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The classical analysis, due to Kliewer and Fuchs, of the optical polarization modes of an
ionic crystal film in the long-wavelength limit is used to develop a quantum-mechanical treat-
ment of the interaction between an electron and the optical-phonon field of the film. Retarda-
tion effects are neglected. The analog of Frohlich's polaron Hamiltonian is obtained, but with
explicit inclusion of surface effects. As a first application of this theory, the case of a fast
electron is treated, and the electron-crystal enexgy-exchange spectra are derived. The clas-
sical energy-loss spectrum is recovered and involves processes resulting in one-phonon exci-
tation. Quantum-mechanical two-phonon processes are evaluated. The gain spectrum is ob-
tained for the first time and shows a strong temperature dependence. The results are in good
agreement with experimental spectra in LiF crystal films.

I. INTRODUCTION

The study of the interaction between electrons
and various elementary excitations of a solid in the
neighborhood of a boundary surface is of primary
interest for the understanding of a number of phe-
nomena involving surfaces, such as transport prop-
erties of thin films, photoemission, electron dif-
fraction, etc.

A particularly clear case of strong surface ef-
fects on the electron behavior has been demonstrat-
ed by Boersch et al. ' in their measurements of
electron energy-loss and -gain spectra in LiF crys-
tal films. Their results show that, for thicknesses
up to a few thousand A, energy exchange between
the electron and the crystal film is mainly due to
the strong coupling between the electron and the
surface-optical phonons, whereas for a thick crys-
tal slab the more efficient coupling is with the usual
bulk longitudinal-optical (LO) phonons. A similar
coupling has been exhibited recently in LEED and

photoemission, in the ylasmon energy range. The
same pattern is indicated in recent tunneling experi-
ments in semiconductor-metal boundary layers
where, again, the electron is strongly coupled to
the surface ylasmon.

Several authors' "have developed a classical
theory to describe the energy-loss spectrum of fast
electrons in thin films in both the plasmon and pho-
non energy ranges. For lower energies where the
quantum nature of the electron and the elementary
excitation should be taken into account, it would be
desirable to set uy a Hamiltonian formalism which
would properly include surface effects.

In the present payer a quantum-mechanical theo-
ry" for the interaction electron-long-wavelength
optical phonon of a dielectric slab will be developed.
It will incorporate explicitly the features of thepho-

non modes associated with surfaces.
In Sec. II, the classical Hamiltonian of the prob-

lem is written using the polarization eigenmodes of
the slab already obtained by Fuchs and Kliewer'2;
then (Secs. II and III) the phonon field is quantized
in the standard manner, hence obtaining a Hamil-
tonian similar to Frohlich's in polaron theory. '
As far as the coupling to the (LO) phonons is con-
cerned, the only difference from Frohlich's Hamil-
tonian is the "space quantization" of the Lo modes.
More important is the fact that the electron is also
coupled to the so-called surface phonons, although
the Polarization associated saith these modes isdi-
ve~gence free. These and other features to be dis-
cussed may be of considerable importance for the
polaron theory in finite-size crystals. '~

Section IV deals with the case of an electron at
rest imbedded in a dielectric. This case corre-
sponds to the calculation of the screening of a fixed
charge by the phonon field.

Section V treats the situation where the electron
is sufficiently fast for its velocity to remain essen-
tially unaltered by the interaction with the phonon
field (yet not fast enough to include relativistic cor-
rections). This case is exactly soluble and provides
a suitable quantum-mechanical model for calculat-
ing the energy-exchange spectrum in the phonon en-
ergy range.

The spectrum which is obtained in the framework
of classical electrodynamics' is recovered here as
resulting from one-phonon processes. Multiphonon
processes are evaluated and they are found to give
negligible contributions beyond the two-phonon ex-
citation threshold. The gain spectrum is also cal-
culated and shows the observed strong temperature
dependence. "

The quasistatic ayyroximation for the polarization
field will be used throughout this paper; no account
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of retardation effects is taken care of. These could
be included in a more general theory based on the
classical treatment of the retarded polarization ei-
genmodes "'6

II. FREE POLARIZATION IN THE SLAB

A. Integral Equation

The problem of finding the long-wavelength polar-
ization eigenmodes of a dielectric slab of a given
uniform dielectric function e(ar) can be solved either
as a problem of classical electrodynamics by match-
ing boundary conditions, etc. , or by incorporating
the boundary conditions of the problem into an inte-
gral equation for the yolarization. Both methods
have been used' '" for discussing the optical proper-
ties of ionic crystals. The integral-equation meth-
od will be outlined here, mainly to introduce our
notations in a form suitable for the subsequent an-
alyses.

As stated in the Introduction, only the nonretarded
equations of motion will be treated. The equation
of motion for the displacement fields 0,(r, t) and

C.(r, t) of the (continuous distribution of) positive
and negative charges +e, , respectively, is

itself is defined by

5(r, t) = ne, [U, (r, t) —U (r, t)], (2. 6)

1
3

~\

P(r, t)+ eoE- -- ' 0
P

o o)-
0 ~ 5(r, t)

o --. /

ne—,/p f T(r —r') 5'(r', t) dr' (2. 6)

Assuming that 5(r, t) = 5(r)e'"', Eq. (2. 6) can be
written as

(Xf—A) P(r) = 5 T(r —r') 5(r') dr', (2 &)

where

X = 4w Q7 /Mp, X0 = 4' (d 0/(d~ (2. 6)

4), =&0 ——3m, L ~0+3~ «
(2. 9)

and from (2. 1) and (2. 2), 5(r) satisfies the inte-
gral equation

K(r, t) = Kz, (r) —f e, T(r —r ') [U,(r,'t)
slab

—U (r,'t)]n dr', (2. 2)

where n is the ionic yair density. The integral
gives the dipole field propagated by the dipolar ten-
sor T,

T(r) = (E —Srr')/r', (2. s)

where F is the unit matrix and the superscript 0 in-
dicates a unit vector. Ãz(r) is the Lorentz local-
field contribution

p [0,(r, t) —0 (r, t)] = —p, (g (U. —1) ) + e, f(r, t),
(2. 1)

where p, is the reduced mass of the ion pair, pco0
is a short-range force constant (excluding Coulomb
fields), and h(r, t) is the local electric field. '

In the diyole approximation, the local field is giv-
en by

and

X~0 0

A= 0 Xz, 0

o o

(2. io)

A. ~~3 and XL~ are the bulk TO and LO frequencies,
respectively, in units of the ion plasma frequency

(o~ = (4«ne,'/p)~' .
The symmetries of the slab will be used now.

First, the translational invariance for continuous
displacements parallel to the slab is exploited by
introducing two-dimensional Fourier transforms

P(r) =A f dk e' ' «5(k, z), (2. 11)

where A is a unit area of the slab surface and (p, z)
are the surface and normal components of r. Since
5(r) is real, its Fourier transform must satisfy
the following condition:

1 0 5(k, z) =5*(-k,z) . (2. 12)

R,(r)= — O 1 O 5(r),
0 0 —2

(2. 4) The two-dimensional Fourier transform of T(r —r')
is derived from

which depends on the polarization 5 at r. The origin
of this term is related to the pathological behavior
of dipole lattice sums, as has been discussed at
length by de bette and Schacher. ' The polarization

i/r = f dk e'" '-"' '/2' .

By successive differentiations one obtains

r/r = —f dk e'"'«(i/2«age ~ ''',

(2. ia)

(2. 14)
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(E —3r r )/r = fdk e'"'W(1/2wk)RRe "''',
(2. 15)

P„~.(z) = i cos(jw ja)z,
P„, (z) = i sin(jw/a) z,

(2. 24)

(2. 25)

where

K=[k, i8(z)k], 8(z) =+1 if z &0,

= —1 if 8&0. (2. 16)

Substituting (2. 11) and (2. 15) into (2. 7), one finds

(&E- A)'5(k, z) =(2w/k) f ' dz' e "' ' ' KK P*(k,z').
(2. 17)

Next, the rotational invariance round the z axis is
exploited. Using the k reference frame, the polar-
ization is written

where j is a non-negative integer. These trans-
verse modes of vibration (S polarization) are com-
pletely decoupled from the I' polarization modes
and, moreover, they do not interact with the elec-
tron, as will be shown later.

Differentiating Eq. (2. 20) twice, and, provided
that det(XE -A) e 0, one obtains the differential
equation

d2
z w(k, z) = k w(k, z) (2. 26)

whose solutions are the eigenvectors of the surface
polarization waves. If, on the other hand,

$(k, z) =P(k, z)k +P,(k, z)z +P„(k,z)no, (2. 18) det(A. E —A) = 0, (2. 27)

where

n =z xk

This splits Eq. (2. 17) into

(~- ~,)P„(k,z) =0

and

Xw(k, z)= f' dz'M(z —z') w(k, z')
-a

(2. 19)

(2. 20)

w(k, z) =[P(k, z), P, (k, z)], (2. 21)

The w (k, z) is a two-dimensional polarization vec-
tor defined by

then Eq. (2. 20) is satisfied by the ordinary sine
or cosine bulk polarization waves with the impor-
tant difference that only a discrete set of wave vec-
tors k, is allowed as a result of the finite thickness
of the slab.

Because of the existence of the z = 0 plane of mir-
ror symmetry, all the modes can be further clas-
sifiedas even or odd with respect to that symmetry.
The detailed analysis is given in Ref. 12. We re-
produce the results in Appendix A. The eigenvec-
tors of Eq. (2. 20) have been orthonormalized ac-
cording to

which, as a. consequence of (2. 12) and (2. 18), must
satisfy

f +g
dz + p 7tmf p~ l5 I Qpppa g

They also satisfy the closure relation

(2. 28)

j-I 0'I

w(k, z)=~, I w*(-k, z) .

In Eq. (2. 20) the kernel M is given by

(~, 0'I
M(z-z') = 5(z —z')+2wke """~

0 Az]

f
xi .

gi8(z -z') (2. 23)

(2. 29)

(2. 30)

C. Free-Polarization Hamiltonian

Z w*,(z)w, (z') =5(z -z')F,
mp

which will be used later on. InEqs. (2. 28) and
(2. 29) the index m which takes the values m = 0,
1, 2, .. . , has the meaning of a "quantized" wave
vector k, and P = a 1 is the parity. Both relations
result from the Hermitian character of the kernel
M of the integral equation (2. 20),

M(z —z')=M (z —z')

B. Polarization Eigenmodes

The solutions of (2. 19) are trivial': Any function
of z defined in the interval ( —a, + a) satisfies this
equation with the degenerate eigenvalue A, = A,~. An
arbitrary pattern of surface polarization may be
expanded in terms of a complete set of orthonor-
malized eigenfunctions in the interval ( —a, + a).
One can choose, for example,

The equation of motion (2. 6) of the free polariza-
tion field is the Heisenberg evolution equation of the
operator P(r ),

P (r ) =(ijk.)'[H~, P(r)], (2. 31)

if the free polarization Hamiltonian is taken to be

g= f, dr (2w/ariz)[P '(r)+(~~z/4w)P(r ) A P(r)

+ 2 f, d r f d r ' P (r) ~ T ( r -r ') ~ P ( r '), (2. 32)
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and provided one postulates the commutation rela-
tion

[P,( r },&„(r')]=(k/i)((ugz4w)6(r —r')6,„. (2. 38)

In terms of the Fourier components of P(r) de-
fined in (2. 11}these relations become

[P„(k,z), P„(k', z')]

=(I/i)((u~/4w)(2') 6(k-k')6(z —z')6„„, (2. 84)

hence, yielding

H = (2~A) f dkf f dz(2v/(u )[P (k, z) ~P(k, z)

+ (~'/4, )P+(k z) A P(k z)]

+-,' f"dz'P*(k, z) [(-2~/k)e-"'-"'KK] P(k, z')(

(2. s5)

Proceeding in the standard manner, the polarization
operators P(k, z) are expanded in terms of a com-
plete set of orthonormal eigenvectors

P, (k, z) = [v.,(k, z), P„,(k, z)],
where the m ~ and P„& have been defined above:

2 1/2

(2. 86)

III. ELECTRON-PHONON INTERACTION

If r, is the position of the electron (charge -e),
the polarization at g sees an additional field

E,(T) = — (r —r, )/~ r —r, ~' . (8 1)

Therefore, the dipolar coupling will result in the
following electron-phonon interaction energy:

Hr=e f,dr(r —r,)/~r —r,
~

~ P(r) . (3. 2)

Using the Fourier expansions (2. 11) and (2. 14),
this transforms into

Hz = (2')e f dk e '"' '

x f, dze ' "'(i/k)K P*(k, z) (s. 3)

HI=A f dke "~'Q, I",'(k, z,

)(atria,

),

where the coupling functions I'& are defined by

(8. 4)

I', (k, z,) =(he'~,'/6vA~;)"' f '
dze "**"X fr, ( )z,

.
(8. 5)

From this expression, and due to the particular
form [Eg. (2. 16)] of the vector K, it is immediately
apparent that the electron couples only to the P
polarization and not to the completely transverse
S polarization P„. Finally, use of second quanti-
zation yields

1
P(k, z)=,q, Q 6' ' i(a,' —a;)P;(k, z)

(2. SV}

where

)~=[i, -e(z z,)]. (3. 6)

The coefficients of these expansions are the creation
and annihilation operators of the corresponding
eigenmodes and, from (2. 34) and (2. 29), they sat-
isfy

[a&(k), a&(k')]= (I/A)6(k -k')6;& . (2. 36)

Substituting (2. 36) and (2. 37) into (2. 35) yields

(2. 39)

where H„ is the completely independent Hamiltonian
of the S polarization waves given by the expression

Inserting in (3. 5) the various eigenvectors of Appen-
dix A, one is left with elementary quadratures to
obtain the explicit form of the coupling functions

These functions are listed in Appendix B. It
turns out that the electron does not couple to the
TO modes of P polarization any more than to the
S polarization waves. As for the case of an infinite
dielectric medium, this can be seen to result es-
sentially from the fact that the polarization field
associated with any TO mode is divergence free.
Indeed,

H„=A f dkgk~, [a„'»(k}a„»(k)+z] (2. 40) divP(r) ke'"'ik, —, P{k z (3. '7)

and where H, is the P polarization Hamiltonian
div P(r) ke"' ~IP+ (8. 6)

H, =A f dkP ha~~(k)[a &(k) a &(k)+~&] . (2. 41)

Here the summation extends over all the m eigen-
modes listed in Appendix A. All the LO and TO
modes are degenerate and only the surface modes
have a spatial dispersion.

and the integrand is identically zero for the TO
modes. The z, dependence of the various coupling
functions I",(k, z, ) is sketched in Fig. 1.

Comparing the maximum s trengths of the surface
and LO coupling functions, one finds {see Appendix
B)
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a 1/2 4max(1', ) g„2 k. . . , , - —(~o)g,ka +4m@ m

{3.9)

max(I'0, ) =go (sinh2ka/k) '~ e "' ~ ( ~2a go. (3. 10)

Noting thatgp=g, we see that the surface modes,
in spite of their divergence fre-e character, are
coupled to the electron just as strongly as any LO
mode. One could argue that due to the larger num-
ber of LO modes for each k in a relatively thick
slab, ' the surface effects studied here on the elec-
tron properties will be negligible. However, this

p+

is certainly not the case for properties which de-
pend on a selective and particular phonon frequency
(such as the electron energy-loss or -gain spectra
considered below). In fact, two features, peculiar
to the surface vibrations, may be of great impor-
tance in the behavior of the electron close to the
surface. First, there is a continuum of surface
state energies available for transitions between &
and +&, whereas in the bulk only a sharp state
round I, is coupled to the electron. Second, the
surface coupling function dies off as k ' for large
k [Eq. (3. 10)], whereas the LO coupling function
goes as k [Eq. (3.9); this is well known in Froh-
lich's Hamiltonian]. " Therefore, for the case of
conduction electrons in a polar dielectric slab thin-
ner than, say, 5000 A, it does not seem justifiable
to neglect the surface effects associated with the
existence of these surface phonons. The applica-
tion of various techniques of the theory of large po-
laron to the present Hamiltonian is being carried
out. "

IV. SCREENING OF A FIXED CHARGE

As a first simple application of Hamiltonian
(2. 41), (3.4), the screening of a perfectly localized
point charge provided by the phonon field will be
considered. For this case, the coupling functions
I'&(k, z, ) are constant. The phonon field operators
are then statically displaced (assuming p, = 0):

z
e ze

|'b)

o. , =a
&

~ I'&/h'v;.

This yields a Hamiltonian diagonal in a~,
if ~A f dkQ [h&o (et o!&+ —') —I"&/h'(u&].

The second term of (4. 2),

Es =-A f dkg(1 q/h(uq

(4. 1)

(4. 2)

(4. 3)

gives the infinite classical self-energy of the elec-
tron in the polarization field it induces. As an
illustration, the ground-state average polarization
at the center of the slab due to a point charge at the
surface z, =+a will be computed. Using (2. 11),
(2. 36), and (4. 1), one finds

(P(r=O)) =(VA ( " kdkP,
&sr ~(d;

x (a;+a, ) P~(k, 0) (4. 4)

z )Wt

e
(c)

1I'
e
(d)

@co' '»
= —2(vA ) kdk

FIG. 1. Spatial dependence of the coupling functions
I'& (k, z~). (a) and (b) give the coupling strength for the
two surface modes. (c) and (d) correspond to the LO
modes. The TO modes are not coupled to the electron
(see Appendix 8).

xQ, ~ P(k 0)
(&&&)»~

(4. 5)

The z component of P will receive contributions
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only from the (0,) surface mode; that is,

( S.(0) ) =(e/2v) f, t dt e "/-(p+e-'"), (4. 5)

satisfies the evolution equation"

ih „—i)!)'(t)& = I"(t)(a'e'"'+ae '"')i!!'(t)&. (5. 5)

v() = (ie/2') e "*'a' [1,i 8 (z - z, )] (4. e)

p = 2 (() r/(()h + 1

This result can also be derived from classical elec-
trostatics or, equivalently, by solving the inhomo-
geneous integral equation obtained by setting X = 0
in Eq. (2. 20) and by adding a source term v() due to
the point charge

f'd 'zNI( z- 'z) %(k, z')=%, , (4. 8)

with

On integration,

i
g~(t)&= exp[- (i/8') f' dt' I'(t')

x(e' 'a'+e '"'-a)] i)1)'(t,)& . (s. 5)

I = f I'(t)e '"'dt, (s. 7)

The 1" functions of the present problem have a defi-
rate parity P, so that by letting to- —~ and t- ~
and def inlng

Equation (4.8) is solved by expressing % in terms
of the complete set of eigenvectors &&(z):

one has

i
)!)l(+(I)& e- (fib)l&haia a)

i
)1)l( ~)& (s. 3)

v(z) =Q — dz'|)()(z') ~ wf(z') v)(z) '. (4. 10)
-a

or

i
)I)l( ~)& e-&llh)PI lh e Olh)that e-(llh&Ia

(
y1( ~)&

ih=g(u (ata+-,')+I'(t) (at+a), (s. 3)

then, the phonon state vector in the interaction rep-
resentation

)))'(t) &
=e'"' """'i(l'(t) & {s.4)

The factor in square brackets essentially gives F,
[see Eq. (3. 5)]. Therefore, (4. 10) is equivalent
to (4. 5).

V. FAST-ELECTRON CASE

A. Evolution of Phonon States

Here it will be assumed that the electron is so
fast that any momentum transfer @'k to the phonon
field is much smaller than the electron momentum

p = &2mE(), where E()is the (essentially constant) elec-
tron energy. Then the electron can be treated as a
classical particle of constant velocity e and as the
source of a time-dependent perturbation of the slab.
In the continuum approximation, an upper bound
for one-phonon momentum transfer may be Sk
= sx10 ' gem/sec (corresponding to a wavelength
of -100 A). Therefore, for one-phonon processes,
the constant-velocity approximation may hold for
electron momenta higher than p-20!fk-10 ' gem/
sec, i. e. , for energies higher than ph/2m=10 eV.

Setting

p, =O, s, =et, (s. 1)

the Hamiltonian (2. 41) and (3.4) takes the form

a =A f dkQ [k(o„h(a„h a~+-,')+ I'„h(t) (ath+ a„h) ] .

(s. 2)

Consider a particular(k, mP) phonon mode with the
Hamiltonian

(s. e)

«t !n & represent the initial state of excitation of
the phonon mode; then one finds, on expanding the
exponential operators,

i
~z ( )&

-olh)hthlhh g p [n !(n —n+m)!] V

~ () a.() m! !n( n-h)n!

t I aa)a
"l, -ig W (n'-n+m& . (5 10)

To carry out the sum, the summation order is
changed such that

hence,

m =n+r &0, m+n & O, (s. 11)

(s. 12)

, (hh&hzhl h g [n'! (n'+~)!]~
„.„, (n+r)! n!(n'-n)!

(s. 13)

is the probability amplitude of finding the phonon
mode in its !n +r& excited state when the electron
has traveled through the slab.

The total state vector of the slab at t=+ ~ is given
by

i)t)f , (+ "))= II Z c„o„.in,', ,,)) , () (4)
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where g stands for (k, m, P). Equation (5. 14) can
be rewritten

(5. 15)

where

C).o„)= Dg Coo.. . (5. 16)

In (5. 15), g)„» means a multiple integration (index
k) and summation (indices m, p) over all the eigen-
modes of the slab and over all their possible exci-
tations r.

8. Loss and Gain Spectra: One-Phonon Processes

The coefficients ) C)„o„)» of Eq. (5. 15) give the
probability of finding the phonon field in the eigen-
state )fn +r I& of total energy Ei„o,„» at f =+ ~,
knowing that before the electron passage, i. e. , at
f = —~, the phonon field was in ) in j& eigenstate
and characterized by an energy E~„o&. Therefore,
these coefficients would also give the probability
for the electron to exchange energy E~„o, „&

—E~„p&
=+5&with the slab. Depending on the sign of this
energy difference, one obtains by definition the loss
or gain spectrum, respectively.

The initial state of the slab is determined by the
Boltzmann statistical factor Z '(T) exp(- E)„o»/k T)
which gives the yrobability of finding the phonon
field in the E~„p~ energy state, in a statistical en-
semble at temperature T(Z is the partition function
of the phonon field). Thus, the observed energy-
exchange spectrum is proportional to the product
of the quantum-mechanical probability) p&„o„& ) by
the statistical factor

xp —E)„o»/k
{no,r) Z(T)

x 5(o» ~ P o»
g r, ),

where the 6 function takes care of the energy con-
servation and where the uyper and lower signs re-
fer, respectively, to the loss and gain phenomena.

Except for the temperature factor, Eq. (5.19) is
Fermi's Golden Rule for the transition probability
between two states of energy E~„o» and E~„p& akw.
In the context of this work, this relation provides
the exact result, since the interaction causing the
transition is linear in the yhonon field operators.

and

np+r =, np +r, (5. IV)

is an eigenstate of the Hamiltonian, with a total en-
ergy

E)~o,~) =Qg ff Qg()ng +rg + o ) .

The loss spectrum [upper sign in (5. 19)] will be
examined first. It is clear that the contributions
to P(Ifoo) can be classified as due to one-, two-, or
multi-yhonon processes. This can be seen by com-
paring the value of Ace to the minimum energy loss,
i. e. , hco~. For 5+~ &1(d &2@co~, energy conser-
vation requirement allows excitation involving one
phonon only. For 2Nco& &5& &3h&~, two-phonon
processes may occur as well, and so on. Vfhen the
temperature-dependent factor is taken into account,
the leading term in the summation over the initial
states clearly comes from the ground state of the
polarization field in which no phonons are excited:
E)o» = ogg ko»g. At sufficiently low temperature this
leading term is essentially temperature independent
as a result of

lim Z(T)= e «) "r .
AT «h fg»Z

(5. 20)

Po=exp( —Zg pgIg/k ) (5. 22)

is the strength of the no-loss peak which has been
subtracted from (5. 19). The indices (k, m, p) of the
excited mode are syecified by the energy conserva-
tion requirement. Five possible values of P(fgoo)

may be obtained, depending on the ranges of value
of co.

1. o» & gd r: P(»f o)) = 0 (below the threshold of one-
phonon excitation).

2. o)r &o) & vg.'where go& =[(so+1)/(e„+1)] is the
limiting surface mode frequency for large k. In
this range, the 5 function of (5. 21) selects the o»o

mode as the only possible excited mode. Introduc-
ing in (5. 21) the expression for Io (k) given in Ap-
pendix B, one finds (dropping the constant exponen-
tial factor Po)

( )
go,'e' " k' cos'(o», a/U)
28 v o (k +goo /v ) gdo

~ QPp

x tanbka»=
l

5(k -k.), (5. 23)

Hence, in the whole temperature range where one
has k T &S~~, the loss spectrum will not be very
sensitive to changes in the temperature. This is
the case for LiF and other alkali-halide crystals
for which hgdr- 0. 05 eV (-600 'K). The next term
in the summation (5. 19) over initial states would
have the extra temperature factor exp(- ho»/k T)
= 0. 1 at room temperature and therefore may be
neglected in first approximation. Therefore, in the
case of one-phonon processes and when the slight
temperature effects just discussed are neglected,
the normalized loss spectrum reduces to one term.

P(+Ifo)) =PoA 1dk ( (I q(k)]o/Ifo)5[gd —o) (k)),

(5. 21)
where
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where k is the zero of &e —u&0 (k) and can be found

explicitly from the dispersion relation (see Appen-
dix A)

—[(o + —'v (I —e )] ~

This can be rewritten as

(5. 24)

(e —I)/(z+ 1) = e ' or —I/z = tanhka, (5. 25)

where

To the sum g& of the right-hand side of the above

equation, one may add the tensor g, v, *(z)v, (z').
This merely introduces the coupling functions I',
of the transverse modes which are known to be iden-
tically zero. Using, now, the closure relation
(a. 29),

~;+ z g', z' +r,'+ z g,'s'

(d&) '= (&d i —(d )/((dr —&d ) (5. as) =5(z —z') E

-Egret~(z)

w()~(z')
p=k1

(5. sa)

is the dielectric constant of the infinite medium at
frequency v.

To calculate 18&so /8k I, Eqs. (5. 24) and (5. 25)
are used, and this leads to

kv' (k'+~'/ v)' e(I+e) v

(5. 27)

which is the result obtained by Lucas and Karthe-
user through classical electrodynamics.

S. v, &ro «oi, : The 5 function of (5. 23) selects
here the (d0, mode. One finds for this case

On substituting (5. 32) in (5. 30) one obtains

Q ~If'(k)
~

g dz t dt e i&c&t-«lc c-l-
QP

B
L «CO

-Z ~ "dte '"z'I;p(t) ', (5. 33)
«N

which in fact leads to trivial integrations already
met in the evaluation of I». The final result is

p(l )
4e I k, e —l, z~,a2 -1 2

riv' (k', + (u',/v')' e(e+ I) v

(5. as)

where

C = (e'a(o~/zv')k (5. 35)

4. &o &&o&. P(h&o) =0 since one-phonon process-
es cannot contribute here.

5. ar =(d~: Since all the longitudinal modes are
degenerate at that frequency, the probability for
the electron to lose the energy S(di, will be the sum
of the independent probabilities arising from each
mode:

Integrating (5. 34) with respect to k yields

e'a ~+ ~'/v 2NQ)~ g
P(@vz,)=@ z In-~z, 2 to&5(&v —vz, )—

@V (0 /V (dy, V

"c k 2 (dZ, Q

dk(kz z, z z tanhkacos
k + ted/V v

0

Il L )2
P(I&a &,) = A ~~ dk Z

m even + sin 5(&0 Mg),
tanhka

(5. se)

+ ~ kz 5(&" ~d (5. 29)
ll', I'

m OdC

f f' dzdz'e "Z' 'c"" 'c ')((z —z )-a -a 8

where

~ [Z,P+(z) w~((z')] g(z' —z,'),
(5. so)

g = (ke'&e~/sv)'i' (5. 31)

To evaluate (5. 29), the expressions for I~, given
in Appendix B can be introduced and summed term
by term. However, a simpler way to get the re-
sult in closed form is to use the closure relation
(2. 29) for the eigenvectors: Setting t = (mp), then,
for any k,

Z( ~I (k)
~

= (g /A(u ) f„ f dtdt'e '"& '

where k, isa cutoff wave vector related to the aper-
ture of the electron spectrometer. '9

The first term in (5. 36) gives the bulk loss con-
tribution at co~ obtained in the classical theory. '
The second term of (5. 36) gives the so-called
"Begrenzung" effect, i. e. , a reduction of the
strength of the resonant bulk loss at ~~. The ori-
gin of this term is particularly clear in the present
formalism: The closure relation (5. 32) expresses
a sum rule according to which part of the total den-
sity of states has been removed from the 5 singu-
larity at v~ and has gone into the two surface pho-
non states. Therefore, in the limit of very small
slab thickness, it is obvious that the Begrenzung
term should ultimately cancel the resonant bulk
loss. This compensation can easily be checked by
expanding the integrand of (5. 36) in powers of ka.
It plays an important role, even for thicknesses up
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to a few thousand A.
The gain spectrum is evaluated in a similar fash-

ion. From (5. 19) one sees that any nonvanishing
term in the summation must involve some excita-
tion of the phonon field in the initial state of the
slab. This initial excitation can then be transferred
to the passing electron. As for the previous case,
at room temperature, the main contribution will
be due to the initial states involving a minimum
number of excitations. Hence, the leading term in
(5. 19) will correspond to the mode (k, m, p) being
in the initial state n &(k) = 1 and returning to its
ground state with the transfer of one quantum of en-
ergy I'&u ~(k) =h&o to the electron. Using the approx-
imation (5.20) and neglecting multiphonon process-
es, the gain spectrum may be written as

x 6[(o —(o„~(k)] (5. 37)

Comparing this result with expression (5. 21), one
finds that, to lowest order in temperature effects,
the gain spectrum will be the mirror image of the
loss spectrum multiplied by the weight factor
exp( —h&u/kT). In addition to giving an over-all re-
duction of the order of e- —-0. 1 at room tempera-
ture, this temperature factor will have the effect
of smoothing out the high-energy features of the
loss spectrum, such as the resonant peak at (d~.
However, the gain spectrum is sensitive to small
variations in temperature since it depends directly
on the initial thermal population of the excited states
of the phonon field. The spectra described by Eqs.
(5. 27), (5. 28), (5. 36), and (5. 37) are sketched in

~ 5[(o —((o,(k)+(o .,.(k'))] . (5. 38)

Only the energy region close to kvz (see Fig. 3)
will be investigated, where the only possible two-
phonon process is through the excitation of two
low energy sur-face modes ~, (k). This is sufficient
since, beyond (d~, the experimental spectrum dies
off quickly.

Using the 5-function condition one can define a
function K(k, ~), such that

Fig. 2. To conclude this section, it must be pointed
out that in the present theory no account is taken
of the damping of the phonon modes due to either
anharmonicity or radiation damping (retardation
effect, see Ref. 15). A small anharmonicity
amounts to the inclusion of a small imaginary part
in the dielectric constant and its effect is to smooth
out somewhat any sharp feature of the spectrum.
Concerning radiation damping, recent calculationsp"
have shown that this and other retardation effects
can be neglected.

C. Multiphonon Processes

Finally, the relative importance of multiphonon

processes on the loss spectrum will be evaluated;
the region studied is restricted to 28+~ &Nv &Nv~,

i. e. , between the thresholds of two- and three-pho-
non losses. In LiF, this energy range includes the
LO phonon excitation energy h~~ and it should be
interesting to compare this purely quantum-mechan-
ical two-phonon loss to the classical contributions
studied so far.

According to Eq. (5. 19) (upper sign), and if the
temperature factor is neglected, the two-phonon loss
spectrum is

P,(k(u) =POA' f f dkdk' ~(-fI ~(k)/I}( —fI .~. (k')/&)~

Q7 = (do (k}+4)0 (K) . (5. 39)

Equation (5. 38) may then be rewritten (dropping the
normalization factor P,)

4m'g4
Pg(k(u) =

g g dkdk F(k)F(k')
V

s(u, (k)
a-

5(k' —K}, (5.40}

I

L

where

2k tanhka cos~(&o„(k)a/v)
[k'+ ~30(k)/v']'(u, (k)

FIG. 2. Electron energy-exchange spectrum in Lir
as calculated from Eqs. (5.27), (5.28), (5.36), and
(5.37). The gain spectrum corresponds to room tem-
perature. co = 2(o, (k) (5. 42}

The range of integration over k in (5. 40) is from
k = 0 to a maximum value 5 determined by the rela-
tion
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(see Fig. 3); therefore,
-1

Pa(N(o) =
4 4 dk F(k)F[K(k, u))]e4V4

(5.43)

In LiF, for ro =+&„k defined by (5.42) is very
small ()t, = 0. 02) and hence the integrand can be
expanded in powers of ka. Starting from the dis-
persion relation (A5) one has

ks
f(k) = dk (ka, ~a/„a)a

=g ln1+ p +1+ ~
-1

leading to

Pa(S~~)/P, ($&„)& 10 '.

(5.53)

(5. 54)

va =mr[1+ —,'(e, —egka]. (5.44)

Hence, from (5.3S), (5. 42), and (5.43) one can
write

and

A

K= 2k —k,
k = (~ —2~,)/[a~, (e, —e.)],

(5.45)

(5.45)

P2(R d) gac4 (~3 (e e ) J (k2 ~ ~2/p)a

(2)t, - k)'
[(25 —k}'+a ',/c']' ' (5.47)

This result can be compared to the maximum loss
due to one-surface phonon excitation as given by

Eq. (5.23) (see Ref. S}:

2vg 4
1(@c Max) @2+ 2 (e e g (ka + &2/P)2

(5. 4S}

where

This estimate shows that the two-phonon excitation
probability, and certainly higher-order processes,
cannot modify significantly the loss spectrum due
to one-phonon processes.

VI. CONCLUSIONS

The interaction between. an electron and the optical
polarization of a homogeneous crystal slab has been
studied in the long-wavelength limit (continuum ap-
proximation), neglecting retardation. The quantum-
mechanical Hamiltonian of the system is obtained.

The electron interacts with the LO phonon modes
in the same way as in the infinite crystal (Frohlich's
Hamiltonian' ). It also couples, with comparable
strength, to the surface modes of vibration, al-
though the polarization associated with these modes
is divergence free. This latter coupling is likely
to play an important role in determining the trans-
port properties of thin films of polar semiconduc-
tors or the surface conductivity of thick samples.
It might also lead to a new kind of surface state
(polaron bound state).

ka= v3MI/O. (5.4S)

A typical numerical example appropriate to the
experiments on LiF' will be considered:

fp= 9.2V, 6' = 1.92, .dp= 5.VS & 10 sec

v=10' cm/sec,

n=0. 05&10 cm 3.

e = e,= 4. 8 &10 ' cgs,
L

2 ~ QT

These lead to

P, (hv ) =2 x10t4 sec. (5. 50)

Pa(faut, )/P, (If'„) & ~ a ~ f(k),
T

where

(5. 52)

0
For a slab of thickness, say, 500 A, one has

2k =kN-104 cm-1 (5. 51)

Hence, the second factor of the integrand in (5. 47)
is a decreasing function of k. Replacing this func-
tion by its maximum value, one obtains the upper
bound

L T
0, 5 hi

"T
I

I

I I

I I

I
I

I

I

I I

I I

k k K(k) K{0)

FIG. S. Range of k integration for two-phonon excita-
tion processes. When k varies from 0 to k defined in
(5.42), the function &(k) given by {5.39) decreases from
k = 2k to k. Here the hvo-phonon excitation probability
is evaluated for =I, .
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Eigen-
values Eigenvectors

rp =' Cp (i coshkz, sinhkg)

= Cp (i sinhkg, coshkz)

TABLE I. Eigenmodes of the P polarization. Because
of relation (2. 22), the first eigenvector components are
pure imaginary and the second are real.

ture dependent and vanishes at zero temperature.
This is in agreement with the observations in LiF. '

The over-all exchange spectrum obtained in the
present theory exhibits the main features of the ex-
perimental spectrum in LiF. To obtain a quantita-
tive agreement, however, requires the inclusion of
anharmonic damping of the phonon field as has been
discussed in the classical theory. '

~ ~ mr mr= Cm fkasln z, cos z

mr mr ~ mr
r~+ =C~ ikacos z, — sin z

2a 2 2a

i mr mr ~
mr

cos—g, kasinm 2 2a 2a

imr . m' m7rr~, =C~ — sin z, kacos z
2a 2a

2, 4, 6, ...

].)3, 5, ~ ~ ~

2, 4, 6, ...

1y 3y 5j ~ ~ ~
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APPENDIX A

The new Hamiltonian has been studied for the case
of a fast electron. Here, the quantity of interest is
the probability of exchanging a given energy I&, in
the phonon energy range, when the electron travels
through the slab. The results of the classical theory
of the energy-loss spectrum are recovered as in-
volving the loss of one single-phonon energy. Ex-
citation of the surface phonons proves to be the most
efficient process for thicknesses up to a few thou-

0
sand A units. Many-phonon excitations occur be-
yond the threshold 2h~ where ~ is the TQ phonon
frequency, but they have a completely negligible
effect on the energy-loss spectrum.

The gain spectrum is derived for the first time.
As it requires an initial thermal excitation of the
phonon field, it turns out to be strongly tempera-

In Table I are listed the eigenvalues-eigenvectors
of the integral e|luation (20) of Sec. II. The rela-
tion between X& and the frequency of the mode is
[see Eq. (2. 8)

QPg ——( I /47K) (df,k(. (A1)

The normalization constants Co and C are given by

Co = (ka/sinh2ka)' I/v'a,

C =(k~a'+ pm m )
'~ I/Va

(A2)

(A3)

and they are chosen so that Eg. (2. 28) is satisfied.
The closure relation (2. 29) can be verified by ex-
panding the hyperbolic functions of the surface-mode
components in Fourier series of z in the interval
[-a, -~j.

TABLE II. Coupling functions I"& (z, =vt) of the electron to the phonon modes of the slab as functions of z~ and
their Fourier transforms ~; ().

Eigenmo des

Ap

(m=1, 3, 5, .. . )

Coupling functions I',i
—a&g &+a
~-hs

coshkze
coshka

&«ka

sinhkz~
sinhka

mr
cos z~

g, &+a

e&S~

Integrals J&

2k cos (~a/v)
k2+~2/v2 v coshka

i sin(~a/v)
k +~ /v vsinhka

mr/a cos(cuba/v)
~/v —m r/4a v

(m=2, 4, 6, . . . )

mr
sin

2a

iver/a

sin(qua/v)
(d&/v2 m 2r2/4a2

(all m &0)
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If the slab is made of point iona, the dispersion
relation of the surface phonon modes is given by
(see Ref. 12)

o. = 'r [1+(too/»'r)(1+e '")]. (A4)

If the electronic polarizabilities of the ions are tak-
en into account, then (see Refs. 12 and 7)

APPENDIX 8

In Table II are given the coupling functions
I",(k, e,) defined in Etl. (S. 5) and the corresponding
integrals I& of Eq. (5. 7). The table gives the func-
tions I"

&
and 4q, such that

I o. = (go/&o) &o.(es), fo~ = (go/~o) ~o.

I', =2ag C E,(e,), f,=2ag C 8, (mao).

which reduces to (A4) when e„=1 and The coupling constants g& are defined by

g, = (hto,'e'/gxA to )"'

The eigenvectors are the same for both cases.
The normalization constants C; are given in Appen-
dix A, Eqs. (A2) and(AS).
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