assume in practice J&„t » &0 for p 4 0 to a
good approximation. Then the most important cor-

0 $c

FIG. 4. Schematic representation of the renormalized
'g, 'g, as a function of g. The renormalization effects
are due to the first-order corrections to D. The curve
(1) represents the relation q =q. The curve (2) repre-
sents q in the three-dimensional case. The curve
(3) represents q in the two- or one-dimensional case.
In the two-dimensional case, g diverges as t log g t

while it diverges as g
' jn the one-dimensional case.

The shaded area represents the critical region.
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(4. 3)

FIG. 5. Example of diagrammatic contraction: the
first-order corrections to II, schematically repre-
sented by the diagram on the left, yield the diagram on
the right, the construction of which is explained in the
text.

the two- and one-dimensional case when g 0.
This divergent behavior is indeed very unphysi-

cal and inducesusto investigate the limits of valid-
ity of our approach, As pointed out in Sec. II,
self-energy corrections to the electron Green's
function will give rise to modifications of order
(x,)". On the other hand, the vertex corrections
will give rise to corrections of order y", [see Eqs.
(1.8) -(1.10), which are essentially the quantities
on the right of the ~ sign in the relations (3.5)-
(3 V)].

IV. HIGHER-ORDER CORRECTIONS AND CRITICAL
REGION

In this section, we shall consider the effect of
higher-order diagrams in the evaluation of II(q, o).
Let IIO be the zeroth-order contribution to II, i.e. ,
the diagram (o.) of Fig. 3. Let II, be the first-or-
der contribution to II, i.e. , the sum of the dia-
grams (p), (y), (5), (p'), (y'), (5 ') of Fig. 3. Let
II2 II3, be the higher -order corrections to m.

Il~ and II, are yielded by the sum of the diagrams
drawn on Figs. 6 and 7, respectively. Those dia-
grams do not exhibit impurity scattering effects,
which are supposed to be included in this symbolical
representation. In order to evaluate those dia-
grams, it is readily seen that a convenient proce-
dure consists in contracting the electron Green's-
function loops into four points. This contraction
is only possible because the electron momentum p
is much larger than the momentum characteristic
of the fluctuation. This means that the interaction
among fluctuations due to the electron closed loop
can be considered essentially as a local one.

For example, II» can be represented as seen on
Fig. 5, where the external straight lines are sim-
ply present for the purpose of momentum conserva-
tion and are associated to a factor of 1 in view of
the calculation. The point in Fig. 5, a "four-line
vertex" (two incoming, two outgoing lines) cor-
responds to a factor I3

r, = vriq(0) 2 I/I~. l
(4. 1)

n~0

The wavy line is a fluctuation line and corre-
sponds to the summation

(4. 3)

The precise coefficient in I"» is yielded when
one considers the expansion of the gap equation in
powers of 5."

It should be pointed out here that the integration
over q, performed in the case of the diagram on
the right-hand side of Fig. 5, for example, yields
a divergence when l q l -~. However, if we go
back to the microscopic expression of the diagram
on the right-hand side of Fig. 5 (i. e. , the sum of
the diagrams II+, II», II„, II,~. , II». , II„., of Fig.
3), we see that the vertex corrections due to im-
purity scattering will suppress the divergence.
Thus, in the case where divergences occur, one
needs to go back to the microscopic expression,
i.e. , the expression in terms of the electronic
Green's function. However, for an order-of=mag-
nitude estimate, it will be sufficient to perform a
dimensional analysis of such diagrams. On the
contrary, an exact expression is yielded by the
above-mentioned procedure in the case of non-
diverging diagrams.

Finally, one must take into account the momen-
tum conservation laws, as we can see from the
consideration of the diagram II, of Fig. 6. Its
value is

1
II3 —mTN 0

X~ 1

;, ,", (q+ Xqf)(g+Xq', )(rI+&q,')

( q& + q2 + q3 = 0) ~ (4.4)

ta)

FIG. 6. Diagrammatic representation of II2.' (a)
before contraction, (b) after contraction.

Similar contractions in the case of the diagrams
of Figs. 6(a) and V(a) yield the diagrams appearing
in Figs. 6(b) and V(b).

More generally, each "2n-line vertex" will be
associated with a factor
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t30(

+

to II3 comes from I', and 03/.
More generally, a very simple dimensional anal-

ysis shows that the most important contributions
of a given order to IT will come from those dia-
grams containing the maximum number of the low-
est-order vertices, i.e. , I"3.

Consequently, it is now easy to retain the most
important contributions to corrections of any order
to D. Thus, in the two-dimensional case, for
example,

II, -a, In(q-'), ll, - (a, Ing)',
0 -(p /]V) ln(1/q), 11 -( a/q) I (r/ )

D, - (a', /]l')

I IG. 7. Diagrammatic representation of FI3. (a)
before contraction, {b) after contraction.

Writing the renormalized value of g, g as

f) = [I/N(0)](I/g —II) (4. 13)

4 1T /2
C, = 3 dd[i (3'sti) ~ -,'trl 2])

tr /3

one dimensional:

(4. V)

( str ) tr (N(Q)Dd ) ( 3/3)'
(4. 8)

As seen from the consideration of Fig. 6, such
a contraction procedure is very convenient since
it gives the result that the sum of the diagrams
drawn in Fig. 6(a) yield the diagram in Fig. 6(b).

On the other hand, there is a very important
difference between the diagrams D3„and II3g of
Fig. V(b), and the diagram II3„of Fig. V(b). In-
deed, in the two-dimensional case

with

D,.=N(0)a,'/g,
II„=N(0)a,' [In(q-')/7i],

&2 = I/N(0)Dd

(4. 9)

(4. 10)

On the contrary

II,„=N(0)[a, In(]l-')]' . (4. 11)

Thus, when g 0, the most important contribution

Thus, we find

three dimensional:

Vg(3) 16 1 1

8m v [N(0)D) (0)]
(4. 6)

two dimensional:

Vf(3) 4C2 & 1 1

8nw '[N(0)Dd] ]V

with

we obtain the following series, which can be written
as follows, provided that we neglect constant nu-
merical factors:

]V =]I
I
I+ (aa/]V) In(q )+ aa(ln]V) /]V+ (aa/q ) ln(7i ')

+ (a', /r]') In(r] ')+ a', /q'+ ] (4. 14)

Keeping in mind that aa is a small quantity, we
retain in the above series only the most diverging
terms, i. e. , we can neglect all the corrections
due to II„ II„and II, compared to those due to II&,

II3 p ~5) ~ ~ ~ ~

Finally, to a good approximation, we can write
Eq. (4. 14) in the form (where we have neglected
logarithmic factors)

]l =q(1+ a,/q+ a,'/q'+ a', /rl' p ) . (4. 16)

Thus, as pointed out in Sec. I, our perturbation
expansion will break down if [cf. Eq. (l. 9)] y

~ 1 ~N

Of course, the same result holds for the three-
and one-dimensional cases. As the y, are much
larger than the x„we define the breakdown of the
mean field theory by the conditions y; = 1, which
are conditions (l. 11)-(1.13).

However, the dimensional analysis we have first
used to obtain our results yields a further impor-
tant conclusion. The diagrams we have considered
above are exactly those appearing in the calcula-
tion of the fluctuation Green's function using the
Ginzburg-Landau functional. 0 Thus

n(r r')= J ~f0'-(r)g(r')e oL" /
J' 6q

80'oz(]]t]]t] (4. 16)

'
d[ rl«er) I'+D

I ~y(r) I'~N(0) 2

+-' 'I «r)l' +' baal C(r)l' + " ] (4 1V)

with b = Vp(3)/p'V'
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We have shown in Secs. II-IV the results pre-
sented in the Introduction.

In particular, we have shown that the corrections
to the mean field theory are generally small, ex-
cept when one gets close to the critical region. '

The criterion we have obtained for the onset of
the critical region g =g„ is the same as the one
proposed ea,rlier by Ginzburg, Ferrell, and
Tsuzuki. On the other hand, it differs from the
one proposed by Brout or by Fischer, '7' and also
from an earlier estimate by Ferrell and Schmidt. '

It is not surprising that we find the same result
as Ferrell, since we present essentially a micro-
scopical justification of his approach. We find
also the same result as Tsuzuki since this author
considers the diagram II3 of Fig. 7 to deduce his
criterion. However, our analysis shows that the
conclusion obtained by Tsuzuki is also true when
one examines the higher-order diagrams.

As far as the comparison with experimental data
is concerned, our criterion (1.12) seems to work
reasonably well in the case of Glover's experiment.
Indeed using numerical values relevant to Ref. 2
(I- lOA, d-lOOA), (1.12) yields q, 10 ', whi-ch

can account reasonably well for the deviation from
the T,/(T —T,) behavior of the electrical conduc-
tivity above the transition temperature.

Some properties of superconducting samples
above their transition temperature (such as the
electrical conductivity, for example) depend on q.
From the measurements of such properties in the
"classical" region (by fitting the divergence of the
electrical conductivity to the Aslamasov-Larkin
expression, for example) one can deduce a, value
of the critical temperature T,*. As we have seen,
the renormalization effects on g due to fluctuations
are very small in the classical region. However,
they might affect the values of T,*. In the two-
dimensional case, the shift bT, = T,*-T, due to
the fluctuations is only

r T,/T, = —(2. 4/p', ld) [In(1/q) —1] (5. I)
In the case of the experiments by Glover, this
last relation can be written

&T,/T, & 1A/d,
0

where d is in A units.

(5. 2)

The above-mentioned analysis has shown us that
the most important terms were obtained by the
diagrams containing the maximum number of ver-
tices I"3. Consequently, in view of the determina-
tion of X), we are allowed to neglect terms of higher
order than ) gj' in the expansion of 5« in powers
of g. Now, we shall comment on the above results
in the conclusion.

V. CONCLUSION

However, the relation (5. 2) gives too small a
value for the ratio l&T,/T, [ compared to the one
observed experimentally. ' The experimental shift
seems thus to be extrinsic to fluctuation effects,
as already noticed by Ferrell. On the other hand
this shift seems to be well accounted for in terms
of proximity effects. At the film surface, which
is in contact with an insulator, the logarithmic
derivative of the order parameter is given by

d—In[q(x)] = —,a

where a is of the order of interatomic distance and
x is the distance from the surface of the film.
Hence the virtual order parameter acquires a
slight spatial dependence across the film thickness
resulting in a shift of the transition temperature.
Thus the proximity effect introduces a pair-break-
ing parameter into the theory of the electrical con-
ductivity which results in a, cancellation of the
divergence associated with the so-called Maki dia-
gram"' . This seems to explain why the Aslamasov-
Larkin term only gives a good account of the ex-
perimental data observed in the above-mentioned
experiment.

Finally, we propose the following procedure for
the analysis of the thermodynamical properties in
the critical region.

(a) Determine B from the relation (5. 16), where

= (&/8T) J d &(&
I kl +Dl vol + 5I gl )

(b) Inject the value of S into the calculation of
G performed in the same way as in Sec. II.

Since there is a one-to-one correspondence be-
tween the diagrams generated by the Ginzburg-
Landau functional given above and those for the
interacting Bose system, we can say that the crit-
ical behavior of the fluctuations is identical in
these two systems. Making use of Migdal's re-
sult3 in his recent analysis of the Bose system,
we can say that the critical behavior of a supercon-
ductor is described by scaling laws. However,
the critical exponents can only be determined by
a more detailed numerical analysis.
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APPENDIX A; CALCULATION OF Z, (~„,p)

The term Z, is the self-energy diagram in Fig. 2(a). Z, obtained by

g (~ --) Tg g e(&gg~ggP) (l2&„+&„I+7 ) 1
i&„.„+5~„(I2~„+to„i+Dq')' fV(0)(q+ Xq'+ via&„I/8T) '

&(0), „0 i9„,„+&~„(I2~„I++„+Dq) q+Aqa+ve„/BT

kp.. (12~„1—~„+De')' tl+1q' mr. /BT)
(A2)

(».) 4T ~ 1 I2&o I+Dq' e+Dq' '

'~~+4 v iV(0) ~ (I»ni —e)»T 2vT (12&v„i+e+2Dq')'

12fd„l+Dq S ~Dq', 4„I+Dq +e, [~ ~ ~qR)-
2

1 1 I I2& I+Dq'
2vT I 2~„ I

—e 2vT 12~„I+ e+ 2Dq'

,(lK„I+Dq'), (, 1a„l+Dg')
I)

In (A3), g and III' are, respectively, thediagamma
and trigamma functions and e = (8T/v)q. Here, we
have neglected the corrections of higher order in
Yw„and lq. Furthermore, if we retain only the
pole terms coming from the polygamma functions,
which give rise to the singular contributions, we
can simplify (A3) and we have

(2~„)' 8T 1 1
i~„+k, vX(0) ' (2I~„I —e)' e+Dq'

2 2
2 I ~„I + & + 2Dq' ( I »„I

—& )

X aa(I2&o„I+e+2Dq )

which is essentially Ecis. (2. 10) and (2. 11).

APPENDIX 8: CALCULATION OF H,(o, q)

Making use of the expression of Z, we have just
obtained it is easy to express the diagram H, z of

Fig. 3. Thus

H)g= T Z A ((0„~ (d„~ q)

& (2,)' [&o( ., P)j'&, ( ., P)G (- „,P)

= T + A (~n~ ~niq')

d px
(2 )3 (.- ] )2 (-. =-

( )g&(i~„i)

A ((04 T~(O)g ' "' "'q Z()~ I) (Hl)n»n
ln (Bl), E(i~„I) is given by the relation (2. 11).
Qn the other hand, the contribution to the diagram

IT, can be written as

llgy=~~&~ T+nA (~n~ ~niq)

dg 1
(2v)3 (i+ t )3 ~s(+n& P )

dp
„(2v)' (is)„—&p)'(i~„+ (p)

=&(0)
2 Z„2- ), E(~(u„~)A'((o„,(o„;q),

(M)

where we have assumed an isotropic scattering
potential and we have made use of the relation

1/~= 2m~m~'X(0) .
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Finally, the diagram II„yields

dp 1 1
(2m)' (ia) + t )' iG —

&

&& P (&u„, &u„; q) E(
i

&u„
i

)

n

If we sum II,~, II», II» and multiply by a factor
of 2 to include the effect of IIgg ITgy II/6 we obtain

which yields the approximate relation (3. 1).
It is worthwhile to note here that II, is much more

easily calculated in terms of the Ginzburg-Landau
functional through the consideration of the diagram
on the right-hand side of Fig. 5.
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