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In order to determine whether electron spin resonance in type-I superconductors is experi-
mentally possible, we have extended Dyson's theory to the case of a superconductor, taking
into account the penetration depth of electromagnetic fields, the change in phase of the surface
impedance, and the change in group velocity and relaxation time of the quasiparticles compared
to the normal case. We have calculated line shapes and magnitudes of power absorbed and rf
field transmitted for various frequencies and temperatures for thin-film superconductors. From
our calculation, we determine the optimum temperatures and frequencies, and conclude that
even for these conditions, the experiment would be difficult.

I. INTRODUCTION

Three years ago Schultz and co-workers' ob-
served conduction electron spin resonance (CESR)
in normal aluminum, the first such observation in
a metal which undergoes a superconducting transi-
tion. Hence, the possibility of observing CESR in
the superconducting state was raised. If CESR is
observed in a superconductor, we might be able to
obtain a key to the spin relaxation mechanism in
metals. Below 25 'K, the spin relaxation time U

in normal Al was found to be temperature indepen-
dent and values for U were essentially the same for
different samples with different resistivity ratios.
This leaves the possibility of other mechanisms be-
sides impurity scattering and spin-lattice interac-
tions. ' Kaplan calculated the shape of CESR ab-
sorption curves for superconducting films of thick-
ness less than or the order of the penetration depth
X by using a phenomenological modified Bloch equa-
tion. He concluded that CESR should be observable
in the superconducting state. Here we extend Dy-
son's theorys' to the case of a thin-film Bardeen-

Cooper-Schrieffer (BCS) superconductor, taking into
account changes in the diffusion and spin relaxation
of the quasiparticles in the superconducting state.
We have calculated not only the line shapes, but also
the magnitudes of the power absorbed and rf fields
transmitted. We give the temperature and frequency
regions for which the resonance will be the largest,
and we find that even in the optimum region the
resonance will be difficut to observe experimentally.

We consider a film of thickness L parallel to the
y-z plane and with surfaces at x = ——,

' L and + —,
' L.

A static magnetic field Ho is applied in the z direc-
tion. The linearly polarized rf with its magnetic
field H, in the y direction will be considered for
two situations. (a) The rf field impinges on the
film from the negative x region. In this case we
shall be interested in the power transmitted through
the film into the positive x region. (b) The rf field
is set up on both sides of the film with ff, (—,

' L)
=H, (- —,'L). In this case we are interested in the
power absorbed in the film. We shall refer to these
cases as (a,) and (b), respectively. Both cases are
used experimentally. "
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Z=(c'/S~') IHi(- lL) I'HeZ,

where Z is the surface impedance,

(2)

Z = (47r/c) E,(- ,' L)H,*(—-,' L)/IH—,( ,' L)
I

-.—(3)
II. SPIN POLARIZATION IN A SUPERCONDUCTOR

The main differences in properties between the
normal and superconducting states are that in a su-
perconductor (i) the static magnetic field Ho pene-
trates only a penetration depth X; (ii) for the rf
field, A. takes the place of the skin depth 5 of the
normal metal and there is a resulting change in
phase of the surface impedance; and (iii) the veloci-
ty vg and the spin-relaxation time Ug of the quasi-
particle with wave vector k are ( I sf, I /Ek)v~ and

( I ef I/Ef)U, respectively, where v~ and U are the
Fermi velocity and spin-relaxation time for elastic
scatterings in the normal state. Here eg and Ep
are energies of the normal and the superconducting
quasiparticles, respectively. Ef = (e) + h~) V2, where
~ is the superconducting gap.

The proof concerning Uk is the following: The
interaction responsible for spin-flip scattering is

The rf fields then depend only on x and t with

R,(x, t) =j(H, (x)e ' '+c.c. ),
f,(x, t) = —Z(E, (x)e '"'+c.c. ) .

The average power P absorbed by the film per unit
area is

H, (x) = H, (e"" R'e "—")-
x& ——,'L,

E,(x) =H, (e""+R'e '"")
(8)

H, (x) = H, (e '" —Re'") —41T M —pL &x& gL)
E,(x) = —(i(o/cq)H, (e '"+Re'")

H, (x) = H, e""

Eq(x) =H5 e' "
1
—,L&x, (io)

Noting the factor stf./BEf. = Ep./eg. within the inte-
gral, it is straightforward to show

sf, (k) f,(k) -f,(k)
st (I ef I /Ef)U

Thus, we have shown that Uf =(I ef I/Ef)U.
We now consider the field equations. We shall

consider a supercurrent as a real current, and
hence the only magnetization M in the superconduct-
ing material is from the paramagnetism of the
spins. For case (a) we must find the transmitted
fields. For that we assume a uniform rf magneti-
zation M within the film such that M «) H, (, where
M= M ~ y. As in Ref. 4, we split the rf fields intoE'" and H' ', that directly associated with themag-
netization, and the remainder which is due to the
external fields and the electron currents in the sam-
ple. It can be shown that H'" = —4m M and E'" = 0.

Thus we can set

X~f —— Q v(k —k )(cubi, cg, +C. c. ),
k ~ R

where

q = [1/X' —2i (T/T, )' (1/6')]
where c„", is the creation operator for the electron-
ic Bloch state k, spin up, and with wave function
tj')f, (x) This st.ate refers to a. normal guasiparticle,
One can show that

&co Io& =1 (5)
k, l7~

where I 0) is the BCS superconducting ground state,
and y, p and y„are Bogoliubov operators defined by

y~p=Qg Cg~ —Vg C g

ygl +g -C~ + 4 Cf

with va --,'(1 —e~/E&), and u~ =1 —vm. Thenthetime
dependence of the superconducting quasiparticle
distribution function f,(k) for state (k, 1) is

sf, (k) 2v
= ——P Iv(k-k')I ~(E;, -E,)Bt

x, (f,(k)[1-fo(k')] -f,(k') [1-f,(k)l ]

Xp

[i —(T/T, )']" (i2)

Here 5 is the skin depth in the normal state, while
H3 is the amplitude of the incoming rf field, and
R', R, H„and H, are determined by matching the
boundary conditions at x = + —,

' L.
From these equations, we find the transmitted

field, H, (—,
'

L,), is, to second order in M and (i&a/cq),
for L= X,

Defining

i~ l H, (- —,
' L) exp(- —,

'
qL)

cq sinhqL cosh(2 qL)

(12)

according to the London equations and the two-fluid
model, and the temperature dependence of the pene-
tration depth is assumed to be

= —
~ N(o)f l.(k-k )l [f$)-f S ~l

kx 5(E'k. —Ep) — 'dQ' de ' .
BE)f and

(i(u/cq)H, ( —,
'L)-

sinh(qL)
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H ——'" i- '"P'-'"'
cq cosh(pqL)

the signal-to-background ratio is H, /Hk.
We now set Z=ZO+Z„, where Zo is the surface

impedance for spinless electrons and Z„ is the
magnetization-dependent part. From Eq. (9) we

get for case (a.)

(~ 4' &'d . f(d 1
zo&'& =--T —i 1+— +

~c q cq coshqL sinhqL

for k'W k. Thus, we see that X, induces transitions
only between (-k, 1) and (k, 0).

Let ) R, 0;t, t') be the time-dependent state vec-
tor of the system at time t, knowing that at time
t'& t there: was only one quasiparticle in the system
and that it was in state (k, o). Assuming that the
quasiparticle is localized in a wave packet so that
Hp(x) and H, (x) are essentially constant over the
wave packet, the time-dependent state vector can
be written

x cothqL (14)

t
~0, 0;t, t')=exp —t — 0 '(((e)dt )yt, ~o")

and
1

Z«& v ~(, ' ) [2 stnh(-', qL) —tanhqL]

x exp(- —,'qL)z(')" . (is)

Similarly, Zp and Z„ for case (b) are

Zp(k) = —(4w/c ) (i(d/q) tanh( —,
' qL)

and

(is)

z„'"=[4wMHi (- lL)/IHi(- lL)I']z,"' . (17)

Note that Eqs. (14)-(1V) are the same as for the
normal case except for the fact that q is different
for the superconducting case as given by Eq. (11).

Our plan is first to find the behavior of a single
quasiparticle, and then to add up the effects from
all the quasiparticles. Suppose that at time t= t'
the system is in the state y'fp ) 0), which is the state
with one quasiparticle in (k, 0). We wish to calcu-
late the transition probabilities to other states

p ~ 0) and yk ~, ~ 0) due to the rf field.
The perturbing Hamiltonian K, is

k, = P, [)/. f( ~ A, (x, )e '"'+c.c.],
where R,(x) =H, (x)g, or in the second quantization
notation

Xg = Q Z ($krttr r Zk $ktt )Ck 0r Ckd
Afy 4'c'

where o refers to spin 0 or 0 with respect to the
z axis. We get for our configurations

X,= t(, Qf (e ' "' H, s *c„-,ck,

~ r(t) exx, (-
' — rr p, (*) dt')y'.„, ~0),

(is)
where x is the x coordinate of the center of thequa-
siparticle wave packet. x depends on time and
traces out the motion of the quasiparticle. The co-
efficient a, (t) is determined by time-dependent per-
turbation theory.

In order to obtain the spin expectation value, we
follow the same development as in Ref. 3. The
Fermi function for state (k, i) in the presence of a
magnetic field Hp is (as can be shown by minimizing
the free energy of the BCS superconductor in the
presence of Hp)

f(,( = ]exp[(Ek +VHp)/ks &]+1] ',
where the sign in the exponent is plus for i = 0 and
is minus for i =1. After a spin-dependent collision,
it is assumed that the quasiparticle will be in equi-
librium in terms of its spin. That is, it will be in
state i with probability Pg, with

fkp f ki PHp(x)-Sfr (20)kP kl f f f
where f„- is the Fermi function for state (k, i) in the
absence of a magnetic field.

Using the arguments above, we obtain for the rf
part t f the complex spin expectation value

it/ps ~ Sff
(y(k, x)= " du dx'

k k te I /2

f t/()) TW ~ +
+ e kk, s ck-, ck, ) + c.c. ,

where s = (pk, , a())k,), independent of k.
By using the Bogoliubov transformation, the ma-

trix elements are found to be where

x s A, (x')G(x', u, x, t) A(x, u, t)

&& &exp(i f ' dt' n[x(t')]))„,

&0 ~y (;.,X, yap ~0) =)/, (e '"'s* ~ 5, +e' 's* A*, )Sk. k

= &o
~
y„-,x, y „-„~o&*,

while

&O ~y; oZ y'„-, ~O) =&o~y;.,BC, y„-, )0) =0

n (x) = (p —2t(,Hp(x)/It,

A(x', u, t)= f dx" f„" du' G(x",u', x', u)

&( Hp(x")exp[- (t u')/f/k], -



2558 K ~ AOI AND J. C. SWIHART

and

G(x', t', x, t) = —Z cos[p, „(x+ —,'L)] cos[p, „(x'+—,'L)]
n=-~

x exp[- —,'uf A p, „(t—t')], (22)

with p, „=nv/L and A themeanfreepathfornon spi-n

flip scattering. The factor f„' dt'a[x(t')] in the ex-
ponent of Eq. (21) is the spin phase of the quasi-
particle. This phase depends on the path of the in-
dividual quasiparticle due to the fact that Hp is a
function of x, unlike the normal conducting case.
( ),„ in Eq. (21) means an average over all possible
paths from (x', u) to (x, t). Different quasiparticles
with different paths will have different phases, and

this will tend to make the magnitude of o(k, x) small-
er. In fact, if there is much variation of Hp over
the sample the phases would be random and c7 would
vanish. To see this, note that x(u) =x' and x(t) =x,
and define a,„(x') to be the average a of the quasi-
yarticles which move from x' at time u to x at time
t. Then

(exp(i f dt' a[x(t')]))„=D exp[ia,„(x')(t —u)],
(23)

where

case (a) where the rf field has a considerablechange
through the film. The absorption P~ due to the
magnetization for case (b) (rf field equal on both
sides of the film) is obtained from Eqs. (2), (16),
(17), and (28):

tanh —' L~. ——'; ~-'p, ( —:i)~*R.("""'*")~(r))

(29a)
where F(T) is defined as

p H(0)Hp„U " de sexp(E/ks T)
N ks T p E[exp(E/ks T)+1]

x [I+ta,„Uf]
[1+(a „U„-)] ' (29b)

H, /Hp = —16w(i/q) tanh( —', qL) sinh (—,qL) F(T) .
(3o)

It should be noted that in the limit T- T, , Eqs.
(29) and (30) give correct expressions for Pu and

H, /Hp in the normal state.

and where D has been set equal to one. The signal-
to-background ratio of the transmitted field for case
(a) (rf field on one side) is obtained from Eqs. (13)
and (28):

D = (exp(i f dt'[a(x(t')) —a,„(x')]j)„. (24) III. NUMERICAL RESULTS AND DISCUSSION

Since

i a[x(t')] —a,„(x')
i

& 2(p/k )&Hp,

where AHp is the maximum variation of Hp in the
sample, we see that D & 1 ——,

'
(IJ.t). Hp U)-, /8') if

(p t)Hp Ug/k ) «1, and D = 0 if (p AHp Ut;/k ) & 1.
Hence, we must restrict ourselves to a thin film
such that L & X. For such a film it is enough to take
only the n = 0 term in G(x', t', x, t) defined by Eq.
(22). Also

a„(x) = „a= p)(21),/h )H„, ,

where Hp, „ is the spatial average of Hp(x) and is
equal to

Equations (29) and (30) have been evaluated nu-

merically. The absorption curve for case (b) as
plotted in Fig. 1 is essentially Lorentzian with
asymmetry due to the factor Hp„ in Eq. (29b). In
the normal-state CESR, this factor does not affect
the shape very much since the variation of Hp over
the linewidth is small compared to the magnitude of
Hp at resonance. However, in the superconducting
state, the maximum Hp is restricted by the super-
conducting critical field H, and the peak spreads
over the whole region of Hp. Figure 2 shows peak

Hp „=(21/L)Hp tanh(L/2A. ) .

Substituting Eq. (23) into (21) we have

1 8

~+ av If

where H, ,„ is the spatial average of H, (x).
Now the magnetization is given by

M= —qiV(0) f" f;r(k)de,

(26)

(28)

~ I.O0
CL
K0
V)
Cl
N .5
4J

I-

LLI
K 0

I 00

U = 2 & Io ' sec
m =2 xlo sec '

L =500K
o=5oo 4

T/Tc =0.6

for Al

200 500
Ho )[GAUSS

where H(0) is the normal density of states at the
Fermi surface for both syins. Notice that since
the right-hand side of Eq. (27) is independent of x,
the spin magnetization is independent of x, even for

FIG. 1. Shape of an absorption curve for case (b),
the case for which the rf field is equal on both sides of
the film. It is essentially Lorentzian except for the ex-
tra factor of Hp» which causes asymmetry. Hc for AI
with these parameters is 247 G.
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FIG. 2. Maximum absorption for case (b) divided by
t HI ( —2L) I as a function of temperature for various

frequencies. Note that H& (-2L ) is given by Eq. (8) and
is not H3, the amplitude of rf field in the absence of the
sample. If the quantity on the ordinate is divided by
c/2~, it gives a rough estimate of absorptivity. For Al

only the part below the dashed line is experimentally
accessible, since the maximum static field is restricted
below H, . H~(T=O) =99 G for bulk material. The dashed
curve takes into account the fact that H~ is a function of
T and also the fact that H~ is higher for a thin film. It
is assumed N(0) =10 (cm erg)

heights of absorption curves as a function of tem-
perature for various frequencies for the convenience
of determining the most favorable experimental
conditions. The dashed curve represents conditions
under which the peak appears around —2H, for alu-
minum, taking into account the fact that H, depends
on both the temperature and the thickness of the
sample. We are not taking into account the fact
that the density of states in superconductors depends
on the static magnetic field. The dependence is
rather small in clean superconductors unless
H= H, , where our calculation probably fails to give
correct results. Thus, the dashed curve in Fig. 2
gives the highest temperature to which one can go
for a given frequency.

The temperature dependence is caused mainly by
the change of the number of quasiparticles with
temperature. Very close to T, , the normal cur-
rent contribution becomes important and changes
q as is seen from Eqs. (11) and (12), and hence
gives an additional temperature dependence. How-

2xIQ

-2xIQ

x
X

-4 IQ

PART

-6xIQ

I I

50 IOO
H (GAUSS)

Hc for Al

I50

FIG. 3. Real and imaginary parts of Hs/H~ as a func-
tion of Ho with N(0) =10 (cm erg) for case (a) (rf field
on one side). H~ for Al with these parameters is 165 G.

ever, for T/T, &0. 96, the normal current contri-
bution to the determination of H, (- —,L) is negligible
for the frequencies and normal-state skin depths
we are considering. In fact, there is only little
change in power absorbed when we change the nor-
mal skin depth from 1000 to 5000 A for T/T, =0. 9
and ~=10 sec '. Thus, there is no point incon-
sidering a more sophisticated approach than the
two-fluid model for the penetration of the rf fields,
Eqs. (6)-(11).

For case (a) (rf field on one side), the real and

imaginary parts of H, /H, (the parts in phase and
out of phase, respectively) are plotted in Fig. 3.
The temperature dependence of peak heights for
this case is about the same as the temperature de-
pendence of power absorbed for ca,se (b). Unfortu-
nately, even under ideal conditions, the peak of
H, /H„ is of the order 10, which indicates that it
would be very difficult to observe the peak experi-
mentally by the techniques now used. However, it
should be noted that the x component of the mag-
netization M is a background free signal, and there-
fore is perhaps easier to observe.

We have used the local London equations rather
than the more realistic nonlocal expressions for
the penetration of the fields into the superconductor
in Egs. (8)-(17). However, by choosing X properly,
we can get a fairly good description of the penetrat-
ing fields. Our primary concern in this paper is
the spin magnetization, and since this does not de-
pend crucially on the exact details of the position
dependence of the fields, this treatment should be
good enough for our purposes.

We have also calculated M by using Kaplan's
method of modified Bloch equations to compare it
with our results. We found the two methods yield
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similar results for line shaye and power absorbed.
We also have found that when the rf frequency is
swept by keeping Ho fixed, the shift of the peak po-
sition for thicker samples is to lower frequencies,
for both calculations. This is contrary to the graphs
given in Ref. 2.

In conclusion, CESB in superconductors is at
least theoretically possible and would be exyeri-

mentally easier the higher the critical field since
the power absorbed P~ ~a~oand also since the sig-
nal-to-background ratio H, /H, ~ Ho.
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We consider a dirty superconducting material above its transition temperature. Using a
perturbation expansion, we study the effect of the fluctuations of the order parameter on the
electron Green's function G as well as on the fluctuation Green's functionS. Our main re-
sults are: (a) G and S can be determined separately. (b) The behavior of S can be analyzed
using the Ginzburg-Landau functional where the only nonlinear term present is the lowest-
order one. (c) As a result of this analysis, the corrections to the mean field theory are
generally small as far as S is concerned. They become important only at the onset of the
critical region, where our perturbation approach breaks down. We derive a criterion for the
onset of this critical region and compare our estimate to previous ones. (d) On the other
hand, G is well described by taking only the lowest-order correction to the electron self-
energy due to the fluctuations, even inside the critical region. (e) We propose a scheme for
the analysis of the critical region. (f) We establish in this way the complete equivalence be-
tween the critical behavior of the interacting Bose system and that of a superconductor.

I. INTRODUCTION

The fluctuations of the order parameter in "dirty"
one- or two-dimensional superconductors (thin
films or whiskers) have been studied extensively
both theoretically and experimentally. ' Many
experiments on the electrical conductivity" seem
to be successfully accounted for in terms of the
Aslamazov-Larkin theory, which is a mean field
approach, although there exists still a question
about the completeness of that derivation. "'

On the other hand, there has been a number of
suggestions' that the mean field theory will be
no longer valid in the immediate vicinity of the
transition temperature, where the fluctuation spec-

trum of the order parameter may be modified
drastically.

In the present work, we use a perturbation ex-
pansion technique to study systematically the effect
of the fluctuations of the order parameter on the
electron Green's function G as well as on the fluc-
tuation Green's function S . As a preparation of a
more complete analysis, we start with a study of
the first-order correction to G (Sec. II) and to ',b
(Sec. III). We find that the effect of the first-order
correction is much more important on S than on
G. A detailed analysis of the higher-order correc-
tions are carried out in Sec. IV, which results in
the following conclusions.

(a) G and G can be determined separately.


