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We have found an exact expression or expansion theorem for a free-induction-decay (FID)
curve which involves all the moments of the corresponding cw absorption line as well as two
arbitrary scale factors or parameters which may be chosen to optimize the convergence which
is necessarily uniform. The expression obtained is a generalization of Taylor's theorem
known as a Newmann expansion, and it gives an FID curve as either an exponential or Gaus-
sian damping factor times an infinite series of Bessel functions which may describe the oscil-
lations characteristic of certain FID shapes. Any one of the (infinitely) many Bessel-function
expansions may be used to represent a particular FID curve, although there will be one which
requires the fewest terms for a specified accuracy of approximation. Application of these
expansions to FID curves from calcium fluoride shows that it is possible to obtain an excel-
lent fit to the data, using only the theoretical second and fourth moments for the expansion
whose leading term corresponds to Abragam's trial function. Furthermore, when several
exact but different expansions were truncated to only three terms it was found that they were
nearly equal to each other and to the data over a major portion of the decay for the optimum choice
of the two scale factors. Another application of these expansions would be the determination of the
moments of a given FID curve, using the orthogonality integral for Bessel functions.

I. INTRODUCTION

The problem of calculating the shape of magnetic
resonance absorption lines was first discussed by
Van Vleck who showed that the moments of the
line could be calculated exactly. The 2nth moment
of a normalized line-shape function G(ur) is given by

= f &d G(ld) d(d,

where

J G(&u) d(d = 1
0

and ~=0 corresponds to the center of the line.
Since G(&u) is symmetric about its center, the odd
moments are zero. The second and fourth mo-
ments were evaluated by Van Vleck' for a system
of spins on a lattice with dipole-dipole and ex-
change interactions and were found to agree with
experimental measurements on calcium fluoride. '3

An important result of these calculations was that
a quantitative theoretical test was provided to de-
termine the degree of Gaussian or Lorentzian
character of an absorption line, these shapes be-
ing characteristic of magnetic resonance lines in
general. ' Thus, for example, the resonance line

shape(s) from calcium fluoride could be shown to
deviate somewhat from the Gaussian shape pre-
dicted by the local-field model of Bloembergen,
Purcell, and Pound. 4

Further development in the theory was made by
Lowe and Norberg who showed that a line-shape
function G(&e) was the Fourier transform of the
corresponding free-induction-decay (FID) function
F(t) which represents the amplitude of the magne-
tization following a 90' rf pulse. Consequently,

F(t) = f cos((o t) G(~) d(o,

and, therefore,

F(t) = 7 (- l)"M,„-, (l)
n=0

This expansion theorem gives an exact expression
for the line shape in terms of Van Vleck's mo-
ments, although many terms are required to fit an
experimental FID curve.

More recently, Lee, Tse, Goldburg, and Lowe'
and independently Evans and Powles showed by
iteration of an equation of motion for the magne-
tization that the FID function could be written as

E(t ) =F (t) +F,(t) + F (t) +
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F(t)=e '
~& a, „q,„(pt),

n=0
(4)

where the j2„are spherical Bessel functions a0= 1,
and the other coefficients are constants depending
on the moments and the (arbitrary) choice made
for the scale factors a and P. It is therefore pos-
sible to determine F(t) theoretically to any desired
accuracy using (4) rather than (1). In fact, (4)
represents a generalization of (1). In practice this
expansion will be useful when only a small number
of terms are required. Already for calcium
fluoride the first term is an excellent approxima-
tion for Abragam's choice of n and P. ' For other
FID shapes this would not be the case. However,
we will show in Sec. II that many other expansions
of the type (4) can be determined so that it may be
possible to find one whose leading term is a satis-
factory approximation for a particular F(t). Of

course, each of these expansions, for a given set
of realistic moments, will converge uniformly to
the same function so that the choice of expansion
is immaterial, provided enough moments are
known. Two advantages of using an expansion such
as (4) rather than (2) are, first, that the moments
are more easily evaluated than the terms of (2)
and, second, that the FID function for a powder
sample may be evaluated by averaging the moments
themselves rather than performing a numerical in-
tegration of the terms in (2). In addition, the con-
vergence properties of (4) are known.

In Sec. II we develop general formulas for ex-
pansion theorems having a damping factor of
exp(- o.'2t2) or exp(- ot) times a series of Bessel
functions of various orders which can describe the
oscillations characteristic of certain FID curves.
In Sec. III we apply several different expansions to

where each term is explicitly defined as a trace of
a certain operator obtained from Van Vleck's
Hamiltonian. Only the first two terms of this
series have been evaluated exactly, ' however,
although an approximation to I'~ has been deter-
mined. 'O'" Higher terms in (2) have not been
studied because of their complexity.

An alternative to (1) or (2) was proposed by
Abragam' who suggested the trial function

F(t) = 8 '-sin(pt)/pt (3)

for FID curves from crystals with a single dipolar-
broadened resonance line such as calcium fluoride.
The function (3) gives excellent agreement with the
data of Bruce3 and Lowe and Norberg' from calcium
fluoride when the constants u and P are determined
from the theoretical M2 and M4, so that (3) matches
the first three terms of (1).

We have found that (3) is the first term of an ex-
act expansion for F(t) in terms of the moments,

the dipolar-broadened resonance line observed in
calcium fluoride.

II. EXPANSION THEOREMS

We will consider the FID function to be defined
by its power series (1) for both positive and nega-
tive t. For any realistic system this series must
converge for all finite t, and hence, when consid-
ered as a function of a complex variable t, it must
represent an entire function. " In the rest of this
section the variable t will be considered as com-
plex.

Let f(z) be an arbitrary entire function of the
complex variable z. Applying Cauchy's formula, '4

we obtain

f(z) =(I/2&i) f [f(t)/(t z)] dt,-
C

(5)

where C is taken to be a circle about the origin in
the positive sense enclosing the point z so that
I@I & I t I. Since f(z) is entire, the radius of C in
(5) can be any fimte value so that if (t- z) is ex-
panded in powers of z/t we will obtain Taylor's
expansion" about z = 0, which will be valid for all
finite z. Neumann has shown that an alternative
expansion exists, namely,

(6)

where this expansion is valid when l t l & l zl and
converges uniformly in both t and z for t and z
in their respective domains. ' The Z„(z) are Bes-
sel functions of order n, A„(t) are Neumann poly-
nomials, @0= 1, and otherwise e„=2. Using (5)
and (6), we obtain

where

Now the A„(t) are given by"

To evaluate the a„we need only determine the
residue of f(t)A„(t) at t=0. Using the Taylor ex-
pansion of f (t) about t = 0 and A„(t), we may write
f(t)A„(t) =R„/t + ~ ~, where R„ is the residue de-
sired. We obtain, finally, a„=e„R„, where

f (0)(0)

X =2 2
' " '' ' )y'"(0) e'-

l=0~1 ++

The sum is restricted to either even or odd l where
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l=0, 2, 4, . . . , n if n is even and l=1, 3, 5, . .. , n

if n is odd. The f '"(0) represent the derivatives
of f(t) at t=0, and

ap= 1, g„=2 for n even,

is the binomial coefficient. For example, if f(z)
=1 we have

f' '(0) =1, f'"(0) =0 for l= 1,

where

}2„.! I'[v+ 2(n+l)] f"'(0)
(9)"

)=2, 1 i )[-:(n- i)]! P'

where v is not a negative integer and the sum is
restricted to l even (odd) for n even (odd). It may
be verified that b„give nby (9) reduces to a„as
given by (7) when v=o [for v=o and n=0, we re-
quire the convention that nI"(n) = n! = 1 for n = p].
Thus, as before, we may expand the FID function
using

a„=0 for n odd.

The effect on the coefficients is to introduce a fac-
tor 1/P' in (7), as can be deduced from scaling
(6). The result is

a, =f "'(O),
(7)

2'n '(n + l ) f"'(O}—

We now choose f(z) =e 'F(z) and f(z) =e ' F(z)
where E(z) is the FID function. Since F(z), exp ((rz),
and exp ((22z2) are entire functions of z so are their
products, and we have the following expansions
which are valid for hll finite z:

F(z) =e" L' a„J„(Pz),
n=0

- 2.2"
F(z) =e ' H a„Z„(Pz),

n=0

where the coefficients are given by (7).
There is an expansion more general than (8)

which is due to Gegenbauer. It is obtained from
the expansion'

(8)

for n odd. Thus, we obtain

1=40+ PJg+ 2J2+ ~ ~ ~ .
For fitting FID curves it is convenient to introduce
an arbitrary scale factor P so that

( ),2,2 j f)„J„+„(pz)'
(pz)"

(io)

where these expansions are valid for all finite z
since F(z) is entire.

In order to apply (10) we need f"'(0) where we
have chosen the two forms f (z) = exp ((rz)F(z) and

f(z) = exp((22z )F(z) By d.efinition

so that

F(z) = y' (- I)"l(f,„z'"/(2n)!,
n=0

F""'(o) =(- i)" l)f

f (21)(p) &-1/2 ( I)m~
m-p 202

For f(z) =H(z)F(z) we have

l

f (l)(P) ) If(l-m)(P) F(m)(0)
m=o m

where H(2)(0) is the t2th derivative of exp((2z) or
exp((2'z'} evaluated at z = 0. Evaluating these de-
rivatives, we have for the exponential case

& l/2

f (l)(0) Q ( 1)1h M Ql 2

m=p

and for the Gaussian case only even derivatives
which are given by

xr(-,'+ l- m) (4(22)' (i2)
2"(t-.) ' = ~ &„,.(t)~„,.(z),

n=0

where
~

t
~

& ~z~, v 4- 1, —2, . . . , and the A„are
Gegenbauer polynomials

2"'"(v+n) '="" I"(v+n- m) (, ),
n+1 m=0

where I'(z) is the y function and for n= v=0, A() ()

—= 1/t. Introducing a scale factor p andproceeding
as before, we obtain

(Is)
n=p

Thus, using (9)-(12), we may calculate any FID
curve for a resonance line whose moments are
known. Optimum choices for a and P will be dis-
cussed in Sec.III, where these formulas are ap-
plied to line shapes from calcium fluoride.

Two general remarks can be made concerning
the use of (8) or (10). Consider, for example,
the expansion (8) with Gaussian prefactor which
will contain only even-order Bessel functions as
follows from (7) and (12),

F(t) =e ' ' & a, „Z,„(Pt).
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It also follows that a0= 1 and az„—-2+ ~az„ for
n = 1. Thus, a resummation is possible where we

use the Neumann expansion 1 = J0+ 2J2+ 2 J4+ ~ ~ ~,
Specifically, we have

E(&) =e ' j'0+ ~& 2J,„+& aa, „J,„,
=e '

1 & g„z,„(Pt)).
2/2

n=1

This result is expected since if E(t) = 1, the series
of Bessel functions represents exp(o.'f ) Ot.her
expansions given by (10) can therefore be resum-
med to give a leading term of either exp(- nt) or
exp(- u f ), so that an FID curve which is very
nearly exponential or Gaussian could be represented
by these modified series where terms other than
the first would describe small corrections to the
presummed behavior. This result suggests that
further resummations are possible. Using (7) we
have, for example,

az = 2+ ~az, g4 = 2+ 45az+ 5a4,

ae = 2+ 95a2+ 65a4+ Due,

where 5az„ is proportional to f ' "'(0). Collecting
coefficients of ()a2„ in (13) we obtain

E(i) =e- ' [(J,+2J,+ 2J,+ ")

()0 tz"
E(f )

-u ( ) f (2n )(0) (2.)) ' (i7)

If n= 0, we recover (1). Another way of obtaining
(17) would be to take the Fourier transform of the
Gram-Charlier series for G(~). " This expansion
represents G(&o) as a Gaussian function times an
infinite series of Hermite polynomials. The
Fourier transform of this expansion gives (17).

Another use of theorems (8) or (10) is the evalu-
ation of moments from a given FID curve. Suc-
cessive coefficients may be evaluated using the
orthogonality integral for Bessel functions, '9

f

dic
J

i)
J

2 2n+ v+1

() )II ~) (n + 2n))F(n + )n)

m=0 Pl 4

When this is used to evaluate the sums in (16) we ob-
tain, in accordance with (15),"' E(f) = i.(S'I'/2! ) [f"'(0)/P'].(P 'f '/4)) [f"'(0)/u'] ~ ",
which is lust a Taylor series for the even function

f(t) = e ' E(t) which could have been written down
immediately. For lines which are nearly Gaussian
it would, therefore, be naturalto use the expansion
theorem

+ 5a2( J~+ 4J4+ QJ6+ ~ ~ )

+ 6a4(J4+ JB+ ~ ~ ~ )+ ~ ~ ~ ] .
But consider the following Neumann expansions:

(i4)

which is valid, provided 2n+ v+ 1 &0. As an illus-
tration consider the expansion (10) for )'= —,',

)-" &~Ja"(~2(!i') )-"
e E(t)= (, ) g

= „j.(P&),
n=0 n=0

E(f)=e ' ' C,„ t'"/(2n)'.

This may be proved by using (7) and (13). Collect-
ing coefficients of f"'(0) in the expansions we may
write

e ' E(t) = J' + L 2 J', „ f (0)(0)

P

2'n n+ i f"'(0)
2ff 2 2 p

z

J f
2', 8+2

,f"(o)
p

4 + 1 ~ 0 ~

The Neumann expansion for (—,'t)" is'

(I/2()(-'I)'= J,+4J,+ 9J +

(I/O!)(-';t)'= J,+ 6J,+ ~ ~ ~ .
These expansions suggest that (14) may be written

where ja„(z) is spherical Bessel function and 52„
= (—,

' )))'~2a2„. Using the orthogonality integral, we
obtain

a „=(4/ )(2n —,') f,
"

e "'E(&)j,„(P&)d(p &).

Choosing o=0, n=1, and using (Q) and (12), we
have

1 —
z = — Et jzPt d Pt,

where P may be chosen for convenience in evaluat-
ing the integral. Of course, n may be chosen to
be nonzero, although it might not be practical to do
so. Higher moments may be evaluated in the
same manner ~

In summary, the expansion theorem (10) and its
various forms such as (8) and (17) provide exact
uniformly convergent expansions for the FID func-
tions.

III. APPLICATION TO CALCIUM FLUORIDE

We have applied the expansion theorem (10) to
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the Il" resonance in calcium fluoride (CaF2) i'or

[100] and [111]orientations of external field.
Since Abragam's tx ial function (3) is an excellent
approximation and corresponds to choosing v =-,',
we have considered in addition v=0 and v= 1.

Consider first the case where v = —,
' . We will

show how Abragam's results may be obtained.
Using (10) and defining as„= (2/&)' b2„, we have

numbers.
For v=1 we obtain

F(t) =e " '
L& aq„Z„„(pt) /pt .

n=0

The coefficients through n = 2 are

00= 2v

(22)

Z(t) = e ' L a,„j,„(p t),
n=0

(16)
as=6[1+4(2n —Mp)/p ],
a, = 10[1+12(2n —Mp)/P

where j2„ is the spherical Bessel function of order
2n. The first few coefficients obtained using (9)
and (12) are

ao ——1, a2= p [1+3(2n —Mq)/p ],

a4 =~ [1+10(2n —M2) /P

+ 35(M4 —12n M2+ 12n )/3p ].
Choosing n and P so as to make a2=a4=0, we ob-
tain

+ 16(M4- 12n~M3+ 12n4)/p ~].

The condition a&= a4=0 gives

p = Mp[16(3 —M4/M3)]

n = —,M2[l —(3—M4/Mq) ~ ] .
(23)

.242 z,(p t)-e t
Pt a 2! 44!=1-M —+M -—+ ~ ~ ~ .

Again, ~ and P for calcium fluroide are real num-

bers and using (23),

P'=M [~4(3-M /M')]"'

2 Mp [1—[, (3 ™4/M',)]"' ]
(19) Expansions for v=+ —,

' and v= ——,
' were also exam-

ined. For v=-,' we obtain, as before,

These inequalities are satisfied for calcium fluo-
ride; for example, M, /M, = 2. 03 for [100] orienta-
tion of external field. ' For a Gaussian line
M4/M22= 3 and P =0 as required.

For v = 0 we have

Z(t) =. 'y' a, „-~,.(p t),
n=0

where the first three coefficients are

a, = 1, a, =2+4(2a'-M, )/P',

(20)

a4 = 2+ 16(2a —M4)/P

+ 16(M4- 12a'M2+ 12n ) /P '.
We require a2= F4=0 to obtain

p =MR [4 (3 —M4/M2 )]
n'=-,'M, (1-[~4(3-M4/M2)]"').

(21)

This choice of n and P means that

e ' J (pt)0=1-Mp(t /2! )+M4(t /4!)+ ~ ~ ~ .
For calcium fluoride both o. and P will be real

These values of n and P are identical to those used
by Abragam" in applying (3), that is, they ensure
that (3) gives the correct second and fourth mo-
ments when expanded as in (1). Requiring n and

P to be real numbers means that the following in-
equalities must be satisfied:

(3 —M4/M2) = 0, g. (3 —M4/M2)] t =1 .

n = p Mp(1 —[6(3—M4/M2)]U j .
Notice, however, that & will be negative when
M4/M42 = 2. 03. This choice of n and P will cause
the leading term to be a satisfactory approximation
only for very short times, and it is therefore not
considered further. For v= ——,', we obtain

.2,4 (r(t) =e ' ~cospt +5 a, „(pt)j,„,(pt),
nS " )'

where the condition a&= a, =0 gives

P'=M, [-'. (3- M4/M', )]"',
n = 2 M2(1 —[p (3 — 4M/M )]2

Using these values of ~ and P, we find that this
leading term is in poorer agreement with experi-
ment than the corresponding terms for v= 0 or
v= 1.

We have calculated the FID shape in CaF2 for
[100] orientation using the leading terms of (18),
(20), and (22) with n and P being determined by
(19), (21), and (23), respectively. Comparison
with data of Barnaal and Lowe~' is made in Fig. 1.
The agreement is excellent for v =-,' for the whole
range of the observed decay. The results for v=0
and v=1 tend to bracket the v= —,

' curve. For the
[111]orientation we have found the difference be-
tween curves for v= —,

' and v= 1 to be less than for
the [100] orientation, and agreement withthe data
is similar to that shown in Fig. 1 for v=-,'. The
problem of determining the optimum leading term
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,2-

J((bt)/( bt)

i.(bt)
J (bt)

A
i~&Q

2

t "30.3 10 sec

corrections 3 for modulation distortion, produces
differences as large as 10/o, even though the mo-
ment ratios have changed by only 1 or 2%. Since
the uncertainties in the values of Me and M8 are
larger than this, we have not compared, in detail,
experimental and calculated curves for these trun-
cated expansions. However, when we correct M,
and Me for the modulation used by Bruce' we ob-
tain a FID curve which is nearly equal to the re-
sult for v= —,

' plotted in Fig. 1 for the first 75% of
the decay.

IV. SUMMARY
FIG. l. Experimental FID shape from calcium fluoride

for f100] orientation of external field compared with the
leading terms of three different Neumann expansions.
The experimental data of Barnaal and Lowe are plotted
as circles, and the functional form of the theoretical
curves is indicated.

in (10) has thus been solved for CaF2. The final
question we consider for expansions (18), (20),
and (22) is how many terms are necessary for them
to give the same FID curve for CaF~. This re-
quires a knowledge of some of the higher moments
of the line which is less than complete. Abragam'
has determined M6 and M8 using some of Bruce's
data. ' The theoretical M6 has been calculated ap-
proximately to be M8/M32 = 4. 88 for the [100] orien-
tation; however, the experimental value deter-
mined by Abragam is Me/Mz= 5. 49. Using the
values of Me and Ma tabulated by Abragam we have
calculated FID curves using (18), (20), and (22),
with terms through as being included; theoretical
values were used for M2 and M4. 0 We find that all
three truncated expansions give essentially the
same FID curve for the first 75/o of the decay.
Furthermore, these curves are quite sensitive to
the values M6 and M8 since the last two terms of
these truncated expansions involve the difference
between terms of about the same magnitude but

opposite sign. For example, changing Me and Ms
as given by Abragam, by amounts equivalent to

We have found an exact expression or expansion
theorem for a FID curve which involves all the
moments of the corresponding cw absorption line
as well as two scale factors or parameters which

may be chosen to optimize the convergence which
is necessarily uniform. The expression obtained
is a generalization of Taylor's theorem known as
a Neumann expansion. Application of this expan-
sion theorem to FID curves from calcium fluoride
shows that it is possible to obtain an excellent fit
to the data using only the theoretical second and
fourth moments for the expansion whose leading
term corresponds to Abragam's trial function.
Furthermore, when several exact but different ex-
pansions were truncated to only three terms it was
found that they were nearly equal to each other and
to the data over a major portion of the decay for
the optimum choice of the two parameters involved.
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When a sharp absorption line of a defect or impurity center is overlapped by a broad vi-
bronic band, interference can occur between the two types of transition. We find several ex-
amples of this effect in the optical spectrum of V2' in octahedral fluoride coordination. The
spectral line shapes can be fitted well by the four-parameter theory of Fano, which was de-
veloped to account for the interference of a sharp intra-atomic transition with an overlapping
ionizing continuum. We justify the application of this theory to the vibronic problem, and
calculate some of the parameters in terms of other spectroscopic data, obtaining good agree-
ment with experiment.

I. INTRODUCTION

Among the more remarkable features of the
spectra of the rare gases are the Beutler bands. '

These occur when sharp intra-atomic transitions
are overlapped by a broad ionizing continuum. The
transition matrix elements interfere destructively
on one side of the intra-atomic resonance and con-
structively on the other, giving a characteristic
"antiresonant" spectral line shape. A particularly
elegant example is to be seen in the hard ultraviolet
absorption spectrum of Her'; the 1s~-2s, nP series
looks like a series of dispersion curves superim-
posed on the continuum of ionizing transitions which
leave the He' ion in the 1s state. Similar effects
are to be expected in the predissociation region of
molecular spectra.

The theory of this effect has been given by Fano. '
The formalism is identical to that of the Breit-
Wigner theory of scattering from resonant nuclei.
Fano shows that if the continuum absorption o.s(&u)
is slowly varying in the vicinity of an isolated reso-
nance, the absorption coefficient n(e) is given by

a((o) = ns((o)+ no(q'+2)q —1)/(1+ ]'),
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Here ls) is the sharp excited state; Is ') is that
state modified by the interaction Hamiltonian X &,

which connects Is) to a certain fraction Ic) of the
continuum states Ib). The energy of Is ') above
the ground state la) is h&o„, and y ' can be inter-
preted as the lifetime of the sharp state against
decay to the continuum. P is the electric- or mag-
netic-dipole operator. The quantity q may take any
value between -~ and +~, and q'y is a measure of
the strength of transitions to the modified sharp
state Is '), relative to the continuum I c) .

Equation (1) can be represented by a family of
curves corresponding to different values of q, as
shown, normalized by a factor (1+q2) ', in Fig. l.


