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Experiments on the propagation of microwave ultrasonic pulses through a resonant absorber
are described. The principal features of self-induced transparency as described by McCall and
Hahn for light pulses are observed. Quantitative measurements of pulse delay, output pulse
width, energy, and area are in fair agreement with a calculation by Hopf which accounts approxi-
mately for the effect of the single reflection present in most of the experiments. Multiply re-
flected pulses exhibited linearly cumulative delay times, indicating constant reduced velocity
during successive traversals through the absorber. Coherence-induced pulse breakup is shown
to be a possible explanation of the pulse distortion and modulation observed in acoustic-para-
magnetic-resonance experiments on Fe2'.

I. INTRODUCTION

Several years ago the author reported that' the
attenuation of microwave ultrasonic pulses by electron-
spin-resonance transitions was accompanied by a
large decrease in pulse velocity below the normal
value in the host crystal. Velocity measurements were
compared with small signal linear theories of signal
velocity in a region of resonance absorption, as de-
rived by Brillouin and by Baerwald. ~ Fair agree-
ment was found if certain assumptions were made
regarding the spatial distribution of the mechanism
responsible for inhomogeneous broadening, and if
it was also assumed that the transverse damping
time of the spin system was shorter than the pulse
width. While these observations utilized ¹i ' and
Fe ' impurities in MgO, the effect has also been
observed by others on U ' in CaFp. 3

More recently, McCall and Hahn (MH) have de-
rived a theory of electromagnetic pulse propagation
including source terms, in Maxwell's equations,
due to the coherently driven polarization of a two-
level quantum-mechanical system. Under the con-
dition that the pulse width is short compared with
all damping time constants, pulses were found to
propagate with greatly reduced velocities.

If one defines a pulse area

e(z) =(2p/a) f 8(z, t)dt,
where P is the average electric dipole moment and

h(z, t ) is the electric field amplitude of a circularly
polarized plane-wave pulse propagating along z,
then 8 is also the turning angle of dipol. es at reso-
nance. For input areas greater than a threshold
value, 8 = m, MH find that after an initial reshap-
ing and energy loss, steady-state pulses develop
and no further energy loss occurs. They term this
"self-induced transparency" (SIT).

Analytic solutions show that the steady-state pulses
have areas 8= 2' (n an integer), andfor n= 1, the
amplitude is

t -z/V
&(z, t) = —sech

PT T

The pulse delay is given by

1/V-1/c = ,'n7 sec/cm, —

where c is the velocity in the nonresonant host,
and the Beer's law energy absorption for very
small-amplitude pulses is e '. Computer solu-
tions carried out by Hopf and Scully' confirm the
theory of MH and also show that the pulse delays
are even larger than above for input areas
m&8 &2m.
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Since measurements (reported in this paper) show

that the shortest damping time T2 of Ni ' and Fe '
in MgO can be larger than the input ultrasonic pulse
widths, the author has redone the experiments in
the light of the theory of MH. While the earlier
work was done on systems with nL =1, in all the
measurements reported in this paper nL &8. (L
is the total propagation path length in the host cry-
stal. ) Also, wider bandwidth equipment was used
in order to avoid the output pulse distortion which
was present earlier.

There are several advantages to using microwave
ultrasonic pulses and spin resonance, rather than
optical methods, in SIT experiments: Input pulse
shapes are repeatable at high repetition rates; the
quantum-mechanical nature of the resonant transi-
tions is generally simpler; the input and/or transi-
tion frequencies are continuously variable; the in-
put pulse width is variable. On the other hand,
there are also comparative disadvantages, such as
the impossibility of obtaining good impedance match-
ing at the output, so that standing wave regions are
always present. Also, detectors are less sensitive,
and the best methods measure integrated amplitude
(across the detector plane) rather than energy, and
so are sensitive to misalignment of transducers
and propagation medium, and to refraction.

In the work reported here, the reflected echo
technique was used. The measurements are thus
not directly comparab1. e with the MH theory since
the latter was derived for a single traversal through
the medium rather than a round trip. However,
Hopf has performed a computer calculation for the
double traversal, utilizing parameters applicable
to some of my experimental runs. Agreement of
the experimental results with this theory, while not
exact, definitely shows that the pulse delays are
due to SIT and not to the linear theory of signal ve-
locity. In addition, all the distinctive features of
SIT were observed, The output pulse shapes were
nearly hyperbolic secant; in some experiments a
transparency condition was approached; pulse
break up was observed for larger input areas.

In Sec. II the theory of SIT is shown to be applica-
ble to ultrasonic pulses interacting with spin S=1
systems; certain modifications introduced by Rhodes
et al. are shown to be not applicable to the present
work; Hopf's results are presented; the effect of
nonresonant host absorption is considered; and SIT
is compared with saturation or "hole burning. "

The experimental techniques are discussed in
Sec. III. The results are contained in Sec. IV, and
in Sec. V they are compared with theory and with
the author's earlier work as well as that of others.
It is also shown that coherence effects can explain
certain other phenomena observed in pulsed acoustic
paramagnetic resonance (APR).

do = Z G,„ge„(i,j,k= 1 3),
»

(4)

where the G;,.» are the spin-phonon coupling con-
stants and e» are applied strains. In O„symmetry,
there are only two independent elements of 5, G»
(= —2G,2) and G«(in Voigt notation with 1, 2, 3 re-
ferring to cubic axes). Thus for a longitudinal

In the Appendix the formalism of Sec. II is used
to derive a dispersion relation for APR which agrees
with that previously found by Jacobsen and Stevens. '

II. THEORY

A. Coherence Effects in Pulsed APR

Although it appears intuitively obvious that the
MH theory of SIT for light waves should apply equal-

ly well to any plane-wave propagation in the pres-
ence of resonance absorption, it is worthwhile to
demonstrate that an equivalent formalism exists in

the case of pulsed APR. Specifically, we consider
the problem at hand, namely, spin S= 1 systems in

(0„)symmetry at microwave frequencies. Other
spin systems may be treated similarly.

In the spin-Ha, miltonian formalism,

X= Xo+X. +XsL,' SCo=nyH ~ S

is the Zeeman splitting by the applied dc magnetic
field 8; y is the gyromagnetic ratio. In (0„)sym-
metry this term results in three equally spaced
energy levels ((S,) = —1, 0, +1) and three possible
ultrasonic transitions (S,) = 0, + l(h (S,) =+ 1) with

frequency yP/2v, and (S,) = s 1, + 1(4(S,) =+ 2)
with frequency yH/v. However, small local de-
partures from cubic symmetry caused by randomly
distributed static strains shift the level separations,
giving rise to inhomogeneous broadening of the reso-
nance lines. This is described by a crystal-field
splitting term

Xs~ =bye E ~ 8+S ~ D 8, (2)

where the magnitudes of E and D are assumed ran-
domly distributed over the various spin sites. We

shall omit off-diagonal matrix elements of KsL ex-
cept insofar as they contribute to inhomogeneous
broadening. That is, we neglect mixing of the pure
Zeeman wave functions but keep diagonal matrix
elements up to second order in perturbation theory.
Later we will justify this for Fe ' and ¹i ' in MgO;

3C, =S ~ d S (2)

couples the spin system to the driving acoustic field
through the tensor d which is proportional to the
applied strain and therefore both time and space
dependent. A term of the form by H 7 S has been
omitted from X, , and this will also be justified
later.

The elements of d are
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wave propagating on (100) = z,

t
K e e 2f

1 + 2 +

= 2 G,ie„[s,——,
' S (S+ 1)].

K, e,*e'" 40y K)e 8

Quantizing along the dc magnetic field axis z at
angle 8 to z in the y'=y plane, this becomes

X, = —,'G»e„[s,~ coszB+Sz. sin B

+(S„.S,.+S;S„.) sin2B] .

Following MH we write

e„=28(z,t) cos[(gt -kz —P(z)],
where Q(z) and 8(z, t) are assumed slowly varying
in the sense that I s p/sz I «k, I s 8/sz «k I S I,
and I 88/st I «srI 8I, where k=co/c is the off-res-
onance magnitude of the wave vector and P is an

arbitrary phase angle independent of the time t.
Because we are treating a longitudinal strain po-

larization, it is not possible to consider real circu-
lar polarizations. However, as is usual in reso-
nance problems, we solve the coupled field and

density matrix equations in the rotating wave ap-
proximation. Then, with the previously noted ap-
proximations on X, and Xs, and labeling the states
a, b, c = —1, 0, + 1, respectively, we have

(d g K g8+ K28+

II &II= @ &ye+ &y &re+

K2e, K&8+

Note that resonance occurs for the 4(s, ) =+ 2 tran-
sition when 2 p, = ur and v = (&u, —&o,), while for 4(s, )
=+ 1 resonance requires p, = or with either (or both)
(sr, —~)= —p, (&o, —~)=+p. In the absence of in-
homogeneous broadening, ~ = 0, w, = —+, , and the
resonance rotating frame is at the Larmor frequen-
cy regardless of the particular transition being
studied.

The wave equation for the displacement u in the
k direction is

e'u aT„eT„,eT,.
at2 =

az ax By

T;~ are stress components equal to the derivatives
of the internal energy density with respect to e;&.
Since e„=su/sz, the resulting wave equationfore„is

z2 ~c g t2 pc2 gz2 (10)

where we have dropped the subscripts on e; p is the

crystal density and c the normal ultrasonic velocity.
R(=R„)is the zz component of magnetoelastic
stress and plays an analogous role to the polariza-
tion in the electromagnetic propagation problem, '

where
R=NTr + ~ 0

g(z t)el L&ot -zz - 4(z) j

a, b b, c
5K, = ~ G„sin28 ' S, Sg. +Sg.Sbc ' ' ' 'a b

a 2 c
SK2= 8 Ggg sin 8

C a

where n is the density matrix in the laboratory
frame and a' = U o. U is the transformed density ma-
trix. N is the total spin population.

We now specialize to the 6(s,) = + 2 transition,
letting 2p. =v and neglecting matrix elements of

II K'II which are rapidly oscillating with frequencies
of order —,'&. In terms of the elements of the densi-

ty matrix defined,

y ~ I -il:Az + y&e)]
ca ~ z

s =(s„,-is, ,), s. =(s„,+is, , ) . U=X~' e-""'"'" c cca + ~ ~

&, +~ +w, = 0, and S~, , S~,S~, are assumed to in-

clude the level displacements due to X~L. The diag-
onal unitary transformation, U(t) = (e'"', 1,e '"'),
is identical to transforming to a coordinate system
rotating about 5 (z ' axis) with angular velocity p if

the original basis set are the pure Zeeman wave

functions, as they are here. The effective Hamil-

tonian in this frame is

W=N(o,', —o,', )
7

W= (N, N, ) where N—„N,are the population densi-
ties of the (S,) =+1, —1 states, respectively. " The

equation of motion for cr' is

iko' = [X', o'] +damping.

The damping terms are of two types: spin-lattice
relaxation with time constant T, and spin-spin re-
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laxation with time constant T, Then T ls the
damping time for diagonal elements of o'', and the
damping time for off-diagonal elements is Tz= (1/T,
+ 1/T, ) . The equations for 0,'~, o/, , fr~„do not in-
volve U, V, W, and vice versa except through spin-
lattice relaxation. ~ For very low intensities which
do not materially alter the relative spin populations
of the states, or for pulse lengths which are short
compared with T„the coupled equations for U, V,
8' may be considered separately from the others.
Then,

dU' U dV V
= —V4(d ——,—=+ M,e- 2KSW ——

dt Ta N Ta

S'- 8()

and Wo is the initial (i. e. , 7 = —~) equilibrium val-
ue of W.

Let

R(t (o, z, t)=It,(t (u, z, t)e'"' " '""+c c. , .

with 8, slowly varying in the same sense as S.
From Eqs. (11) and (12)

R, (hm, z, t) =+ —@A[V(n+,z, t)+i V (hm, z, t)] .
(»)

Our problem is now identical with the two-level
system coupled to an electromagnetic fieM except
for the spatial (rather than temporal) derivative
appearing in the inhomogeneous term in the acous-
tic wave equation (10). This ls characteristic of
all acoustic driving forces. ' It leads to a disper-
sion relation for APR, which is derived in the Ap-
pendix, and which differs from that for electromag-
netic resonance. However, in the slowly varying
envelope approximation, used in MH, the difference
vanishes.

Following MH we describe the random distribution
of resonant frequencies by a normalized distribution
function g(h~),

A. (z, t ) = J g(A(u) B,(n.(u, z, t)

- 4( )3 d(tI ~)

Equations (17) and (18) are the acoustic analogs of
Eqs, (22) and (23) in MH. From them, together
with Eqs. (14), all the results derived in MH follow,
under the same approximations as made there. "

The Beer's law absorption constant for large in-
homogeneous broadening is (see Appendix)

where n = —Wo, positive in equibbrium. [Hereafter,
ao will be written without the argument to designate
o.o(0).]

B. Application to Ni2+ and Fe2+ in MgO

Effect of+„.Rhodes, Stroke, and Javan7 have
shown that SIT is seriously modified if there are
transitions with overlapping frequencies and differ-
ing matrix elements. The precession rate about
the driving fieM in the rotating frame is 2KB for
those transitions in resonance at frequency co. Thus
if there are differing values of K among the various
spins, reversible dephasing results. This occurs
in our case if we allow for mixing of the Zeeman
wave functions by off-diagonal matrix elements of
X», since these are proportional to the randomly
distributed static strains which vary from site to
site. The perturbed wave functions, to first order
in X»/ha&, at a, given spin site, are

Alod C

E-D
CO o QPz

where E and D are matrix elements of the first and
second terms, respectively, of XzL, Eq. (2).

%e now have to consider the effects on K, and K~

of transition operators of X, of the form d„...S„.,
d, ...8z. , d„...(8„.8,. +8,.8„.), and those which were
entirely omitted earlier, y EIe',.„.S„.and y IIe,...S,.
The additions to K2 due to all such operators are of
second or higher order in R/h&o and 15/h + except
for the following:

az, = —2z, (E/k&a, ) + 2y PE„(D/h (o 0)

Then, in the slowly varying envelope approximation,
Eq. (10) reduces to & (sin28 —cos28). (20)

8 KQ)
V(m, z, t)g(~~) d(~~).

Bz 4pp3

V(n(u, z, t)g(a(u) d(a(u),1 ~$ SK(d

c 8t 4pc
(1&)

(18)

E» (in Voigt notation) is a tensor element of F,

(21)

Additions to Ky are similar except there are also
added terms proportional to y HEI~ and independent
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TABLE I. Spin-lattice coupling parameters (per unit
strain) for Ni2' and Fe2' in MgO.

«4a b b

(cm-') (cm-')
T 7fc

(sec)

Fe'
Ni '

—145 —40 +725 +460
+ 57 +43

2 x10-'0
10-'

T. G. Phillips and R. L. White, Phys. Rev. 153, 616
(1967).

Averaged values from G. D. Watkins and E. Feher,
Bull. Am. Phys. Soc. 78, 29 (1962); N. S. Shiren, ibid.
78, 29 (1962).

of D and E.
The tensors I3 and E have the same form as d

and F'but with the random static strains replacing
the ultrasonic strain. Thus the average value of
D is proportional to an average of (0) (static strain)
and the averaged E is proportional to (bye) ~ (stat-
ic strain). In Table I are listed values of F and G
for Ni ' and Fe in MgO, as well as Tz*, - vg, (0),
which is a measure of the width of the inhomoge-
neous broadening of the 6(S,) =1 transitions. With

coo= 2y H=2gx10' sec ',

E/D= 0. 1 for FeP'. Thus the dominant broadening
of the h(S, ) = 1 transitions, which is first order in
E and D, is primarily due to D terms and we may
take h T,*, '= Q, . Then, since v, and v, are both
proportional to G», the fractional deviation in K~

at 8 =90' is, from Eq. (20),

aygyp= (E/D)((op T,*, ) '&0. 004

for Fe '. The elements of F are unknown for Ni '
but are presumably smaller than those of G. Since
(&ap Tz*, )

' is a factor = 10 smaller, b zp/ap is no

larger than for Fe '. Reversible dephasing effects
should, therefore, be unimportant for total turning
angles (pulse areas),

e(z) =2m f h(z, t) dt &250v (22)

at B = 90'. This inequality holds in our experiments,
except perhaps at the very highest input intensities
on the Fe ' transitions. It should be noted, however,
that for small B, ~K and K can be of the same order
because of their different angular variations.

Owing to the additional terms in 4K' the frac-
tional deviation is of order (E/D), = 0. 1 for Fe '.
Therefore, on the A(S,) =1 transitions, dephasing
can result for 8 & 10m.

¹mericaf computations for Ni '. The principal
theoretical results given in MH assume infinite
T, and Ta and zero nonresonant background loss.
These conditions do not obtain in our experiments.
Furthermore, the theory of MH applies to unidirec-
tional propagation through the resonant medium,
wher eas our measurements were conducted on pulses

TABLE II. Parameters utilized in the round-trip
calculation.

10 1.6

T2

(sec)

1.2 x10

2

(sec)

2 x10

Tf
(sec)

4 x10"

~0
(sec)

3 x10

8(O, t) = h, sin'(vt/2r, ), O&r/2r, & 1. (23)

r p
= Ts (0), where rs (e) is the full pulse width at

half-amplitude at z. For this shape pulse 70=0. 3
p, sec corresponds to a base width of 0. 6 p, sec,
which is approximately the experimental value.

The results of the calculation are shown in Figs.
1-3 for both a single pass and a round trip with re-
flection. The pulse energy per cma is
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a
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4J
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O
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(2

FIG. 1. Energy-loss computations in SIT (solid lines)
for the parameters listed in Table II, and in saturation
(dashed lines) for the same parameters except T2.

which were reflected back through the host ab-
sorber after having already traversed it once. Since
there is also a reflection at the transducer-MgO
bonding interface, standing-wave regions are set
up at both ends.

Hopf's calculation approximates this case, ne-
glecting standing waves; i. e. , it was assumed that
the reflection occurred at a surface placed further
away by a distance greater than half the maximum
pulse width. The parameters used are listed in
Table II; they are the same as those prevailing in
some of the experimental runs on ¹ '. a, is the
decay constant for nonresonant absorption in the
host crystal, and L is the propagation path length
(twice the length of the MgO rod). The input pulse
envelope was taken as
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FIG. 2. Area computations in SIT (solid lines) for the
parameters listed in Table II, and in saturation (dashed
lines) for the same parameters except T2.

y'(z)=2pc' J h'(z, t) dt,

and y', -=y'(0). 8, -=8(0) is the value of 8(z) [defined
through Eq. (22)j at the entry plane. Figure 1 shows
the rapid decrease in fractional energy loss as 8p

(or input power) is increased. (Of course, y'/y'o

can never be greater than e ' for the round trip,
and e '~t2for the singlepass. ) The effect mayalso
be seen in Fig. 2 where 8(L) and 8(—,'L) are plotted
against 8o. An interesting feature of the round-trip
curves, in both figures, is the single oscillation
near the upper ends. The energy loss goes through
a minimum near 8O =1.6w, while the pulse area
goes through a small stable (or steady-state) region
in the same vicinity.

In Fig. 2 the theoretical results for 7„(L)and.
7.„(,' L) and the d—elay time at the peak of the pulse,
DT, are shown. The roughly bell-shaped behavior,
characteristic of the coherent interaction, has been
derived previously by Hopf and Scully' for the ideal
SIT case of MH.

The area theorem derived in MH is an exact ana-
lytic expression for d8/dz under the conditions:
~, =0; T„Ti- ' 7.e» T2. Following the same
mathematical procedure, starting from Eqs. (17)
and (14) [with the addition of a term —

~ a, $(z, t)
on the right-hand side of Eq. (17)], an analytic form
may also be deduced without the restriction n, = 0, '

Steady-state solutions of Eq. (24) occur at values
of 8 for which the right-hand side vanishes, and

therefore only if (n, /o. p) & 3w. There are two types,
with M an integer they are (2M —1)w& 8, & (2M-2)w
(odd v solutions in MH) and (2M —2)n &8&& 2Mw

(even v solutions in MH). Only the latter, however,
are stable against small changes in 8o, i. e. , in a
region about 8o= 8~, 8 is stationary with respect to
8o. With the parameters in Table II, Eq. (24) has
only two solutions: 8, = 1.2z, 82= 1.7~. The agree-
ment of the latter with the value 8o= 1.6~ from the
full computation, Fig. 2, is thus very good. By
analogy with the 2m solution in MH, an energy-loss
minimum should also occur near 8o= 8~. The exact
position depends on initial pulse shape and moves
to slightly smaller values of 8O for input pulses
which do not have the final steady-state shape.
Thus there is also approximate agreement with the
energy-loss computation, Fig. 1. There is dis-
agreement, however, in the sense that 8~ from Eq.
(24) is a steady-state solution 8- 82, whereas in

Fig. 2 the stable value of 8, near 8O= 82, is =0. 64m.

This may be due to the effect of T2, which is not
included in Eq. (24).

This analysis might be expected to agree even
more closely with the single-pass computations.
Since the latter do not exhibit a stationary 8, agree-
ment with the double-pass results may be fortuitous.
Qn the other hand, at 8O= 8„both the single- and

ip

0.5-

I-
Cl

0.0

I.OO

—0.50
4

—= ——,no sin8 ——,a 8.d8
dz

(24)

It is a remarkable fact, and perhaps fortuitous,
that Eq. (24), which is derived for unidirectional
propagation neglecting relaxation, predicts many of
the results found in the full round-trip computation.

0.00
0.0 0.2

7r
I I I

0.4 0.6
log 80

2''
I

O.e

3'
l

1.0 1.2

FIG. 3. Computed delay times (above) and pulse widths
(below) in SIT for the parameters listed in Table II.
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where

[I (1 e ed)e-Tz ep 5(g, t)/T] 1 (25)

b(z, t)= f ' fz(t) Ck/f f(t) dt

and f (t) is a. shape function, of unity peak amplitude,
such that

double-pass results in Fig. 2 have the same final
area 8=0. 32m which is, therefore, a steady-state
area. Thus, at least empirically, Eq. (24) gives
the correct 80 (= 8,) from which the nonstationary
steady-state develops with 8& 8, due to the presence
of finite T2. Further evidence for the validity of
this conclusion is provided by an argument due to
Hopf and Scully' which shows that the maximum z~
should occur when the pulse is propagating in the
above state, i. e. , for 80= 8„and this is exactly
where the peak of the round-trip curve for v~ lies
in Fig. 3. To the extent that this solution is simi-
lar to the m solution in the ideal case, the maximum
value of DT should occur at 80 slightly greater than

8,. This is also shown in Fig. 3 where the maxi-
mum DT is at 80= 1.4m.

Comparison saith saturation. In the opposite lim-
it on T& to that prevailing in ideal SIT, i. e. , for
vo» T&, saturation of the resonant system becomes
important at high-input intensities. This is also
characterized by a rapid decrease in the fractional
energy loss as input power is increased. Since our
experiments on ¹i~' and the theoretical calculation
by Hopf lie between the two limiting cases, we have
investigated the behavior of the pulse energy and

area utilizing the parameters in Table II but with
the assumption T, »7'~ » T~ »T~.

Expressions for the radiation intensity and popu-
lation density under pulse saturation conditions have

been derived by several authors, ' '~ starting from
Eq. (1V) and the steady-state solutions to Eqs. (14)
(see Appendix). When nonresonant host absorption
is included in Eq. (IV) the solutions must be evalu-
ated numerically. Results of such computations are
shown in Figs. 1 and 2 for both the single and dou-

ble passes. Except for the structure in the double-

pass SfT curves, the shapes of the saturation curves
are very similar to those of the analogous SIT solu-
tions. Saturation sets in at larger 80 than does SIT,
but the rate at which the energy loss decreases is
about the same.

This result is not restricted to the present prob-
lem as may be seen by comparing ideal SIT with

the saturation solutions given in Refs. 16 and 17.
Their expression for the radiation intensity may be
written in terms of 8(),

80/& = 2f „h0f(f) dt = 26, 7. .

In general, b(z, t) is less than or of order unity.
[With f(t ) from Eq. (23), r = 70 and b(z, ~) = —,'. ] For
large u0z, Eq. (25) shows that the apparent attenua-
tion constant is reduced to z u0z at 80 ——

z o0zv/T z,
while 9' = &0 at 80- 2o0zv/Tf . In ideal SIT these
points occur with the same relative values of 80,
i. e. , at 80= m and 80= 2w, respectively. Therefore,
observation of the rapid decrease of apparent ab-
sorption with increasing power does not, by itself,
establish the presence of SIT unless absolute (not
relative) values of 80 can be ascertained, or it is
known from other measurements that v «T&.

Coherence effects are most clearly differentiated
from saturation by measurements of DT and vH as
functions of 80 and by observation of pulse shapes.
Ãhereas in saturation the pulse shape becomes
asymmetric, ' peaking toward the back of the pulse,
in SIT it tends to become symmetric. Also, al-
though there can be an apparent delay of the peak
in saturation, it cannot be greater than the initial
pulse width. ' The most outstanding qualitative
difference, however, is that in transparency the
pulse width increases to a value ) v~ and then nar-
rows as 80 is increased; in saturation 7H is always
less than or equal to &0.

III. EXPERIMENTAL METHOD

All measurements were made at frequencies =9
GHz using the pulse-echo technique. 2J51 magne-
trons were used to generate rf pulses whose base
widths could be adjusted in the range 0. 6-3 p,sec.
The shapes and 7~ of the pulses were different for
different magnetrons. Only longitudinal waves
propagating on (100) axes of the MgO were utilized,
although similar effects were observed on other
axes and with transverse polarizations.

In the earlier experiments, ' the pulse shapes
were distorted by high Q cavities and narrow-band
detection methods. Therefore, in the work reported
here, the cavity Q was intentionally reduced to ap-
proximately 800, and a super heterodyne receiver
with an i. f. bandwidth of 100 MHz centered at 250
MHz was utilized. Otherwise, the ultrasonic
drive cavity and crystal arrangement were similar
to those used previously. Quartz transducers
were bonded to MgO crystals having optically flat,
polished, and parallel faces. Bothquartz and MgO

were 1-2 cm long and 3 mm indiam. Although it
would appear desirable to have made single-pass
measurements instead, utilizing thin evaporated
transducers, this would not have averted the
presence of standing waves at both ends of the
MgO. Also, the quartz transducer acted as a
buffer to remove the MgO far enough away from



the cavity so that rf leakage did not induce spin-
resonance transitions.

Measurements were made on two crystals (sam-
ples 1 and 2) containing Ni ' impurities, and one
(sample 3) with Fe'; Samples 1 and 2 were cut
from the same boule and, presumably, the only
differences are the lengths. Their relevant param-
eters are listed in Table III. For sample 1, uoL,

at 4. 2'K was measured directly at 8 = 90 and
checked against measurements at other values of
e. For sample 2, the 90' value was extrapolated
from measurements at smaller angles, since noL,
= 8 was the largest absorption for which the signal-
to-noise ratio at low-input powers (i. e. , in the lin-
ear absorption range) was great enough to allow
accurate attenuation measurements. The absorp-
tion constant of the Fe ' transition in sample 3 was
obtained by a method based on the suppression of
second harmonic generation by paramagnetic reso-
nance dispersion and absorption. ' The 1.8 K,
8 = 90 values were calculated from those at 4. 2'K
using the appropriate Boltzmann factors, and also
checked against measurements at smaller e.

The value, &,I.= l. 6, for sample 1 was taken
from one particular experiment in which four suc-
cessive echoes in the MgO were exponentially re-
lated (Sec. IV, Fig. 12), and the value for sample
2 is 1.5 times the ratio of the sample lengths.
Generally in microwave ultrasonic experiments,
successive echoes show nonexponential modulation
due to nonparallelism of the reflecting surfaces
and/or wedge-shaped bonds. An observed exponen-
tial pattern can thus be coincidental, not represent-
ing the true &, . The quoted value above should be
considered an upper limit and therefore represents
a possible source of error in comparing experiment
with Hopf' s computations.

The values of T&, given in Table III, were mea-
sured by rf spin-echo methods at 9 GHz on the
&{8,) = 1 transitions. If Tz were dominated by spin-
spin interactions then the values for n( S,) = 2 tran-
sitions should theoretically be smaller than the
measured ones by a factor 0. 82. However, the
strong temperature dependence is an indication
that spin-lattice relaxation is of at least equal im-
portance, and then T2 should be slightly larger for
4( S,) = 2 than for b, ( S,) = 1 at the same transition
frequency. '

Data were taken only on the 6( S,) = 2 transitions.
The effect is qualitatively similar on the b ( S,) = 1
transitions, but measurements at high-power levels
are complicated by the presence of a double quantum
transition which itself exhibits SIT effects. Also,
reversible dephasing is expected to be more im-
portant for &{S,) = 1.

Figure 4 shows oscilloscope traces taken on the
¹i ' line at 1.8 'K, for three input pulse widths, as

the magnetic field is varied through resonance.
Figure 5 illustrates the effects observed on Ni '
at 4. 2 'K as a function of input power. The pres-
ence of a threshold and the pronounced tendency
of the pulse to assume a smooth symmetric shape
as well as the concomitant decrease in velocity
(pulse delay) and changes in v„areclearly evident,

particularly for the shorter input pulses. The
2. 3-@sec pulse, in Fig. 5(c), exhibits typical sat-
uration behavior primarily, ' ' with only slight
coherence broadening. The ragged appearance of
the short pulses in Fig. 5(a}, at low powers, is
probably due to a small amount of frequency modu-
lation in this particular magnetron. (Pulses from
other magnetrons did not exhibit such behavior. )

In the linear region the absorption therefore varies
in time. However, in the nonlinear region of SIT
it is seen that the reshaped pulse stabilizes against
this modulation.

Figure 5 is also illustrative of the type of data
from which quantitative values of 8, V', DT, and

v~ were extracted. Each trace is a multiple expo-

FIG. 4. Oscilloscope traces showing changes in pulse
shape and delay as magnetic field is scanned tincreasing
from top to bottoxQ) across ¹ transition in MgO sample
2 at l.8 'K. Three input pulse widths are shown from
left to right; vz(0) =0.45, 0. 9, and 2.1 psec. Time in-
creases from left to right in each trace. A second round-
trip echo may be seen on some traces. Off-resonance
pulses shown at bottom of each set.
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TABLE III. Parameters of the relevant Ni or Fe ' transitions in the various MgO samples. I. is twice the
sample length and tq is the round-trip time off-resonance.

X, (cm)
tz, (sec)

OI. (4 2'K)
(1.8 K)

r, (sec) (4. 2 K)
(1.8 K)

T& (sec)
T,T (sec 'K)

Sample No. 1

l.82
l. 97 x10

1.6
7.7+0.3

18 +1
(0.76p0. 05) x10
(1.20 +0.05) x].0-'

2.3x10
9xl0 3

Sample No. 2

2. 37
2. 56x10 6

2.08
10+ 0.5

23.4+1.5
(0.76y0. 05) x10-
(1.20y0. 05) xl0

2. 3 x10-8
9x10

Sample No. 3

2. 18
2, 35x10 6

~ ~ ~

40 +4
94+10

( 5.8 y 0.1) x 10
(11.0+0.2) xlo-'

3 x10
10 4

sure of about 100 repetitive pulses. The i. f. gain
was adjusted to compensate the change in input
power in order, insofar as possible, to maintain
an approximately constant peak input to the second
detector. Amplitude measurements were made at
0. 02-p, sec intervals along the traces. These plus
the i. f. and rf attenuator readings were entered
into a computer program which adjusted for detector
nonlinearity and reduced the data. DT is the time
delay measured at the peak of the pulses from the
peak of the off-resonance pulse. Where the latter
had no pronounced peak the midpoint (-,'rc) was taken
as a fiducial mark. v„=7„(L)was measured, ac-
cording to its definition, at the half-amplitude
points.

The magnitudes of the errors in the reduced data
were determined from repeated measurements made
on one experimental run. They are indicated in
Fig. 7, and are assumed to apply to all other sets
of data at equivalent ordinate and abscissa values.

In the Ni ' experiments, absolute values of 8 and

8O were determined by equating

I»

@~~%A.

(o)

FIG. 5. Oscilloscope traces showing changes in
pulse shape and delay as input power is increased (top
to bottom in each column). ¹i resonance in MgO sample
1 at 4.2'K, rH (0) = (a): 0.4 @sec, (b): 0.87 @sec, (c):
2.3 psec. %here possible, detector gain was adjusted
to keep output amplitudes constant. Off-resonance
pulses shown at bottom right of each set.

2xJ "$(O, t) dt

at the maximum v„(measured with the shortest
pulse inputs) to the g solution of Eq. (24). This
method has little theoretical basis other than the
agreement with Hopf's calculation, as discussed in
Sec. II. However, the long pulse data of Fig. 5,
which shows the qualitative effects expected under
saturation conditions for a pulse width greater than

T2, is in almost perfect quantitative agreement with
saturation calculations when 8 and 80 are calibrated
as above, from the 0. 4-p, sec data. In addition, $0
determined in this way is within a factor 2 of the
best strain calibrations we were able to make from
input rf power measurements and conversion effi-
ciencies.

In the neighborhood of the steady-state solution
g, the absorption can be large (Fig. 1), also v„
increases with increasing no, thereby decreasing
the pulse intensity for a given 8. Consequently,
with &OL &13 in the Ni ' measurements, the pulse
was not observable above the noise at the peak 7'„
or DT values, and it was not possible to make an
absolute calibration of 8 or 80. In Fe ' experiments
such measurements were even less tractable be-
cause, in addition to larger ~0, a given minimum
detectable intensity corresponds to a value of 8

larger by the ratio of the v's (=12.5). Efforts to
take dataon Fe ' at 6 values small enoughtoobviate
this problem were unsuccessful, probably because
of the relatively large mixing of the wave functions
which occurs at small angles (see Sec. II.). Under
these conditions saturation behavior only was ob-
served, presumably of the type termed "effective"
saturation by Rhodes and Szoke. '

IV. RESU LTS

A. Ni2+

Pulse shapes. A principal result of the theory
in MH is the hyperbolic secant-shape of the steady-
state 2~ pulse. It is clear from Figs. 4 and 5 that
in our experiments, also, the pulse is reshaped in
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the regions of large delay, tending toward a sym-
metric bell shape. In Fig. 6 we have compared
three representative pulses from one of the Ni '
runs with least-squares-fitted sech and Gaussian
shapes. The Gaussian is an excellent fit (least-
squares error & 0. 01), while the sech does not fit
as well in the wings. This is to be expected, even
in ideal transparency, when the transmission path
length is finite. The wings must then cut off more
sharply than in the true steady state, attained in
the limit t- ~.

Double-Pass gesults. Data taken on sample 1 at
1.8 'K are presented in Fig. 7. With the exception
70=0. 45 psec, all the parameters are identical
with those used in Hopf's computation. The results
of the latter for 8 and y'/ y'0 are also shown for
comparison. (Note that in all the figures the loga-
rithms are log, o. ) Assuming that the area calibra-
tions are correct, the experimental points fit the
SIT theory fairly well except that the structure as-
sociated with formation of a steady state is much
smaller and within the experimental error. IThe
decrease in &/ &0 beyond 00=3m is due to the onset
of second harmonic generation' (due to lattice an-
harmonicity) which is not completely suppressed by
the resonance. ] On the other hand, if the calibrated
values of 8 and 80 were too small, by a factor 2,
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FIG. 6. Measured pulse shapes (circles) and least-
squares-fitted Gaussian (solid lines) and hyperbolic se-
cant (dashed lines) curves for three input areas. Ni2*

resonance at 4. 2 K. 7'H (0) =0.4 @sec.

FIG. 7. Measurements on sample 1 for the parameters
shown, and computed curves from Figs. 1 and 2. For the
saturation (dashed) curves & and 80 twice as large as indi-
cated. Energy and pulse width shown above. Area and
pulse delay shown below.

then the data would fit the saturation theory more
closely. This is shown by the saturation curves
in Fig. 7 which were evaluated for areas twice as
large as indicated by the ordinate and abscissa.

As expected from the discussion in Sec. II, the
0 and & data only distinguish between saturation
and transparency to the extent that the area cali-
brations are correct. However, the experimental
values of DT and v~ clearly illustrate the typical
coherence behavior shown in Fig. 3. The sharp
rise and slower fall is particularly evident in the
delay-time data. Quantitative agreement is not as
good; the maximum in DT and 7~, in Fig. 7, are
smaller than theory by a factor =2, and the nar-
rowing is greater than predicted by theory (The.
increase towards vo at larger 80 is at least partially
another manifestation of harmonic generation. )
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Although the base width of the pulse was 0. 6 p.sec
in both theory and experiment, the pulse shapes
were such that the ratio of the experimental to theo-
retical vo was =1.5. A larger experimental 7p can
affect the comparison with theory in two ways:
Saturation conditions are approached because the
ratio Ta/v~ is smaller; to the extent that vs reflects
v~, the standing-wave regions (neglected in the
theory) are a larger fraction of the total propagation
path.

Measurements on sample 2 at 4. 2'K are shown
in Fig. 8. ~OL was the same as in Fig. 7, T~ was
smaller, and 70 slightly larger. V and 8 show less
evidence of structure than at 1.8 K and fit the dis-
placed saturation curve better. However, this may
not be entirely due to the shorter T2; the smaller
value of no (not noL) causes the solutions 8& and

8z of Eq. (24) to be nearly degenerate, which tends
to remove the extremum (stable 8 region) in the
transparency theory. (This argument applies to
all the Ni ' runs at 4. 2 K. ) The maximum DT is
smaller by a factor 1.2 which probably reflects
the factor 1.5 decrease in Ta. The maximum vH

is larger by considerably more than the increase
in vo but the total variation in vH is about the same
as in Fig. 7.

Results on DT and v'„are summarized in Table
IV for six runs, comprising three values of aoL
and two of Ta. To is also given. Runs 3 and 4 are
those of Figs. 8 and 7, respectively. Runs 1 and
2 represent data from Figs. 5(a) and 5(b), respec-
tively.

Comparing runs 1-5, it is seen that, in addition
to the small increase in DT between runs 3 and 4
(mentioned above), the largest change occurs be-
tween 4 and 5, while DT is the same for 1 and 3.
Thus an increase in noL causes an increase inDT
unless the latter is already limited by T~. Com-
parison of runs 5 and 6 shows that with the longer
T2, DT is almost unaffected by a factor 2 increase
in &0. The apparent increase in DT in run 2 over
run 1 is a shift in the peak position due to satura-
tion behavior (see below).

Similar behavior is exhibited by br+(= vs„).v„~~also shows a similar variation with
ooI., but depends more directly on 7'0, as might be
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FIG. 8. Measurements on sample 2 for the para-
meters shown, and saturation curve computed for the
same conditions but with 8 and 80 twice as large as shown
by the scales. Area and pulse delay shown below.

expected.
-The effect of T2 in limiting the maximum value of

DT is illustrated more dramatically by Fig. 9, in
which the DT line shape (at constant 80) from the
0.45-p, secdata of Fig. 4 is plotted together with
an attenuation line shape no(EH)L measured in the
linear absorption region at 4. 2'K (8 adjusted for
uoL=8). Since c.oL=23 (for the DT data), the ef-
fect of o, is small and DT(nH) should vary directly
with no (n.H). [See MH and discussion above. ]
However, DT is relatively smaller, by a consider-
able factor, at the center than on the wings of the
line, because the longer delays are more severely
affected by small T, .

Although the maxima of DT and 7~ are limited by
T2, their functional behavior with 80 does not appear
to be changed from that theoretically predicted for
coherence phenomena unless v~ is actually greater
than T&. This is illustrated by Fig. 10 which is a
plot of v~ for the 0.4- and 0. 87-p.sec data of sample
l at 4. 2 K, pictured in Figs. 5(a) and 5(b). Al-

TABIE IV. Relevant parameters for six ¹i ' runs discussed in the text. All times are in @sec.

Run, &pL

7.7
7.7

10
10
13
13

T2

0.76
0.76
0.76
1.20
1.20
1.20

0.40
0.87
0.48
0.45
0.47
0.90

DT (+0.02)

0.28
0.38
0.28
0.32
0.55
0.60

0.60
0.87
0.68
0.54
0.73
1.01

(7'a)
mfn

0.31
0.56
0.42
0.33
0.38
0.65

~TH (~0.02)

0.29
0.31
0.26
0.21
0.35
0.36
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FIG. 9. Attenuation measured in the linear region
for &pI-=8, and pulse delay measured in SIT region for
&p& = 23, versus magnetic field. Solid line drawn
through attenuation points.

though the so= 0. 8V-p. sec pulses show some quali-
tative manifestations of coherence effects, such as
the formation of symmetric pulse shapes and ap-
parent broadening in the tails, the quantitative data
on 7& exhibits the effects of saturation. v~.is never
larger than vo for this set of data; it decreases
monotonically with increasing 8o to a minimum value
and then increases again towards vz. This is to be
compared with the v'o= 0. 4- p.secbehavior which is
similar to that of Figs. 7 and 8. (Note that har-
monic generation does not set in as early in Figs. 8
and 10 as in Fig. V. This is because the intensity
for a given 6)o is smaller at 8 = 90 than at 8 = 60
by a factor ~6, due to the respective ratio of the
a's being 3 . For the 0. 8V- p, sec data the intensity
is additionally smaller by the ratio of Tp 0 21, )

In contrast, in run 6 with v~= 0. 9 p.sec but still
smaller than T2, v~,

„

is larger than v~. Also, in
Fig. 4 it is seen that for both the o 45- »d o 9-
ILt, sec inputs, at the maximum DT the pulse peak is
delayed beyond the tail of the off-resonance pulse,
whereas this is not true for the 2. I-psec (& Tp) in-
put. This again supports the general conclusion
above; the effect on coherence behavior of increas-
ing vo is minimal until v& & Ta.

Multip/e echoes. Figure 11 shows a sequence of
four complete round-trip passes in the Mgo off-
and on-resonance. Energy and DT for several in-

put power levels are plotted versus echo number
in Fig. 12. The off-resonance data mereusedto
evaluate n, r. as discussed in Sec. III. (In this con-
nection we note that the transmission through the
bonds is never better than =6 dB and is more usu-
ally =10 dB; the error in ol, L due to reflection
losses is thus =0. 1. ) The outstanding features of
these data are that, after the first round-trip echo,
for each input power level the attenuation is con-
stant; the delay time i,s linearly cumulative over
the next three round trips, indicating a constant
velocity; there is no further pronounced pulse re-
shaping. Also, at the higher-power levels the at-
tenuation approaches o', while the delay, although
smallerq pex'slsts~

B. Fe2+

In principle, Fe ' is an almost ideal system for
investigating SIT. The inhomogeneous broadening
is large, very large no can be attained, and T~ at

FIG. 11. Oscilloscope traces showing four complete
round trips in the MgO. Time increases from left to
right, 1 sec per division. Upper trace: ultrasonic
frequency on ¹i resonance. Lower trace: off-reso-
nance. Two echoes resulting from a round trip in the
quartz transducer have been Mocked out.
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undergo severe modulation and distortion with vari-
ation in the magnetic field H as reported by several
authors. ' The origin of this effect is not com-
pletely understood and there may be several con-
tributing causes.

Wigmore and Rosenberg have offered an expla-
nation based on phase interference among trans-
missions over multiple paths with differing concen-
trations. Combined with SIT delays, multipath
propagation could lead to observation of multiple
pulses, analogous to those seen in optical experi-
ments, and caused there by filamentary transmis-
sion modes. ' On the other hand, the author has
observed that the modulation is a more rapid func-
tion of H if the transducer and MgO crystals are
misaligned so that refraction occurs at the bonding
surface, and this does not seem explainable by the
above mechanism.

Coherence effects can partially explain the above
phenomenon even without consideration of multiple
paths. The results of computer calculations in MH
show that pulses with 3m &Op&5m approach a 8=4m
steady state which consists of two 27I pulses of un-
equal vH and correspondingly unequal DT. (Larger
00 pulses can similarly break up into three or more
2w pulses. )

Figure 13 is, the author believes, an example of such
pulse "breakup. " As 80increases the two pulses move
closer together, in agreement with the theoretic'al
results in MH. Both pulses have the characteristic
bell shape and the DT's are in the same ratio as
the w's. The latter is not necessarily the case if
break up is due to multiple-path transmission,

og
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FIG. 12. Measurements on four successive round
trips with the parameters shown. (A): Belative pulse
energies. (8): Pulse delay times measured on each
echo from its off-resonance position.

1.8'K is an order of magnitude larger than both

~0 and tl, . Also harmonic generation is less of a
problem because of the lower intensity required for
a given 80. However, the measurements were ren-
dered extremely difficult by several factors and

only qualitative results were obtained.
Even with spin concentrations of a few ppm the

absorption is so large that it was not possible to
make measurements at small 80, as explained in

Sec. III. In addition, the pulse-echo amplitudes

HWI Ik %IlaaaahI Il I

Pl' 'I' t,. a
i

IW:

FIG. 13. Oscilloscope traces showing pulse break up
due to interaction with Fe ' resonance in MgO sample 3
with parameters given in Fig. 14. Input power increases
from top to bottom in each column. Detector gain 8 dB
higher on left than on right. Last trace shows off-reso-
nance pulse at same input-power and gain settings as
immediately preceding trace.
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FIG. 14. Measured relative pulse energies and areas
from the data of Fig. 13 on Fe ' in sample 3 with param-
eters shown, Vp= y~e- ~~.

since then the &0's can be different for the two
paths. The smallest value of 8O at which the pulses
can be seen must already be greater than 3m. For
the reasons given earlier no absolute values of 8o
could be ascertained, but comparison with the Nia'

runs at the same input power levels indicates that
the smallest 80 lies between 3m and 6m.

However, effects other than ideal SIT cannot be
definitely ruled out. The ratio of the area of the
second pulse to that of the first increases as 80 is
increased, In traces 3-6 of Fig. 13 the ratio 8(2)/
8(I)=0.46, 1.17, 1.64, 2. 27, respectively, indi-
cating that a steady state is not attained. The total
area also increases monotonically as seen in Fig.
14 which shows the energy leveling off to & = V'0'

—= f'Oe ', but no stable 8 region. (Note that the
data points at lowest 80 in Fig. 14 correspond to
the second trace of Fig. 13, while the highest 80
is not shown in Fig. 13.)

These data exhibit transparency at high powers;
the output energy is the same as the input, while the
delay, indicative of a coherent interaction, per-
sists. Extreme narrowing is also present and
causes the peak of the highest power "on-reso-
nance" pulse of Fig. 13 to be larger than the "off-
resonance" peak while their integrated energies
are the same.

In addition to the distortion and modulation, we
have observed considerable variation in the be-
havior of t and 8, as well as in the onset of pulse
break up, among different experimental runs and

also, as a function of H in any particular run. 6 It
was possible to find magnetic field values, on the
side of the resonance line, at which the pulse broke
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FIG. 15. Measured relative pulse areas versus rela-
tive input energies on low-field side of Fe resonance
in sample 3 with parameters shown.

up into as many as four separate pulses, as well
as other values at which no break up was observed.

Figure 15 is a plot of 8 versus log«&0, taken at
one of the latter positions on the low-field side.
With increasing gt) there is a sudden transition to
a stationary value of 8, indicating development of
a true steady-state pulse. However, & (not shown)
continues to increase through the stable 8 region,
rather than reaching an extremum as would be ex-
pected in the steady state. The relative behavior
of 8 and & is thus almost the reverse of that shown
in Fig. 14, illustrating the extreme variability
mentioned above.

V. DISCUSSION

A. Multiple Passes

An important result of this paper is the steady
state approached by the pulse velocity, attenuation,
and shape, in the case of multiply reflected echoes.
W'e may term this a quasi-steady-state to differ-
entiate it from the solutions of Eci. (24). In the
quasi-steady-state the area is clearly not constant,
nor are & and 8 stationary with respect to 80. How-
ever, the 5. 5- and 7. 5-dB data of Fig. 11(b) have
almost equal slopes, indicating that the pulse ve-
locity goes through a stationary value in the asso-
ciated range of 8o.

The theoretical results of Sec. II (Fig. 3) show
that the additional delay in the reflected pass is
approximately equal to the delay in the first tra-
versal, at high-input intensities for which 80 &8z.
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Further computation is necessary to see whether
this behavior continues for additional reflections.
However, in view of the discussion below, forma-
tion of even a quasi-steady-state is surprising.

B. Comparison with Theory

While there is good qualitative agreement between
the theory of Sec. II and the ¹i ' experiments, there
are several quantitative discrepancies: No region
of stationary 8 and concomitant minimum energy
loss was observed. At the value 8, = 8&, for which
these are theoretically expected, the measured 8

were smaller than theory by a factor 2; the ob-
served maximum DT and v„were also smaller than
predicted by a factor 2.

Any error in the measured value of n„which
was used by Hopf in the calculation, cannot be the
source of the disagreement. As stated earlier,
this value is an upper limit; if the experimental
value were actually smaller, coherence phenomena
would have been accentuated in the experiment,
relative to theory. From the discussion in Sec.
IV on the effects of T2 and 70, the deviation of the
latter from that used in the computation also would
not appear to explain the disparity between theory
and experiment.

Standing &eaves. Although increasing vo in the
1.8 'K experiments had almost no effect, the ne-
glect of standing waves in the theory might still
produce an appreciable discrepancy with experi-
ment. Changing the size of the standing-wave
regions will affect the results only if the remainder
of the propagation path is sufficiently reduced so
that the pulse can no longer closely approach its
steady-state condition; i.e. , if the reduced path
is largely a transient regime insofar as reshaping
is concerned. According to computer solutions
given in MH and by Rhodes and Szoke, ' only a very
few absorption lengths are required for the pulse
to reshape. In the present case, a reduction of
25% (due to increasing 7 p by 0.45 p, sec) still leaves
a reduced traveling wave-propagation path of about
st'en absorption lengths, and therefore any
standing-wave effects would be nearly independent
of pulse length while possibly affecting the experi-
mental observations appreciably.

Non-P/ane- &eave propagation. In their experi-
ments MH also found that experimental 8's were
smaller than expected from theory, and have dis-
cussed a number of additional causes for disparity
with the theory of ideal SIT. These are primarily
due to deviations from plane-wave propagation in
the experiments. The effect of multipath trans-
mission in distorting the pulse has already been
mentioned in Sec. IV. Non-plane-wave character
also exists in the acoustic experiments because of
guided wave propagation. The well-known beating

n, m = 1,3, 5. . . 2a and 2b

are the x and y dimensions, respectively, and
e„(z,t) has the form of Eq. (6) with P(z) different
for each mode. If we consider only the lowest
mode, n=m=1, and carry out the integrations in-
dicated in MH for the case of a single mode, then
in place of the area theorem of Eq. (24) we find

(25)

A = 8(z) is the pulse area on the axis x= y = 0. At
any other point

—g(x, v, z) = cos—coe-d dA» ~y

dz ' ' dz 2a 2b (27)

There are no steady-state solutions to Eqs. (26)
and (27) unless (np/n, ) &67, which requires npL
&108 if a, L=1.6. Even if there were a factor 8
reduction in n„the lowest steady-state solution
would be barely observable in the case of Ni ' and
not at all for Fe ' as explained at the end of Sec.
III. Since the higher-order solutions require even
larger np/n, , they would also not be observable.

While it is not correct to consider only the one
mode, even though it carries 80%%up of the energy, it
is clear that guided wave propagation in the experi-
ments can cause large deviations from plane-wave
theory. It may also be a cause of the variable ef-
fects of crystal alignment and refraction in Fe ' ex-
periments, mentioned earlier, since nonuniform
excitation will introduce different sets of modes
under differing experimental conditions.

C. Comparison with Previous Results

The delay time expected from the linear theory
is DT =npL/25. As shown in Ref. l, 6 may be the
observed inhomogeneous linewidth, or only the
contribution from the static part of the dipolar .

interaction, depending on the spatial scale of the inho-
mogeneities. Inthe author's earlier work' approxi-
mate agreement with the above formula was obtained if
it was assumed that only the dipolar contribution
was important. In the present experiments on ¹~',
with eo an order of magnitude greater than for-
merly, no delay was observed in the linear region.
Therefore, the earlier measurements must be
considered as having been made in the transient

effect in multiple-echo experiments is partially due
to interference of wave-guide modes. ~7

For the problem of uniform excitation (in both
amplitude and phase) of longitudinal polarization at
one end of a rectangular parallelopiped, the mode
solutions are

e(x, v, z, t) = e„(z,t) cos(nvx/2a) cos(m Vy/2b),
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regime (o.0=1) of SIT, and their agreement with
the linear theory fortuitous. However, at least
qualitatively, the present resul. ts also have shown
that DT is adirect function of Ta (at least for short
Ta) and a comparison of Figs. %and 8 shows that for
a T2 ratio of 1.6, the ratio of the DT's is 1.2.

The previous measurements on Fe~' were all
made at small angles 6 in the regime of "effective"
saturation mentioned in Sec. III. The small delays
observed (DT& vo) were presumably the apparent
delay of the pulse peak in saturation. Since the
latter is proportional to no(AH), the line shape
was reproduced in the delay data, as expected also
in the linear theory.

Symmetric pulse shapes were not observed in
the previous experiments due to the use of narrow-
band cavities and i.f. detectors. It is probably
also for this reason that the pulse distortion ob-
served by others ' ' in Fe experiments did not
show clear separation of the pulses under break
up, as is seen in Fig. 13.

The apparent amplification at high-input powers
on Fe ', reported by Rampton and Rowell, ' was
most probably due to extreme pul. se narrowing
(ve &7o) in the transparency region, as in Fig. 13.

Pulse narrowing, when 80 lies between a given
8~ and the next larger 8„is in accord with theory
and is exhibited by the computer solutions in MH;
however, this "coherence narrowing" has not been
observed previously. Patel and Slusher 9 reported
pulses having v'~& vo in optical experiments on SF6,
but this appears to be the narrowing associated with
saturation. [t&tote added in proof Narrowi. ng wa.s
recently reported in an optical experiment; H. M.
Gibbs and R. E. Slusher, Phys. Rev. Letters
24, 638 (1970).]

Rhodes and Szoke, ' also working with SF„have
measured delay times as a function of input inten-
sity and these results are very similar to the
present ones on Ni '. However, because of the in-
fluence of level degeneracy many of the other fea-
tures of SIT, such as symmetric pulses and trans-
parency, were not observed. Ayparent pulse break
up in their experiments was found to be due to fil-
amentary tr ansmission.

VI. CONCLUSIONS

The principal features of the theory of SIT, as
derived by MH, ' are exhibited by acoustic pulses
propagating in a resonantly absorbing medium.
Pulse delay and reshaping have both been observed
and are, within a factor 2, in agreement with a
calculation by Hopf which approximates the partic-
ular experimental arrangement utilized in these
experiments. Near transparency was observed at
high- input intensities.

A new and important result of this work is the
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APPENDIX

In the limits T, «7'„(e)and T, ' » (I/h) 8$/st, the
steady-state solutions of the Bloch equations [Eqs.
(14)] obtain

V= —2KSWOTa/(lyd&o T2a+4g g T,Ta)

U=2KSWOTa&&u/(I+&&d T2+4K 8 T, T2) .

(Al)

(A2)

These results may be inserted into Eqs. (17) and
(18), and the latter solved for the absorption and
dispersion. Alternatively, Eq. (10) may be used
directly to obtain a dispersion relation for APR.
We assume that the predominant spatial and tem-
poral variations in e are just those due to absory-
tion„ i.e. ,

g( )
1 9$(0, t)

Bg

Then Eq. 1Q, for e„is
—k'e, + (&o'/c') e,=+ (k'/pc')ll, . (A8}

observation that the yulse delay, in SIT, is cumula-
tive over successively reflected traversals through
the resonant medium.

Coherence-induced pulse-break-up phenomena
were observed and shown to be, at least partially,
the cause of modulation, distortion, and apparent
amplification which occur in APR experiments on
Fe

As explained in Sec. IV, Fe 'is an almost ideal
system for studying SIT. Many of the difficulties
associated with the present measurements would
be obviated by the use of optical Bragg scattering
techniques to observe the acoustic pulses. In such
experiments it should be possible to study the z
and t dependence of the coherent interaction, rather
than being limited to observing only the output pulse
as in the optical and present acoustic work. The
technique also allows measurements of acoustic
beam profiles so that the effects of non-plane-wave
character could be assessed.
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Using Eqs. (Al) and (A2) in Eq. (15), for R„can-
celling e, from both sides of Eq. (A3), and rear-
ranging, we have

(2 2 -1

c pc (1+A(d Tz+ 4K 8 T)Tp)

(A4)

The dispersion relation found earlier by Jacobsen
and Stevens, ' using a different formalism, reduces 2n, (&(u) = —mkW, ~'(ug(&v)/2pc'. (A5)

to Eq. (A4) when h~ « ~ and saturation terms, in-

cluded here, are neglected. In the small-signal
limit, and for I k —v/c I «k, the amplitude attenua-
tion is given by

lm k = hv'
WOT2w /2 pc'(1+ &~ T2) .

%hen this is averaged over the distribution of res-
onant frequencies the absorption constant o.o(&~u)

is obtained,
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