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An expression for the potential energy of an isolated atom or a solid as a functional of the
electron density is proposed. A one-electron potential function is derived from it by means

of the variational principle.

It has the correct asymptotic form at large radii in the case of

atoms and ions. It also gives the correct total energy of the low-density electron gas. Cal-
culations of binding energies of electrons in negative ions and of the bulk properties of some
simple solids are given as examples of applications.

INTRODUCTION

The free-electron approximation for exchange!™*

has been much used in recent years for atomic
and band-structure calculations. The variational
formulation, 2 which we want to consider here, con-
sists in approximating the potential energy of the
interelectron interaction with the classical Cou-
lomb energy of the electron charge distribution and
an exchange term based on the Hartree-Fock
theory of the degenerate electron gas:
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is the electron density. Then variation of the
(approximate) total energy, subject to the usual

normalization condition, gives an equation for the
wave function

2hE=Ep, (3)

with h(F)=-7%V%/2m - Ze?/v
+e? [pE")/|T -F'|aT - e} [30%p(F)] /% /7, (4)

which may be solved by separation of variables.
By this means, a set of one-electron equations,

), (T)=€,0,), (5)

is obtained. One recognizes in i(¥) the potential

of the nucleus (for the moment we consider only
the isolated atom), the potential of the electron
charge distribution, and the free-electron exchange
potential.

For the ground states of neutral atoms this pre-
scription works very well*® giving orbital functions
very close to those obtained by the much more
complicated Hartree-Fock method. It is clear,
however, that cases will arise in which the same
good results will not be obtained as the potential
function has the wrong asymptotic form at large
radii, going to zero exponentially rather than as
1/7 as it should. To remedy this situation, the
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potential function is usually modified at large
radii®’ to give it the required form. It is our pur-
pose here to suggest an alternative procedure to
this somewhat arbitrary one.

Before doing so, the reasons why the approxi-
mation (1) fails at large radii in atoms are worth
noting. One is that the expression for the inter-
electron potential energy in the form used is an
application of the semiclassical approximation as
in the Thomas-Fermi model. This assumes that
electron wavelengths are small compared to the
distance in which the potential has a substantial
fractional change.® In atoms this requirement
breaks down at large radii (and also close to the
nucleus which does not concern us here). Another
reason for the failure of the approximation is that,
in using the Hartree-Fock expression for the ex-
change energy, one assumes that the antisymmetry
of the wave function is more important than elec-
trostatic repulsion in keeping electrons apart. As
is well known, this is true for high electron den-
sities but not for low densities.

Keeping in mind these objections to the approxi-
mation used above for the interelectron potential
energy, we will now try to construct a better one.
We imagine an atom divided into two parts by a
sphere centered on the nucleus. The sphere is to
separate the high-density region from that of low
density. We fix its radius R so that on the average
there is one electron outside the sphere,

[p@)dx =1. (6)
X>R

The potential energy of electrons inside the sphere
interacting with other electrons inside the sphere
is approximated as before by a classical Coulomb
term and a Hartree-Fock free-electron exchange
term
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Since, on the average, there is only one electron
outside of the sphere, there is no contribution to
the interelectron potential energy from charge
outside the sphere interacting with itself. Finally,
there is the potential energy of the interaction of
charge outside the sphere with that inside,
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There can be no exchange term here because the
“hole” in the two-electron distribution function has
been “used up” in assuming no self-interaction of

the charge outside the sphere.

The sum of the two contributions to the inter-
electron potential energy, (7) and (8), is then to
be used instead of (1). The variational method is
used as before, but now there is an additional con-
straint (6), which may be introduced with a second
Lagrange parameter. Also, variations of the
sphere radius R must be considered. One gets
equations similar to (3) and (4):

2h'(T)Y=E" 9)
and . .
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Again a set of one-electron equations is obtained
from (9) by separation of variables. The operator
in them is now %’ which contains the new potential
function, the main result of this paper. [It may
be noted that E’ is not the Lagrange parameter
associated with the normalization condition on the
wave function but also contains the constant A,
Also, we have assumed the electron density is
spherically symmetric. Without this assumption
the constant A would be determined by a somewhat
more complicated expression than (11). ]

The potential function in (10) will in general have
a small discontinuity at the sphere radius. In the
case of lithium metal at normal density the dis-
continuity is 0.059¢%/a, at the radius R =1. 43q,
(see Fig. 1). The potential at radii greater than
R is seen to be (= Z +N)e?/r, where N is the num-
ber of electrons inside the sphere.

The extension of the above results to simple
solids is straightforward. Each atom or ion occu-
pies a cell and within each cell a spherical surface
is defined so that the part of the cell outside the
sphere contains the charge of just one electron.
Within a cell the potential energy of the electron
interactions is defined as above. The interactions
between charges in different cells are assumed to
involve only the classical Coulomb term as in (8)
above. For monatomic solids, where each cell
may be regarded as neutral, the additional terms
will usually be very small and can be neglected.
When the cells are not neutral, the potential func-
tion will contain a Madelung term.,

APPLICATION TO NEGATIVE IONS

Our experience has been that solutions do not
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FIG. 1. Potential functions for lithium metal at nor-
mal density. The energy unit is the Hartree (ez/ao) and
the radius is given in Bohr radii (a)). The Kohn-Sham
potential function and the new potential function are from
our self-consistent field calculations. The empirical
potential function is that of Seitz (Ref. 10).

exist to the self-consistent field equations for neg-
ative ions when the unmodified free-electron ex-
change potential [i. e., the one in (4)] is used. The
usual way of dealing with this is to truncate the
potential function where it starts going positive,
setting it equal to zero beyond this point. The po-
tential function developed here does much the
same thing but in a more systematic manner. One
test of how well this is done is to compare calcu-
lated and measured electron affinities for atoms
which form negative ions. This is done in Table

I. Self-consistent field calculations were done for
both the neutral atoms and the corresponding neg-
ative ions and the differences of the total energies
are tabulated. It should be noted that the total
energies were computed using expressions (7) and
(8) for the interelectron potential energy and not
the expectation value of § ‘e®/2 ;.

A couple of comments may be made. One is that
the relatively poor results for hydrogen are prob-
ably connected with the failure of the statistical
expression for exchange in the 1s orbital near the
nucleus. The other is that for loosely bound elec-
trons the method of this paper seems to do about
as well as, and in a few cases rather better than,
the Hartree-Fock method in computing binding
energies.

ELECTRONIC STRUCTURE CALCULATIONS FOR SOLIDS

The problem of defining potential functions for
solids is one that is receiving a good deal of atten-
tion at the present. Many of the early calculations
were done with potential functions adapted from
atomic calculations and had the 1/7 form at large
radii which is a feature of the prescription devel-
oped here. Since Slater introduced' the statistical
exchange potential, it has been much favored,
partly for theoretical reasons and partly as a
matter of convenience: It offers, in principle and
usually in fact, a simple way of obtaining a poten-
tial function for any atom or ion in a crystal.

In order to make a comparison of the usual
statistical exchange potential with the one developed
here, we have done self-consistent field calcula-
tions for lithium metal at normal density., One
set of calculations was done with the potential
function of Eq. (4) (usually referred to as that of
Kohn and Sham) and the other set with the one in
(10). A brief description of the methods of calcu-
lation will appear elsewhere.’

The potential functions obtained are shown in
Fig. 1 along with the empirical one of Seitz. '°
The close agreement between the new potential
function and the empirical one is obvious. The
Kohn-Sham potential function is much flatter in
the outer parts of the atomic cell and will not bind
electrons as strongly as the other two. This be-
comes more obvious if a constant (0. 23¢%/a,) is
subtracted from it so that all three potentials
coincide at small radii. Then the Kohn-Sham po-
tential will lie below the others at larger radii.

As might be expected from the potential func-
tions, the bulk properties (lattice parameter, co-
hesive energy, and bulk modulus) calculated with
the new potential function are close to Seitz’s'®
early calculation (and to experimental values)
while those obtained with the Kohn-Sham potential

TABLE 1. Electron affinities in electron volts.

Atom New potential Hartree-Fock® Experiment®
H -0.78 -0.33 0.75
O 1.92 0.56 2.41
T 3.20 1.36 3.45
Cl 2.94 2.58 3.61
Br 2.82 2.58 3.36
1 2.61 2.6 3.06

3Hartree-Fock calculations by J. Mann (unpublished).

PExcept for hydrogen and oxygen the experimental val-
ues are those quoted by B. L. Moiseiwitsch, Advan.
Atomic Mol. Phys. 1, 61 (1965). For hydrogen the more
accurate theoretical value is given. The oxygen value
is based on the experimental value given by Moiseiwitsch
but is adjusted to represent the average of the configura-
tion so as to be directly comparable to the calculations.
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TABLE II. Bulk properties of solids at zero pressure and temperature.
Lithium Beryllium Aluminum Iron
Wigner-Seitz Calc 3.18 2.40 3.06 2.69
cell radius a
. .35 2.99 2.66
(Bohr radii) Expt 3.24 2
. Calc 40 59 61 160
Cohesive energy
(kcal/mole) Expt® 38 78 77 182
Bulk modulus Calc 131 1040 930 1750
(kbar) Expt® 123 1100 780 1690

2Lithium cell radius is from C. A. Swenson, J. Phys. Chem. Solids 27, 33 (1966). The others are from Crystal
Data, edited by J. D, H. Donay (American Crystallographic Association, New York, 1963).

YJANAF Thevmochemical Tables, edited by D. R. Stull (Dow Chemical Co., Midland, Michigan, 1965). Available
from the Clearinghouse for Federal Scientific Information as report number PB168370, Springfield, Va. The experi-
mental cohesive energy of iron has been increased by 83 keal/mole so as to represent the value relative to the average
over the ground-state configuration for the iron atom as the calculation of the iron atom is for this average. This value
is based partly on observed energy levels in iron and partly on a configuration-splitting calculation by R. D. Cowan

(unpublished).

°Lithium bulk modulus is Swenson’s (Ref. a). The others are from velocities of sound quoted in the Handbook of
Chemistry and Physics, edited by R. C. Weast (The Chemical Rubber Co., Cleveland, Ohio, 1967), 48th ed.

function show insufficient binding in the solid. Thus
the new potential function gives a calculated pres-
sure of — 9 kbar at normal density while the Kohn-
Sham potential function gives +105 kbar, Since
the bulk modulus is about 120 kbar, it is probable
that the Kohn-Sham potential function would give
a zero-pressure density about half the observed
one, Commonly used correlation corrections are
too small by a factor of 5 to 10 to correct this.
Similar calculations to those for lithium have
been done for beryllium, aluminum, and iron to
see whether as good results could be obtained in
cases of more complex electronic structure. The
computed bulk properties are given in Table II
and are indeed about as good as could be hoped for,

CORRELATION ENERGY

Wigner!! has pointed out that the degenerate
electron gas at low density should crystallize into

TABLE III. Cell radius and cohesive energy of
aluminum calculated with, A, and without, B, the Gell-
Mann—Brueckner correlation correction inside the
sphere.

Experimental Calculated values
values A B

Wigner-Seitz
cell radius 2.99 3.00 3.06
(Bohr radii)

Cohesive energy
(kcal/mole)

a close-packed lattice with one electron per cell,
The present model can be easily applied to this
case and gives Wigner’s result for the low-density
limit to the correlation energy. It seems probable
that the success of the present method in solid-
state calculations is due to approximate account of
correlation being taken in the regions of a crystal
with low electron density. Even better results
might be obtained by also using a further correc-
tion for correlation in the high-density region.

Tong and Sham® have tried this for atoms by
adding a correlation term to the right-hand side
of (1). We have used it in the parts of an atom
inside the radius R as an added term in (7). The
correlation term used by us was the one derived
by Gell-Mann and Brueckner. ? Aluminum was
recalculated with the results shown in Table III.
The improvement due to the added correlation
term is probably in part fortuitous as there is
some uncertainty about the correct correlation
energy in the important density region.
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The phonon-dispersion curves, binding energy, and compressibility of aluminum have been
calculated using the pseudopotential approach involving two adjustable parameters in the model
pseudopotential. An exponential term of the type e??is introduced in the repulsive part of the
pseudopotential so that it vanishes rapidly outside the ion core. The exchange and the corre-
lation effects in the Hartree dielectric function have been adequately considered. Compari-

son with the experimental data shows good agreement.

The phonon-dispersion relations for metals have
been calculated from basic principles by several
workers. ™% Recently, a method based on a pseu-
dopotential concept was developed by Sham. % Using
a local as well as a nonlocal pseudopotential, cal-
culations were made for sodium. Harrison® used
it in a slightly different way, with one adjustable
parameter to compute the dispersion relations for
aluminum, sodium, and magnesium, with very
little success. He therefore adopted a model
pseudopotential containing two adjustable param-
eters, which resulted in limited success in the
case of aluminum and lead. The same method has
been used by Wallace*'® for the calculation of phonon
frequencies in sodium, potassium, and lithium.

In the present paper, we report calculations on
phonon-dispersion relations for aluminum using
a modified form of the model pseudopotential. The
pare (unscreened) pseudopotential of Harrison® has
been modified by introducing an exponential term

e ™, The new form now becomes

1 4rZe? Be >
"9 & T+ )

where 3, p, and 7y, are the adjustable parameters.
B is the strength of repulsion, and p and vy, are

constants of the order of the Bohr radius. Taking
into account the effect of screening, we obtain the

relation for the energy wave-number character-
istic
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The symbols in these expressions carry the
same meaning as those given by Harrison.® It is
evident from Eq. (1) that for large g, the pseudo-
potential w,(¢) drops to zero as demanded by the-
ory. This condition was not fulfilled by the basic
E (gq) of Harrison® where it approached a constant
B for large values of ¢. The computation of the



