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Effect of Thermal Noise on the dc Josephson Effect
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An approximate analytic solution of the Fokker-Planck equation describing the effect of ther-
mal fluctuations on the dc Josephson voltage which is valid for finite capacitance of the junction
is obtained. It is shown that our solution should be applicable in the important region of experi-
mental interest.

I. INTRODUCTION

To investigate the effect of thermal fluctuations
on the dc Josephson effect, Anderson and Goldman'
have recently reported very interesting measure-
ments of current-voltage characteristics of a
Josephson junction at temperatures sufficiently
close to the transition temperature. The junction
is kept in series with a large effective resistance
and a battery, so that it is driven by a constant
(capacitive loading ) current source I . They an-
alyze their results by comparing them with a cal-
culation due to Ambegaokar and Halperin' which
uses an analogy with Brownian motion of a particle
in a field of force. A similar analogy was used by
Ivanchenko and Zil'berman" to study the effect of
thermal fluctuations. The calculation due to
Ambegaokar and Halperin is valid only in the limit
of zero capacitance C of the junction, since they
solve the Smoluchowski equation instead of the full
Fokker-Planck equation, whereas Ivanchenko and
Zil'berman give interesting new results' only for
large capacitance, in the region where I &I„where
I, is the "maximum" Josephson current. However,
experimental values of the capacitance are such
that none of these calculations are applicable, and
it may be misleading to fit experimental results
with any of these theories.

In this paper we examine the resulting Fokker-
Planck equation in the presence of thermal fluc-
tuations and a finite capacitance in a greater de-
tail in order to derive a suitable expression which
is valid in the important region of experimental
interest. We show that it is possible to obtain a
simple analytic expression for the voltage due to
thermal noise for I &I, (more precisely, I has to
be less than the cutoff current in the absence of
thermal fluctuations, which is always less than I&

for a finite capacitance), kT «tfl, /e and arbitrary
C. We also give exact alternative analytic expres-
sions for the case of zero capacitance which are
probably simpler to handle.

II. FOKKER-PLANCK EQUATION

For the capacitive loading, the equations satisfied

by 8, the phase difference of the order parameter
on opposite sides of the junction, and V, the po-
tential difference, are ~

'

d8 2eV
dt N

dV . V
C —=I Isin8 —-—+I (t)

dt R
(2)

The equations of motion then become

d8—=p, v, (6)

—= (x —sin8) —v+8 (w),
dv
dT

(6)

where

(8 (7' +&)&(~')) = (4/P. r) 6(7') . (7)

In the absence of terms on the right-hand side of
Eq. (6) which describe the force, damping, and
thermal fluctuations, the distribution function
P(v, 8, v) satisfies the Liouville equation

BP' d8 ~P—+——=0
d7' ~8 (6)

However, in the presence of the thermal fluctua-
tions and other terms in Eq. (6), if one keeps

where L(t) is the fluctuating thermal noise current,
with

(L(t)) = 0, (L(t'+t)L(t')) = (2kT/Il)6(t) . (3)

In terms of the momentum variable p = (KC/2e)V,
and the periodic coordinate 8, this problem is
equivalent to the Brownian motion of a particle in
the potential II(8) = —(5/2e)(I8+I, cos8). Let us
introduce dimensionless quantities

I V L 2II(8)x= —,v=, & = —,u= = —(x8+cos8),=I, ' =yes
(4)

SIq 2eI( 3 q ty= —, P~= R C, 7'=
e C RC

2543



2544 A. C. BISVfAS AND S.S. JHA

terms only up to the second moment in 4v, one has
the Fokker -Planck equation

8P d8 8P 1 82

ev' d7' ~8 ev
—+——= ——[A(v)P] +—,[B(v)P], (9)

2 Bv

where

(14b}

2

-2 P, ej—+ (1 —P, cose)g,
d gg

2 dgo—(x —sine)go +- =0 .
y 48

In the steady state, note that the condition (14a)
leads to

A(v) = lim, B(v) = lim(&v) . (hv')
bf «0 0

From Eq. (S)

v =2m g/f deg, (8) .

III. SOLUTIONS OF THE FOKKER-PLANCK
EQUATION

(15)

n,v—- (x —sin8 —v)4&+ f d»(&)
'f

so that

(4v) = (x —sin8 —v)br,

(hv ) = (x —sine v) h7'-

Using Eq. (7) we thus find that

A(v) =x -sine-v, B(v) =4/yP, ,

which lead to the Fokker-Planck equation

It is obvious from Eq. (13) that t"e hiera "y
equations for g„cannot be decoupled unless p, = 0.
One may argue, however, that one should truncate
these equations, even if P, & 0, by approximating

g3 in terms of g2 etc. , since the original Fokker-
Planck equation is correct only up to terms of the
order 4v . For example, one could write g3
= (x —sine)gz corresponding to the case when p,-0 and yP, -~, or g, = (x —sine)ga+(4/yP, )g,
corresponding to the case P,- 0, yP, finite. How-
ever, since P, occurs as a factor in the term with
the highest derivative in 8 in any given equation,
the nature of the solutions will be different whether
we put P, identically equal to zero or not.

eP 8P . ~P 8 2—= —p, v ——(x —sin8) —+—(vP) +c 88 ev ev yp, ev
(10)

Let us define the moments

A. The Case with P = 0

If p, is identically zero, from the exact Eq. (14b)
for the steady state we obtain

g„(e, r)= f dvv"P(v, e, r), n=0, 1, 2. .. , (11)

so that the required average voltage is given by

dg'0

d8
--, y(x —sine)go= --, yg, . (15)

(12)

~R'0
Pc g8

f d8 f dvvP f g, de

f 'd8f'"dvP f gode

The moments g„satisfy the following hierarchy of
equations:

This is nothing but the steady-state version of
Smoluchowski's equation solved in Ref. 3. The
periodic solution can be written in a convenient
form

g, (e) = ', yg, (sfnh2 m-Vx) f(8)f'd8' f(8' —8), (17)

where

= —P, -g, + (x —sine)go,
~g'2

a7'
(13)

f(8) = exp[-,
' y(x8+ cose) ] . (ls)

This is equivalent to Eq. (8) of Ref. 3. Using Eq.
(15) we obtain

~F2 eg3= —P, —2g, +2(x -sine)g, + g, ,
4

ev' ' ~8 yPC
Sm

V = —sinh~ ~x
y

f tf
2

de de'f(8) f(8' —8), (19)

" = —P,
"' -ng„+n(x —sin8)g„87

2n(n —1)
+

yp
4"n-2 ~

More specifically, these equations imply that any
steady-state solution must satisfy the conditions

which may be integrated to give

x2 2
V=x Z er(-1) Ir (-', y), , ~, , (20)

-E =0 xy +4K

g&(8) = const=8,

and

(14a) where E& = 1 if K=0, e~= 2 if K4 0, and where I~ is
the modified Bessel function of the first kind. Us-
ing the relations
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1f

Is(Z) = — d&e "' cosK8
2w

(ala)

cosK8 m cosh8xZ —7l'& 8 &7T

g ~ 0
" x K3+x'Z3 xZsinhwxZ '

(21b)
we can evaluate the asymptotic value of the above
integral for y» 1, in the region where x & 1, by the
method of steepest descent. One finds that

v =2(1-x')'/'sinh»&yx exp(-y[(1-x )'/3+xsin 'x]'},

x&1, y»1. (22)

For P, = 0 and y- ~ (T- 0) it should be noted directly
from Eq. (14b)that (x —sin8)go=g„which gives
the well-known result

1 g 8
„W(min, s+1) —W(min, s)

emin 8min emin emin
= —Z„"'' " r — " " '

'7)tr(m~ n, s&
v hT b 7'

(as)

where p' and q' are the respective transition rates
which are supposed to be independent of n.

Near the nth maximum, one can approximate the
potential by an oscillator,

u = u™+cos8„"-',(8 —8„*)'
v=O, x&1 (y- )

= (x' —1)'/' x & 1 (y -~) . (23)
=u„'* —(&d'/p, )-', X',

where

(27)

+pW(m ~n -1,s), (24)

B. The Case with P, 4 0

In order to consider the case of arbitrary P„
one has to go back to the original time-dependent
Fokker-Planck Eq. (10). In general it is difficult
to solve this equation for an arbitrary potential.
This may however be solved for an oscillator.
For x& 1, our potential u = —(x8+cos8) has minima
a 8„"=sin 'x+2gg an maxima a 8„'"=g —sin 'x
+ 2nm. At zero temperature the system is expected
to be in one of the metastable states given by 8„".
At a finite temperature the fluctuations can cause
the system to go from one metastable state to
another. When the temperature is not very high,
i.e. , if 1/y« lu, „-u,„l 1, one may a,ssume
that the transitions of the system can be considered
as discrete random walks. The system can be
assumed to stay in one of the local minima for a
sufficiently long time to allow a thermal equilibrium
solution to be used. The transition rate (escape
rate) from one minimum to another can be calcu-
lated by finding the solution of the steady-state
Fokker-Planck equation near the intermediate
maximum.

Let q and P be the transition probability for the
system to go from the state n+ 1 to n and from
n -1 to n, respectively, so that 1-q -p is the
probability of remaining in the state n itself. Then
the probability W(m ln; s+ 1) for the system to go
from the state m to n in s + 1 steps satisfies the
equations

W(m ~n, s+1)=(1-q -f&)W(m ~n, s)+qW(m ~n+I, s)

u~*= —[x(&& —sin 'x+ ann) —(1-x')'/'],
8 8mnx

(aa)

(29)

with the frequency

«& =+p' (1-x )'

Similarly, near the nth minimum

u = u„'+—'(&d3/p, )Y'

where

u„"= —[x(sin-'x+an«)+ (1 —x')'/'],

(3o)

(31)

(32)

dmin (33)

It is easy to verify that the Maxwell-Boltzmann
distribution

(- y /2) (Bcy2/2+ u)
o= Ce (34)

Pc = CF(X, v) exp(--', yu„'*)

xexp(- —,'y [ 'P, v —'(& /—P )X—)
with

E(X,v)-1 for X--~
0 for X +~ .

(3s)

identically satisfies the Fokker -Planck equation
(10). However, this cannot be the stationary solu-
tion in our case which will be valid for all e. Only
near a minimum (see Fig. 1) is this expected to be
a valid solution, so that

-ru /ss&-r/s& &&& v3/s+ &os r3/R&» (33)e n
n

In the vicinity of the nth maximum, we expect I' to
be of the form

+ „W(m~n, s+1)=1,
so that

(as) In the steady state, the equation satisfied by E(X,v)
can be obtained from Eqs. (35) and (10). One finds
that
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47 ~E v ~E 2 ~ I/
v —+—X—= ———+

Pc ev Pc ev yPc

The required solution of this equation is

j./3
F(g +) Pc [(1 + +R)1/R L]1/ R

4m'

O- (i/g )t:(j./4+ Cd )~/~+ 2/2]
C

(ss)

x exp(--, yP, [(-,'+& ) -R]5 ] . (29)

Thus the rate of transition across C„ from 8„"to
emin

FIG. l. Sketch of the potential u as a function of the
phase difference & for I&I&.

f „dR/Po (X=0, 1/)pCR/
n" n4 1

dv f „de/1„(1',1/)

1
[(1 R)1/R ]

( '7/R1 ( mcx mlc)
(40)

%e, therefore, obtain

x (exp[-1Ry(u„'*, -u„.",)]-exp[--', y (u„-u„,",)])
(41)

V= —([I+4P (1-x')"']'"-I]
p

C

x exp(-y[(1-x )'/R+xsin 'x]jsinhR&yx .
(42)

Note that our expression reduces to

V = 2(1 -x')'/'sinh, '-Ryx

xe~(-y[(I-xR)'/R+xsin-'x]], P,- o (4&)

1/ = I {1—x ) sinhR Tax
V PC

~ e~{-y[(1-x')"'+xs1n-'x] &, P,- (44)

which agree with the results derived by Ambegaokar
and Halperin, and Ivanchenko and Zil'berman,
respectively, in the region where x & 1 and y» i.

IV. CONCLUSION

It is clear from the random-walk model con-
sidered in Sec. III that our expression (42) is valid
only at low temperatures, and in the region x& 1.
This can give correct results only if y» {u„'*
-u„'")-'=[2(1-x )'/'+2x (sin 'x --R'1/)] ', which
implies that depending on the value of y, the value

of x should not be too close to 1. For a finite P„
our solution is expected to be valid for x below

x, = n, (p,), where c/, is the cutoff current calculated
by McCumber in the absence of thermal fluctua-
tions. Although all the experixnental numbers are
not available to us, it is obvious that in the region
of small x or v, the experimental data should be
fitted with our expression (40) instead of the ex-
pression (19).

Since for large y Eq. (42) gives correct limiting
values for p, - 0 as well as pc- ~, and since the
correct solution given by Eq. (19) or (20) valid for
any y is known for P, = 0, it is perhaps a better ap-
proximation to write

&[ +—Pc( — ) ] - ) [-] (4S)R)1/R 1 Rc = 0

x([1+4P {1-x')' ']' ' —I]
2P, (1 —x')"'

(4s)

in the region x & 1. The solution for x~ 1 could be
taken to be the same as in the case of P, =O.

It should be emphasized that the basic physical
assumptions in obtaining our Eq. (42) are that the
system spends most of its time in the valleys, and
that it is almost everywhere in equilibrium. For
this to happen, ' the dissipative mechanism must
be able to get rid of the energy /RT or xKI,/2e,
whichever is larger, before the system traverses
a fraction of one valley. The exact conditions of
the validity of Eq. (42) are thus y» 1 and x «x, .
In the very small -x limit the formula shows that
the slope dx/dR/ is larger for larger p, at fixed y.
This is also indicated from numerical results of
Kurkijarvi and Ambegaokar, "who solved Eqs. (1)-
(3) by a Monte Carlo procedure, if their curves
are properly extrapolated.
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Critical-field measurements, determined from isothermal magnetization curves, are re-
ported for InTl alloys covering the concentration range of 0—7% Tl. Since In and Tl have the
same number of valence electrons, the valence effects which tend to mask the effect of an-
isotropy in the energy gap should be minimized. Critical-field measurements down to T
= 0. 35 'K provide an accurate determination of Hp, the critical field at T = 0, and of y, the
temperature coefficient of the normal electronic specific heat. New values for y (= 1.672
+0.003 mJ/mole'K) and for Hp (=281.53+0.06 G) are reported for pure In. No effect on

p due to alloying is observed; however, changes in the quantities T& Hp/T& and

(dH, /dT)z z are observed and are compared with the anisotropy theory of Markowitz and
C

Kadanoff and of Clem. Significant departures from the predictions of anisotropy theory
are noted for all the measured parameters.

I. INTRODUCTION

The effects of dilute nonmagnetic impurities on
the superconducting properties of pure metals have
been studied experimentally for some time. ' '
These effects are separated into two classes to dis-
tinguish those which do from those which do not de-
pend on the particular type of impurity. The im-
purity-independent effects are attributed to changes
in the isotropic mean free path(IMFP) of an elec-
tron ' and to changes in the anisotropy of the super-
conducting energy gap, ~~. ' The impurity-de-
pendent effects, the so-called valence effects, are
attributed to changes in the basic parameters of the
metal, such as the electronic density of states.
Anisotropy effects on the thermodynamic properties
of superconductors are typically much smaller than
valence effects and are therefore difficult to isolate
and compare with theoretical predictions.

Valence effects are minimal in InTl alloys since
In and Tl have the same number of valence electrons.
The electron concentration n in this alloy system is

constant, and all quantities dependent on n, such
as the electronic density of states, should not be
affected by the additions of Tl. Therefore, InTl
alloys should be particularly suitable for studying
anisotropy-induced changes in superconducting
properties.

II. EXPERIMENTAL TECHNIQUE

A. Apparatus

The apparatus used to measure the critical fields
and critical temperatures of the samples is shown
in Fig. 1. The samples were positioned inside the
cryostat by supporting them in a copper sample
holder which was attached to the end «along sample
rod (see Fig. l). This sample rod couldbe removed
to change the sample and replaced within the cryo-
stat while the system remained at cryogenic tem-
peratures.

For measurements below 1'K, the superconduct-
ing sample was surrounded by a bath of liquid He
whose temperature was controlled by regulating the


