
EXPANSION THEOREMS FOR MAGNETIC-RESONANCE 245g

York, 1952), Chap. 9, Sec. 21.
6G. N. Watson, A Treatise on the Theory of Bessel

Functions (Cambridge U. P. , Cambridge, England,
1966), 2nd ed. , Chap. 9.

~~Reference 16, Chap. 5, Sec. 21 or Chap. 16.
H. Cramer, Mathematical Methods of Statistics

(Princeton U. P. , Princeton, N. J. , 1945), pp. 222-223.
The author is indebted to B. Gravely and F. Lado for
this reference. This expansion also has been used by
R. Bersohn and T. P. Das, Phys. Rev. 130, 98 (1963).

' Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1965),
p. 485.

D. E. O'Reilly and T. Tsang, Phys. Rev. 128,
2639 (1962).

D. E. Barnaal and I. J. Lowe, Phys. Rev. 148,
328 (1966).

G. Glebashev, Zh Eksperim. i Teor. Fiz. 32, 82
(1957) JSoviet Phys. JETP 5, 38 (1957)].

23E. R. Andrew, Phys. Rev. 91, 425 (1953).

PHYSICAL REVIEW B VOLUME 2, NUMBER 7 1 OCTOBER 1970

Antiresonance in the Optical Spectra of Transition-Metal
lons in Crystalse

M. D. Sturge~ and H. J. Guggenheim
Bell Telephone Laboratories, Murray Hill, Nesu Jersey 07974

and

M. H. L. Pryce
DePartment of Physics, University of British Columbia, Vancouver 8, British Columbia

(Received 8 May 1970)

When a sharp absorption line of a defect or impurity center is overlapped by a broad vi-
bronic band, interference can occur between the two types of transition. We find several ex-
amples of this effect in the optical spectrum of V2' in octahedral fluoride coordination. The
spectral line shapes can be fitted well by the four-parameter theory of Fano, which was de-
veloped to account for the interference of a sharp intra-atomic transition with an overlapping
ionizing continuum. We justify the application of this theory to the vibronic problem, and
calculate some of the parameters in terms of other spectroscopic data, obtaining good agree-
ment with experiment.

I. INTRODUCTION

Among the more remarkable features of the
spectra of the rare gases are the Beutler bands. '

These occur when sharp intra-atomic transitions
are overlapped by a broad ionizing continuum. The
transition matrix elements interfere destructively
on one side of the intra-atomic resonance and con-
structively on the other, giving a characteristic
"antiresonant" spectral line shape. A particularly
elegant example is to be seen in the hard ultraviolet
absorption spectrum of Her'; the 1s~-2s, nP series
looks like a series of dispersion curves superim-
posed on the continuum of ionizing transitions which
leave the He' ion in the 1s state. Similar effects
are to be expected in the predissociation region of
molecular spectra.

The theory of this effect has been given by Fano. '
The formalism is identical to that of the Breit-
Wigner theory of scattering from resonant nuclei.
Fano shows that if the continuum absorption o.s(&u)
is slowly varying in the vicinity of an isolated reso-
nance, the absorption coefficient n(e) is given by

a((o) = ns((o)+ no(q'+2)q —1)/(1+ ]'),
where

& =(~ -~,)/x,

~o, l(c I P la) I'
t

l(b I P la) I

(s '
I P la)

v(s I R, I c ) (c I'5 la)

Here ls) is the sharp excited state; Is ') is that
state modified by the interaction Hamiltonian X &,

which connects Is) to a certain fraction Ic) of the
continuum states Ib). The energy of Is ') above
the ground state la) is h&o„, and y ' can be inter-
preted as the lifetime of the sharp state against
decay to the continuum. P is the electric- or mag-
netic-dipole operator. The quantity q may take any
value between -~ and +~, and q'y is a measure of
the strength of transitions to the modified sharp
state Is '), relative to the continuum I c) .

Equation (1) can be represented by a family of
curves corresponding to different values of q, as
shown, normalized by a factor (1+q2) ', in Fig. l.
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FIG. 1. Equation (1) divided by (1+@), ~th &0=1,
and a variety of positive values for q. For negative q,
the figure should be inverted about the axis $ = 0.

The spectral line shape ranges from the normal
I orentzian resonance for Iq I =~, through a disper-
sionlike curve for Iq I = 1, to an inverted I orentzian
(antiresonance) for q = 0.

Features resembling the Beutler bands, though
usually less pronounced, have been found in the ab-
sorption spectra of solids. Excitonic transitions
overlapped by band-to-band continua show asym-
metries which can be attributed to interference.
Sharp transitions of impurity centers sometimes
interfere with band-to-band transitions of the host
crystal. ' ' The theory of the latter effect has
been studied by Toyozawa and his associates, "but
the experimental data obtained up till now are too
complex to be compared quantitatively with his
calculations.

In all these cases there is a close analogy with
the atomic case considered by Fano, since the final
continuum states are those of a "free" conduction
electron. However, interference is sometimes ob-
served in cases where the final state is a vibration-
al continuum. For instance, interference between
first-order Raman lines and the continuum of sec-
ond-order scattering occurs in BaTi03. ' Analogous
effects have been seen in the infrared ref lectivity
of this and other highly polarizable perovskites, "
and in x-ray and neutron scattering from alkali
halides. ' Complicated absorption spectra showing
the asymmetric peaks and dips characteristic of
interference effects are seen in large aromatic
molecules, where sharp Rydberg transitions over-
lap vibrationally broadened m- m* transitions. "
Finally, in certain favorable cases, well-resolved
antiresonances are found in the absorption spectra

of transition-metal impurities in solids. ' We dis-
cuss these in detail below.

The Fano theory has been applied to the latter
class of problems, but its applicability cannot be
taken for granted. There is a great difference be-
tween a multiphonon continuum, with many degrees
of freedom, and the continuum of states of a single
free electron, which has only three. It is the pri-
mary purpose of this paper to develop a theory of
interference in the spectra of transition-metal ions
which not only justifies the use of Fano's formula
(1) but makes quantitative predictions of the param-
eters in it.

We discuss in Sec. II several antiresonances in
the absorption spectrum of the (3d) ion V ', incor-
porated as a dilute impurity into KMgF3 and MgF2,
including a more detailed account of results briefly
reported earlier. ' Interference occurs between
sharp transitions within the t~ configuration, which
are either phononless or involve the emission of
one phonon of relatively well-defined energy, and
broad transitions in which several phonons are
emitted. The latter are spin allowed; the former
are spin forbidden because of the Pauli principle,
but are made allowed by spin-orbit coupling to the
overlapping spin-allowed band. The spectra can be
fitted by (1), and a set of parameters is obtained
which it is the concern of our theory to explain.

In Sec. III, we set up a model for an impurity ion
in a solid which we believe represents the physical
situation for V in KMgF3 reasonably accurately.
We show that this model leads to Eq. (1), plus
some additional terms which we prove to be small.
In Sec. IV, we apply the theory to the problem in
hand, and calculate values for the parameters q
and y which are in good agreement with experiment.

II. EXPERIMENT

Single crystals of KMgF3, doped with approxi-
mately 0. 3'7o V, were grown by the method de-
scribed elsewhere. '7 We measured their absorption
spectra at temperatures down to 2 K on a Cary
14BI double-beam spectrophotometer fitted with a
cooled RCA 7102 photomultiplier. The resolution
was 2 to 3 cm '. To eliminate the possibility that
fluorescence was distorting the spectrum, we
compared the absorption spectra obtained with the
specimen in the entrance and in the exit optics of
the spectrometer. They were identical. Further-
more, we searched unsuccessfully for fluorescence
in the relevant spectral regions, using an argon-
ion laser as the exciting source.

The over-all optical spectrum of V in KMgF~ is
described and interpreted elsewhere. ' ' The main
features with which we are concerned are illustrated
by the schematic energy-level diagram shown in
Fig. 2. There are two strong absorption bands,
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FIG. 2. Lovrer energy levels of V2' in octahedral
F coordination (schematic). Spin-orbit coupling and

noncubic fields are neglected.

FIG. 3. Absorption spectrum of KMgF3. V ' in the
region of the A2- E and T& transitions. The dashed
line is Eq. (2).

o.'& = o.,e 'p'/I'(p+1), (2)

some 2000 cm ' wide, with maxima at 12 150 and

18400 cm '. These are spin-allowed transitions
from the A& ground term to the T2 and T, excited
terms of the d' configuration, and involve the
raising of an electron from a tz to an e orbital.
There are also weak, but relatively sharp, spin-
forbidden transitions to the E, T» and Ta terms,
at 12 6'75, 13350, and 18 430 cm '. (The T, state
is split by spin-orbit coupling into I'8 and I"6 levels,
35 cm ' apart. ) These transitions involve no change

of orbital. They are overlapped by the broad bands,
and the absorption spectrum in their vicinity is
shown in Figs. 3 and 4.

The bands can be fitted, away from the sharp
transitions, by the "Pekarian" form' '

where P = (&o —&uo)/&u, , and no, S, Ida, and &o are ad-
justable parameters. 8 is the mean number of
phonons emitted in the transition, and S~ their
mean energy. The fitted Pekarian is shown by the
dashed line in Figs. 3 and 4. ' The effect of sub-
tracting out e& is shown in Figs. 5-7. In the case
of the 4A~- ~T, transition, the background includes
a contribution from the broad E vibronic centered
near 13150 cm '. We have estimated this as best
we can to obtain the points in Fig. 7.

It is important that we be certain of the assign-
ments of these transitions. In particular, we want

to know if they are purely electronic, or involve the
emission of a phonon. If the former, they must be
magnetic dipole (MD) in a centrosymmetric crystal
such as KMgF„ if the latter, they will almost cer-
tainly be electric dipole (ED). In a uniaxial crys-

Fig. 4. Absorption spectrum of
KMgF3. V ' in the region of the A2

T2 transition.

.I

I7 000 I8000 l9000 20000
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FIG. 5. A2 E transition of
KMgF3. V, after subtraction of
the background absorption. The
full line is Eq. 0.), with the pa-
rameters given in Table I.
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tal, one can most easily determine the dipole char-
acter of a transition, if it is polarized, by com-
paring the g, 0, and o. spectra. '~ If the a and e
spectra agree, while g is different, the transition
is ED; if g and e agree, while 0 is different, it
must be MD. This method is not available to us in
KMgF„which is cubic. We tried to induce polar-
ization by stressing the crystal (001), but even at
the breaking stress, the polarization of the absorp-
tion is too small to be detectable.

Instead, we turned to MgF~. This crystal is te-
tragonal, V ' replacing Mg

' in an octahedrally F
coordinated centrosymmetric site, just as in
KMgF, . (The fact that there are two Mg" sites,
whose symmetry is orthorhombic, does not affect
the argument concerning dipole character. ) The
spectrum of V in MgF2 is very similar to that in
KMgF3, but the cubic terms are split by the orthor-
hombic field. In particular, the features which we
associate with the A~ E and A~- T2 transitions
are split and polarized. (We were unable to find

the weak 'Am- T, transition in MgFS. ) The spec-
trum in the range 7500-8000 A is shown for the
three polarizations in Fig. 8. The T~-band absorp-
tion is predominantly ED in this region. The two
sharp features at 12 630 and 12 800 cm ' are MD.
This fact confirms their assignment to the A~- E
no-phonon transition, split by the orthorhombic
crystal field. There is a weakly polarized feature
at 12830 cm ' whose dipole character we cannot de-
termine for certain, though it appears to be ED,
and strong ED features near 13050 and 13220 cm '.
These three features must be vibronic transitions
associated with 4A, - 'S.

The spectrum of MgFI. V ' in the region of the
'A&- T, transition is shown in Fig. 9. In Fig. 10
we show the result of subtracting out the strongly
polarized 4T, background (assumed to be the sum
of two Pekarians). In this case, the sharp feature
is clearly ED, like the background, and must be
vibronic. This is what we expect, since the 4Am- T~ transition borrows its intensity primarily

~ ~ ~

0 = I 0 I

4 2
Ap& Tp

FIG. 6. Same as Fig. 5, for
the A2 Ti transition.
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FIG. 8. Polarized absorption spectrum of MgF2. V '
in the region of the 4A& 2 E transition.

from A2 T„which is MD forbidden in 0„, so
that the no-phonon line will be very weak.

Having established the MD character of the A~
E transition and the ED (vibronic) character of

the A.&- T2 transition, we return our attention to
KMgF, . The full lines in Figs. 5-V are Eq. (1),
with the values of the parameters &u„, p = o.o/o. s,
q, y listed in Table I.

For E, the values of p and q are accurate to
30%, and y to 20%. For T2, q is very uncertain;
a slightly different choice of n~ can even change
its sign (see Refs. 16 and 21). Furthermore, as
we have seen, the structure here is associated with

a vibronic transition (probably one relatively sharp
transition amongst many broader ones), and Eq.
(1) should be convoluted with an effective phonon

density of states. This could produce asymmetry,
as well as extra width and structure. Thus SO cm '
is an upper limit for y, and all we can say about q

0,4
l7500

I I

I8000 I9000I8500
C fTl

FIG. 9. Same as Fig. 8, for the A2 —T2 transition.

is that it is small: l ql -0.5.
In the case of T„ the uncertainty in background

makes p and q uncertain. However, since so sharp
a feature must be a no-phonon line, the value of y
is reliable (apart from an instrumental contribution
of about 1.5 cm '), and the asymmetry of the line
is genuine, indicating that q is positive and in the
range 1.5-4.

The orthorhombic splitting of the electronic states
in MgF~ complicates the theory, and the fact that
the spectra associated with different sharp transi-
tions overlap makes the experimental data difficult
to interpret quantitatively. The parameters obtained

by fitting Eq. (1) to the MgF2 data are not signifi-
cantly different from the corresponding figures for
KMgF„and we will not discuss them further.

III. THEORY

We will set up a model system which, though
oversimplified, exhibits the more important fea-
tures of the spectra described in Sec. II. We will
show that the model leads to Fano's formula, which

was found to fit the data well, plus some additional
terms which we can plausibly argue are small. The
model gives values for the parameters q and y in
Fano's formula which are in good agreement with

experiment.
We assume that we have an isolated center with

an excited state gz, which has the same equilibrium
lattice configuration as the ground state $0, but has
a different spin, so that transitions to it are for-
bidden. We assume that nearby there is a state
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FIG. 10. Same as Fig. 9, after sub-
traction of the band absorption.
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g„ to which MD transitions are allowed, and that

g, and $2 are connected by the spin-orbit coupling
operator X„.We assume that the equilibrium lat-
tice configuration for g, is displaced substantially
from that of the ground state, so that the $0- g,
transition is broad relative both to K „and to the
mean phonon frequency co. This band overlaps the
forbidden (0- $2 transition. For simplicity we as-
sume that the force constants, and therefore the
phonon frequencies, are independent of the electron-
ic and vibrational state. Thus we have strong linear
phonon coupling to the $0- t)I, transition, and none
(in the absence of spin-orbit mixing of P, and Pz) to
the $0- g2 transition. The configuration-coordinate
diagram for the problem is sketched in Fig. 11.

We ignore the extra complications introduced by
the orbital degeneracy of g, and gz (Jahn-Teller ef-
fect), and assume that the basic vibronic states,
before the application of spin-orbit coupling, are
Born-Qppenheimer products g&y and g2y„. The
electronic wave functions g are assumed to be in-

dependent of the phonon coordinates (Condon ap-
proximation). The transition dipole operator M and
the spin-orbit operator X„are also assumed to be
independent of these coordinates.

For simplicity we assume that radiative decay

I( Et%

TABLE I. Observed and calculated parameters
in Eq. (1).

Transition @„& p /&~

4A2 to:
2E

' ~i«8)
'T

cm ~ obs.
12 670 0.08
13342 0.06
18 430 0.04

obs.
+le 3
+2.3
+0. 2

ca1,c.
+1.0
+2.6
+0.15

cm" (15Includes a contribution of l. 5
from instrumental broadening.

Assuming f =150 cm"~.

I y (cm-')

obs. Calc-
25 33

3.5 2, 1
sp ( 5p (I',)

25 (r,)

cm-' for 2')
FIG. 11. Schematic configuration-coordinate diagram

for V ' in octahedral F coordination. The abscissa
represents the mean radial displacement of the F ions
(totally symmetric or Q~ mode). Spin-orbit coupling is
neglected.
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can be neglected and that all measurements are
made at 0 K.

A vibronic state associated with tl&p can be written
as a Born-Oppenheimer product I 2) I n), where In)
= II, ln, ), theproductbeingtakenover the 3Np normal
modes of the imperfect crystal. (Np is the number
of atoms in the crystal. ) The energy of this state
(measured from the ground electronic state) is Ra
= g n, K&u +@&up. Similarly a vibronic state asso-
ciated with &I&, is written I 1) I m), where m =II~ Im, ),
and its energy is Kq = gm„ tf&u +II&u, . Here II&u, and

II&u, are the zero-phonon energy levels for g, and &t&p

(see Fig. 11). Because of the displacement of the
equilibrium lattice position associated with g„
states I m, ) and I n ) are centered on different
origins, so that

q ~(q, ) =q „,(q -a )

when m =n . The displacement a of each oscil-
lator is of order Np"', but the sum-', ga is finite,
being the mean number of phonons emitted in the
transition (conventionally called S, the Huang-
Rhys parameter). ' ' '

The matrix element for MD transitions from the
ground state is (1 I M HIO)(m I n=o), which we ab-
breviate to KYIH(m lo). (M is isotropic in a cubic
crystal. )

To clarify our method, we first consider the case
of zero spin-orbit coupling. If we apply a weak
oscillating field 2IIcosvt, for a time short com-
pared to the radiative lifetime of the excited states,
the vibronic wave function 4(t) is given by

where

G (&u) =G,(&u)+iG, ((o) =Z l(olm) I'

m

and N is the number of impurity ions per unit vol-
ume. The nonresonant term G( -&u) is negligible
and will be dropped. We could have achieved the
same result by dropping all "negative frequency"
(e' ') terms from the beginning. The imaginary
part of the susceptibility X~ is proportional to the
absorption constant, so that the absorption profile
is given by

G,( )= ~.I(0 I
&I'8( n)-, (Sa)

where

f Gp(&u)d&u=v . (sb)

G(&u) could in principle be calculated, given some
model for the phonons and for their interaction with
the center. We prefer to regard Gp(&u) as an experi-
mental quantity to be determined from the observed
band profile, and to obtain G, (&u) by the Hilbert
transformation

G, (&u ) = v ' P Gp(&u ) d&u

V —(d

where P denotes the Cauchy principal value of the
integral.

If we include spin-orbit coupling, states asso-
ciated with gp become populated. The wave function
is now given by

@'(t) =
I 0& lo&+~ y(m}11&l m&+Z x(n)I2& In& ~

(7)
c(t) = lo& lo&+P„y(m)l 1&lm& .

The time-dependent Schrodinger's equation is

iaC(t)=(X, -M H) e(t),

where

(3)

&ux(n) = cx(n)+AZ (nlm) y(m),

If we retain only terms in e '"', the x's and y's obey
the coupled equations

&uy(m) =qy(m)+AX, „(m I n) x(n) MHe '"'(m Io&-&

(Sa}

(sb)

(K p
- h'q)

I 1)
I
m ) = 0 .

Integrating out 11) I m), we have

iy(m) = qy(m) -M( m
I
0) && 2H cos&ut,

idiot

~e ko t

y( )=M(
I 0)

I

The expectation value of the MD moment is

where

11=a-'(2I x„l» .
Substituting for y (m) in (sb), we have

( — ) () 1l'ZZ" & " (')
m n'

,„gp (n lm)(m I 0)
m

(9a}

(M) =Z [M(ol m)y(m)+M*(mlo)y (m)],
Let

I = F(n, &u)S„„~+h(n, n ', &o), (Qb)

so that the complex susceptibility is

X(&u) =N(M )j2H cos&ut = tfMP[G(&u)+ G( -&u)], (4a)
where k(n, n', &u) =0 if n=n'.

It is shown in the Appendix that
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Y(n, (o) = G((o —c+(o,), (lo) —X2/hÃM G2((gp„) = I +E(q, ]), (14a)

where G(&o) is given by (4b), and that h(n, n ', &u) is
small over the energy range of interest if G(u&) is a
slowly varying function of v.

Then (9a) can be written

x(n) =[(o —e —A'G(s) —&+(o,)] '[-MAIfe '"'G(s))5,„

where

~(q, ~) = ( q'+ 2~q —1)/(1+ &'),

( = [(u —(u2 —A'G, ((ua)/y],

y=A'G2(~2) q G1(~2)/G2(~2)

(14b)

-MAh(0$ ni (d)+A Z h(n, n'
&id) x(n')]. (ll)

The first term in the numerator of (11) is domi-
nant; that is, the contribution of the zero-phonon
state of t2) is much larger than any other. This is
what we might have expected from our assumption
that the $0- tfra transition is not coupled to the lattice
in the absence of spin-orbit coupling.

Substituting (ll) and (8a) in (4a), we find for the
complex susceptibility

A'[G((o)]'
Xy+&X2= —SNM 6 t'd +

[h(o, n, (o)]'
(0 —(02 —A G(&d —0 +(02)

A' ~ ~ h(0, n, (u) h(n, n', ~), I,
MH „„.(d —6 —A G((d —6+ (02)

(12)

The first term in (12) represents the (0- g, band
shape as it would be if there were no spin-orbit
coupling. The second represents the perturbation
of the band shape caused by coupling to the zero-
phonon state of $3. It is resonant at &o = &u„=&uz+O&o,

where 5&v = A' G, (&u,). This is the (relatively small)
shift in the energy of $3 due to the interaction. The
third and fourth terms are sums of terms resonant
over a range of frequencies; they represent the
contribution of vibronic states associated with gz.
Since the density of such states is small for small
a, as are h (see Appendix) and x(n), n & 0 [see Eq.
(11)], their contribution in the interesting region
near ur =(d& can be neglected. We then have for the
susceptibility (whose imaginary part is proportional
to the absorption coefficient)"

iy, =iiNM G(u) ~A, .A, ).2 (G, + iG3)
~ -~, - A t.",-~A G',

(»)
Normalizing to the band absorption, and assuming
it to vary only slowly near e=~„, we have

Equations (14) have the same form as Fano's formula

(1) for a sharp atomic transition overlapped by a
continuum. Note that q is related to the ratio of
the transition-dipole matrix elements for the sharp
and broad states as modified by the interaction. In
our case (2 I M l 0) = 0, and q is only nonzero because
g, is mixed into P~ by the spin-orbit interaction.
This admixture would be zero if G,(0) = 0, as would
be the case, for instance, if Gm(&u) = const.

There are some further complications to be con-
sidered before (14a) can be compared with experi-
ment. When $= -q, (14a) gives X&=0, contrary to
the experimental observation that the minimum ab-
sorption is only a few percent below the band. The
reason for this discrepancy is clear: only a small
fraction of the band states takes part in the inter-
ference process. The bulk of the band absorption
involves ED phonon-assisted transitions in which
the final vibronic state has odd parity. Our calcu-
lation is limited to even-parity vibrations, since we
assumed the transition moment to be independent of
the phonon coordinates. Hence, only the MD part
of the band is involved in the resonance near v„.
[Interference between ED transitions will be con-
sidered later. It gives a nonresonant effect similar
to, though larger than, the effect of the h terms in
Eq. (12).] The integrated absorption of the 'A, -'T,
band in KMgF3.'V is an order of magnitude greater
than calculated for MD transitions, '~ so we expect
only about 10% of this band to be involved in the
interference.

A further reduction occurs because not all the
electronic states are connected by X„. A T~ or
'T, term contains a I'6, a I'7, and two I", levels. We
can choose a linear combination of the two quartet
I'8's such that only one is coupled to the doublet
level. '6 Thus for a I', state only one-third (on
average) of the MD part of the band is involved in
the interference. For a I"6 or l 7 state, this frac-
tion is one-sixth.

Thus, in general, we expect to find, instead of
(14a),

—y2/hNM Gz = 1 +pE(q, $),
where p is a number of order 0.03 which is difficult
to estimate precisely.

The physical interpretation of y is the same as
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in Fano's theory; 2' is the width of the sharp state
g2, and —,'r ' is the lifetime of g, against decay to g, .
If there is any other decay process it must be con-
voluted with (15) to give the experimental profile.
If we assume that the sum of all decay processes
(other than interference with the band) produces a
Lozentzian broadening of width 2y ', we find for the
convoluted pr ofile

(16)

where

Thus, an experimental profile may still have the
Fano form even when it is substantially broadened
by "unwanted" decay processes. The tendency of
such processes, as one might expect, is to increase
y and to decrease p.

The effect of odd-parity vibrations, which induce
ED transitions, can be included formally as fol-
lows. We take as normal modes linear combinations
of phonons which have even or odd parity with re-
spect to the impurity center. We write our Born-
Oppenheimer basis states as gy8, where y refers
(as before) to even-parity modes, and 8 to the odd
ones. The electronic part g now contains an odd-
parity component which depends parametrically on
8. ED transitions can be induced by the excitation
of one odd-parity mode; let the frequency of such
a mode be vz. One possible vibrational wave func-
tion is

where n = 0 for e 4 P, and n& = 1. The product is
taken over all odd-parity modes which can induce a
transition. Since X &, is a purely electronic even-
parity operator, states of different P are not cou-

pled, and we can write a pair of equations, analo-
gous to (7) and (8), for each P. Making the same
approximations as for the MD case, we find for the
contribution of the P mode to the susceptibility

where

The ED contribution to the susceptibility is then
While (1V) has the same form as (13), the sum

is a convolution of (1V) with the effective density-
of-states function for the odd-parity modes (that

is, the true density of states weighted by the factor
P~). If this function could be approximated by a
Lorentzian of width r', we would expect (16) to ap-
ply, with P -0.3, rather than 0.03, since the bulk
of the band is ED in character.

Note that only in a centrosymmetric system can
we make a clearcut division into even- and odd-
parity modes. In a system of sufficiently low sym-
metry, ED and MD transitions can interfere, at
least in principle.

We conclude this section with a note on the adia-
batic approximation. In the model on which we have
based our calculations, the Born-Oppenheimer ap-
proximation is exact when H„= 0. This is because
we assume the electronic wave functions to be in-
dependent of the phonon coordinates q, and the cor-
rection term 2 to the Born-Oppenheimer approxi-
mation then vanishes. (8 is called by Perlinms the
"nonadiabaticity operator, " and is defined by

where gy is a Born-Oppenheimer wave function. )
When we include H„, we can no longer write the
wave function as a single product; it becomes a sum
of products, with coefficients the x's and y's of
Eq. (6).

An alternative approach, physically equivalent
though mathematically much more complicated,
would be to include H„at an earlier stage, in the
calculation of the Born-Oppenheimer products. For
each value of the q's we would solve the instantane-
ous electronic Hamiltonian, including H„. The re-
sulting electronic wave functions would now be func-
tions of the q's, and Z would no longer vanish. The
off-diagonal elements of 8 would mix the Born-Op-
penheimer wave functions and in principle should
give the same result as we obtained above. The
calculation would be extremely complicated, how-
ever, since the potential curves on which the nuclei
move would be very anharmonic where the spin-
orbit interaction is strong. We only mention this
alternative approach in order to stress the point
that our calculation does take into account the es-
sentially nonadiabatic nature of the problem.

IV. COMPARISON OF THEORY WITH EXPERIMENT

We must first consider whether our model is ap-
plicable to the KMgF3. V" system. We take our as-
sumptions in turn.

(a) Does the "sharp" excited state ( E, T„or
T2) have the same equilibrium lattice configuration

as the ground (422) state? In ruby the mean number
of phonons emitted in the 4Az ~E transition [the
coupling parameter S in Eq. (2)] is of order O. 2 or
less, ' whereas it is of order 5 for the 'A~-'T~
transition. ' This difference is a consequence of
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the fact that in the strong crystal-field limit the
doublet states have the same electronic configuration
(t2') as the ground state, while 'Tz has the (tze)
configuration. '

In KMgF3:V
' the cubic-crystal-field splitting ~

is somewhat smaller (relative to the interelectronic
repulsion which mixes configurations), but our ap-
proximation 8 =0 should still be a reasonably good
one for E and T„and not too bad for T2.

(b) Can quadratic electron-lattice coupling and
anharmonicity be neglected? The vibronic peaks
associated with the 'A~- 'T, transition are dis-
placed from the no-phonon line by the same amount
in absorption and emission. ' This shows that qua-
dratic coupling is small near the no-phonon line. On

the other hand, the E and T, resonances are some
2000 cm ' above the 'A2- 'T~ no-phonon line, and
absorption here is much stronger than the corre-
sponding emission 2000 cm ' below the no-phonon
line. This is what one expects from anharmonicity
(the equilibrium internuclear separation being
greater in the excited state), but it could also indi-
cate some quadratic coupling. By using the ob-
served band absorption to calculate Ga(v), we have,
at least approximately, taken the quadratic interac-
tion and anharmonicity into account. (To do so more
precisely would be extremely difficult. ) On the
other hand, if the ED/MD ratio varies through the
band, our assumed value of G(u&) for the MD transi-
tion could be somewhat in error.

(c) Can we neglect the orbital degeneracy of the
band states '? We know that one must take the Jahn-
Teller effect into account in order to understand the
spin-orbit structure of the Aa- T~ no-phonon line. '
However, it was found that the Dahn-Teller coupling
is primarily to E~ distortions, with a coupling pa-
rameter of order 1, compared with the over-all band
value of order 5, which represents coupling yrimar-
ily to A,~ distortions. Furthermore, since E~ dis-
tortions do not mix the T~ states, the theory for
them should be essentially the same as for the A&.

(d) While radiative decay can certainly be ne-
glected, (the fluorescent lifetime of the ~Tz states
is I.3 msec' ), nonradiative transitions between
doublets provide an alternative decay channel which
may be important for the T& state.

(e) Is the mechanism for breaking the spin selec-
tion rule (which makes the "sharp" transition for-
bidden} spin-orbit coupling to the overlapping band?
It can be seen from Fig. 2 of Ref. 32 that this is
indeed the case for MD transitions to 'E and T,.
Mechanisms not involving coupling to T2 are weaker
by a factor of order (A/&), and are hence, quite
negligible. On the other hand, the 'A~- 'T, transi-
tion is MD forbidden, and 'A2- T~ no-phonon tran-
sitions are only made possible by spin-orbit coupling
of T2 to T2 and A~. Thus, there can be no inter—

ference between the no-phonon transition and the 'T,
band. It was shown in Sec. II that the interference
near 18 430 cm ' is between ED transitions, and we

have seen that we can obtain an antiresonant spec-
trum if the effective density of odd-parity phonon

states is sufficiently sharply peaked (relative to y).
We have already shown that (15) fits the experi-

mental data for three transitions of V ' in KMgF3,
with the parameters given in Table I. Here we are
concerned with comparing the fitted values of q and

y with theory. (As remarked above, it is difficult
to predict p quantitatively. However, the estimated

P
- 0.03 for the T2 band agrees with the observed

values as well as can be expected. )
In estimating q and y, we neglect broadening by

alternative decay channels and assume that the MD

part of the band has the same shape as the ED part,
so that Ga(&u) = vct(&u)/f n(cy)d~. (In principle, we

should allow for the displacement of the ED band

by the mean frequency of the enabling vibrations,
but in practice this is only a small correction. )

The Hilbert transform of G2, G, is found by nu-

merical integration of (2). The results are shown

in Figs. 12 and 13. We calculate A in terms of the
one-electron spin-orbit coupling yarameter g

'
=(3/2) '(foal'st&&, I el 8) by the method of Griffith, '
obtaining the values of A/l' ' given in Table II. In

Ref. 17 g' is found to be 150+ 10 cm '. Substituting

G„G&, and A in (14b}, we obtain the calculated
values of q and y given in Table I. Agreement be-
tween calculated and observed values of q and y is
excellent, perhaps fortuitously so for the T, and

T& resonances, in view of the uncertainties in the
experimental data.
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APPENDIX: EVALUATION OF THE SUM IN EQ. {9b)

We first consider the diagonal terms I'(n, &u)

l (n I m) la/(ro —q).
We follow the method which was used in Ref. 24

to calculate band shapes. We write

&(n, ~)=Z (~ —n) '&
~

&n

mflf C

where a labels a phonon or resonance mode (true
local modes are not considered). Consider the con-

tribution to I'(n, u&) of all modes satisfying gm„&u



ANTIRESONANCE IN OPTICAL SPECTRA 2469

005

.002-
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FIG 12 Dashed line Pekarian fit I[Eq (2) j to the

T2 absorption band of KMgF3. V ', normalized to
give G2 (). Full line: G~ (&) obtained by numerical in-
tegration of Eq. (6).

The phase angle g (-2«q & ~~) is chosen so that
('I''j X» I'I"' I'), where I I ~8)=-sing ~'I'"-,'rs)
+cos ttt)'l I'"~I'8). The wave functions j gI 8) and t ~I'8)
are given by Griffith [J. S. Griffith, Theory of Transition
Metal Ions (Cambridge U. P. , Cambridge, England,
1961), Table A20),

+,&d. This contribution is a(n, q)/(&d -q), where

~(n, n&=Z &&& &n„&m„&&'an+~, -Z m„&o,) .
Q tftat

We eliminate the 5 function by taking the Fourier
transform

a(n, t) = f e"'a(n, q) &tq

since e =g n &d„+&d~.

The sum product can be shown to be

exp(-Z„[n a (l —cos&d t)+-,' a'(1-e '" ')])

[E&l. (4. 23) of Ref. 24], where a is the displace-
ment (- t&IO'' ) of the coordinate q . Only a few (a

number of order e/&d where &d is the mean phonon
fre&luency) of the 3NO modes are excited; hence, the
contribution of the first term is negligible. Hence,

o (n, t) = exp [t(e —&d, —&d,) t -Z-', a„'(l —e ' ")]
el&6 ~2)& a(0 t)

Transforming back into the frequency domain:

a(n, q)= f e-""-"""'o(0,t)dt

= o(0, '&l —e + &da),

y( ) pa(0~ 'g —6+&da)
QP -'Q

= G(&d —t +&d2) .
Now let us turn to those off-diagonal terms in which

I n ') only differs from I n) by the excitation of one
mode, labeled P, so that c ' —e = &d«. The state Im &

may then have m&=n& or m&=nz. Taking the former
case first, let

o, (n, n', p)= Z rrl&m. In. &l'&m, ~~&
m~ ~ tltg at

.OOI- x (m,
~ n&&& 5(q+&d, -Z m &d ),

/
///

0

with m &
= na, then

ma pm' pe

-.OOI-
I

I8000 17000
I

I8000
I I I I

I9000 20000 2IOOO

cm-'

FIG. 13. Same as Fig. 12, for the A2- Tq band.

x (m, ~ n, ) &m,
~ n,'& e""~ "~ &"n' .

The vibrational wave functions are simple harmonic
oscilIa, tor functions centered on q =0 and q =a,
respectively, and the overlap integrals are easily
calculated to be



(ms ~n, ) —1--, (m, +1)a,', n, =m,

= [z (ms+ 1)]"'a„n,= m, + 1

= —(ms/2)"'a„n, =ms —1 .
The probability of double excitation of a given mode
is negligible, as is the term a~; so that

o,(n, n', t)=2 "'o(n, t)Z, os .
The second case (ms =ns) gives

o (n, n', t)=2 "'o(n', t)Zsas .
The one-phonon contribution to the off-diagonal terxn
is thus

o(n, q) g o{n', g)
(0 —g & (d —g

= 2 '/sZ a, [G(o/ —~) —G(o/ —e')] .

Since G(o/) is slowly varying, the term in square
brackets is approximately (e ' —c) G'(o/). Note that

we cannot sum over P at this point, since a&-No'~ .
However, in Eq. (12) for X, t/ always appears qua-
dratically, and the sum is over all P (not just those
satisfying o/s=&' —e). Since /sos=28, t/, is of order
Sl/? —

G I(
Two-phonon contributions to k can be calculated

in similar manner, giving

I/, (n, n ', /d ) = [G(o/) —G (&o —& —/ds)

G(o/ & +o/s)+G(o/ —6 )] s Z Qso„

with e '- e =&os+ad„. Thus hs is of order 8/d G "(&o).
Since G "/G' G '/G (S&o) ', the third term in (12)
would be less than the second by a factor of order
8 ', even if all the phonons had the same frequency.
The spread of phonon frequencies makes it much
less important. The fourth term in (12) is of the
same order as the third.
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Experiments on the propagation of microwave ultrasonic pulses through a resonant absorber
are described. The principal features of self-induced transparency as described by McCall and
Hahn for light pulses are observed. Quantitative measurements of pulse delay, output pulse
width, energy, and area are in fair agreement with a calculation by Hopf which accounts approxi-
mately for the effect of the single reflection present in most of the experiments. Multiply re-
flected pulses exhibited linearly cumulative delay times, indicating constant reduced velocity
during successive traversals through the absorber. Coherence-induced pulse breakup is shown
to be a possible explanation of the pulse distortion and modulation observed in acoustic-para-
magnetic-resonance experiments on Fe2'.

I. INTRODUCTION

Several years ago the author reported that' the
attenuation of microwave ultrasonic pulses by electron-
spin-resonance transitions was accompanied by a
large decrease in pulse velocity below the normal
value in the host crystal. Velocity measurements were
compared with small signal linear theories of signal
velocity in a region of resonance absorption, as de-
rived by Brillouin and by Baerwald. ~ Fair agree-
ment was found if certain assumptions were made
regarding the spatial distribution of the mechanism
responsible for inhomogeneous broadening, and if
it was also assumed that the transverse damping
time of the spin system was shorter than the pulse
width. While these observations utilized ¹i' and
Fe ' impurities in MgO, the effect has also been
observed by others on U ' in CaFp. 3

More recently, McCall and Hahn (MH) have de-
rived a theory of electromagnetic pulse propagation
including source terms, in Maxwell's equations,
due to the coherently driven polarization of a two-
level quantum-mechanical system. Under the con-
dition that the pulse width is short compared with
all damping time constants, pulses were found to
propagate with greatly reduced velocities.

If one defines a pulse area

e(z) =(2p/a) f 8(z, t)dt,
where P is the average electric dipole moment and

h(z, t ) is the electric field amplitude of a circularly
polarized plane-wave pulse propagating along z,
then 8 is also the turning angle of dipol. es at reso-
nance. For input areas greater than a threshold
value, 8 = m, MH find that after an initial reshap-
ing and energy loss, steady-state pulses develop
and no further energy loss occurs. They term this
"self-induced transparency" (SIT).

Analytic solutions show that the steady-state pulses
have areas 8= 2' (n an integer), andfor n= 1, the
amplitude is

t -z/V
&(z, t) = —sech

PT T

The pulse delay is given by

1/V-1/c = ,'n7 sec/cm, —

where c is the velocity in the nonresonant host,
and the Beer's law energy absorption for very
small-amplitude pulses is e '. Computer solu-
tions carried out by Hopf and Scully' confirm the
theory of MH and also show that the pulse delays
are even larger than above for input areas
m&8 &2m.


