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An expression for the potential energy of an isolated atom or a solid as a functional of the
electron density is proposed. A one-electron potential function is derived from it by means
of the variational principle. It has the correct asymptotic form at large radii in the case of
atoms and ions. It also gives the correct total energy of the low-density electron gas. Cal-
culations of binding energies of electrons in negative ions and of the bulk properties of some
simple solids are given as examples of applications.

INTRODUCTION

The free-electron approximation for exchange'
has been much used in recent years for atomic
and band-structure calculations. The variational
formulation, which we want to consider here, con-
sists in approximating the potential energy of the
interelectron interaction with the classical Cou-
lomb energy of the electron charge distribution and

an exchange term based on the Hartree-Fock
theory of the degenerate electron gas:
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is the electron density. Then variation of the

(approximate) total energy, subject to the usual

normalization condition, gives an equation for the
wave function
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with h(r) = —h'& /2m —Ze /y

which may be solved by separation of variables.
By this means, a set of one-electron equations,

h(~)q „(r)= ~„q „(r),
is obtained. One recognizes in k(r) the potential
of the nucleus (for the moment we consider only
the isolated atom), the potential of the electron
charge distribution, and the free-electron exchange
potential.

For the ground states of neutral atoms this pre-
scription works very well ' giving orbital functions
very close to those obtained by the much more
complicated Hartree-Fock method. It is clear,
however, that cases will arise in which the same
good results will not be obtained as the potential
function has the wrong asymptotic form at large
radii, going to zero exponentially rather than as
1/x as it should. To remedy this situation, the
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potential function is usually modified at large
radii ' to give it the required form. It is our pur-
pose here to suggest an alternative procedure to
this somewhat arbitrary one.

Before doing so, the reasons why the approxi-
mation (1) fails at large radii in atoms are worth
noting. One is that the expression for the inter-
electron potential energy in the form used is an
application of the semiclassical approximation as
in the Thomas-Fermi model. This assumes that
electron wavelengths are small compared to the
distance in which the potential has a substantial
fractional change. ' In atoms this requirement
breaks down at large radii (and also close to the
nucleus which does not concern us here). Another
reason for the failure of the approximation is that,
in using the Hartree-Fock expression for the ex-
change energy, one assumes that the antisymmetry
of the wave function is more important than elec-
trostatic repulsion in keeping electrons apart. As
is well known, this is true for high electron den-
sities but not for low densities.

Keeping in mind these objections to the approxi-
mation used above for the interelectron potential
energy, we will now try to construct a better one.
We imagine an atom divided into two parts by a
sphere centered on the nucleus. The sphere is to
separate the high-density region from that of low
density. We fix its radius R so that on the average
there is one electron outside the sphere,

fp(x) dx =1 . (6)

The potential energy of electrons inside the sphere
interacting with other electrons inside the sphere
is approximated as before by a classical Coulomb
term and a Hartree-Fock free-electron exchange
term
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Since, on the average, there is only one electron
outside of the sphere, there is no contribution to
the interelectron potential energy from charge
outside the sphere interacting with itself. Finally,
there is the potential energy of the interaction of
charge outside the sphere with that inside,
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There can be no exchange term here because the
"hole" in the two-electron distribution function has
been "used up" in assuming no self-interaction of

the charge outside the sphere.
The sum of the two contributions to the inter-

electron potential energy, (7) and (8), is then to
be used instead of (1). The variational method is
used as before, but now there is an additional con-
straint (6), which may be introduced with a second
Lagrange parameter. Also, variations of the
sphere radius R must be considered. One gets
equations similar to (3) and (4):
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APPLICATION TO NEGATIVE IONS

Our experience has been that solutions do not

p(~') d-, 3[» p(ff)]' '
j R —r'/ 4mr'& R

Again a set of one-electron equations is obtained
from (9) by separation of variables The .operator
in them is now h' which contains the new potential
function, the main result of this paper. [It may
be noted that E' is not the Lagrange parameter
associated with the normalization condition on the
wave function but also contains the constant X.
Also, we have assumed the electron density is
spherically symmetric. Without this assumption
the constant X would be determined by a somewhat
more complicated expression than (11).]

The potential function in (10) will in general have
a small discontinuity at the sphere radius. In the
case of lithium metal at normal density the dis-
continuity is 0. 059e~/ao at the radius A = 1.43ao
(see Fig. 1). The potential at radii greater than
A is seen to be (-Z+N)e'/r, where N is the num-
ber of electrons inside the sphere.

The extension of the above results to simple
solids is straightforward. Each atom or ion occu-
pies a cell and within each cell a spherical surface
is defined so that the part of the cell outside the
sphere contains the charge of just one electron.
Within a cell the potential energy of the electron
interactions is defined as above. The interactions
between charges in different cells are assumed to
involve only the classical Coulomb term as in (8)
above. For monatomic solids, where each cell
may be regarded as neutral, the additional terms
will usually be very small a,nd can be neglected.
When the cells are not neutral, the potential func-
tion will contain a Madelung term.
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TABLE II. Bulk properties of solids at zero pressure and temperature.

Lithium Beryllium Aluminum Iron

Wigner-Seitz
cell radius
(Bohr radii)

Cohesive ener gy
{kcal/mole)

Bulk modulus
{kbar)

Calc

Expt

Calc

Expt"

Calc

Exptc

3.18

3.24

40

131

123

2.40

2.35

78

1040

1100

3.06

2.99

61

77

930

780

2.69

2.66

160

182

1750

1690

Lithium cell radius is from C. A. Swenson, J. Phys. Chem. Solids 27, 33 (1966). The others are from Crystal
Data, edited by J. D. H. Donay (American Crystallographic Association, New York, 1963).

LANAI' Thermochemical Tables, edited by D. R. Stull (Dow Chemical Co. , Midland, Michigan, 1965). Available
from the Clearinghouse for Federal Scientific Information as report number PB168370, Springfield, Va. The experi-
mental cohesive energy of iron has been increased by 83 kcal/mole so as to represent the value relative to the average
over the ground-state configuration for the iron atom as the calculation of the iron atom is for this average. This value
is based partly on observed energy levels in iron and partly on a configuration-splitting calculation by R. D. Cowan
(unpublished) .

'Lithium bulk modulus is Swenson's (Ref. a). The others are from velocities of sound quoted in the JIandbook Of
Chemistry and Physics, edited by R. C. Weast (The Chemical Rubber Co. , Cleveland, Ohio, 1967), 48th ed.

function show insufficient binding in the solid. Thus
the new potential function gives a calculated pres-
sure of —9 kbar at normal density while the Kohn-
Sham potential function gives + 105 kbar. Since
the bulk modulus is about 120 kbar, it is probable
that the Kohn-Sham potential function would give
a zero-pressure density about half the observed
one. Commonly used correlation corrections are
too small by a factor of 5 to 10 to correct this.

Similar calculations to those for lithium have
been done for beryllium, aluminum, and iron to
see whether as good results could be obtained in
cases of more complex electronic structure. The
computed bulk properties are given in Table II
and are indeed about as good as could be hoped for.

CORRELATION ENERGY

Wignep" has pointed out that the degenerate
electron gas at low density should crystallize into

TABLE III. Cell radius and cohesive energy of
aluminum calculated with, A, and without, B, the Gell-
Mann —Brueckner correlation correction inside the
sphere.

a close-packed lattice with one electron per cell.
The present model can be easily applied to this
case and gives Wigner's result for the low-density
limit to the correlation energy. It seems probable
that the success of the present method in solid-
state calculations is due to approximate account of
correlation being taken in the regions of a crystal
with low electron density. Even better results
might be obtained by also using a further correc-
tion for correlation in the high-density region.

Tong and Sham' have tried this for atoms by
adding a correlation term to the right-hand side
of (1). We have used it in the parts of an atom
inside the radius R as an added term in (7). The
correlation term used by us was the one derived
by GelI-N. 'ann and Brueckner. ' Aluminum was
recalculated with the results shown in Table III.
The improvement due to the added correlation
term is probably in part fortuitous as there is
some uncertainty about the correct correlation
energy in the important density region.
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The phonon-dispersion curves, binding energy, and compressibility of aluminum have been
calculated using the pseudopotential approach involving two adjustable parameters in the mod l
pseudopotential. An exponential term of the type e+~ is introduced in the repulsive part of the

pseudopotential so that it vanishes rapidly outside the ion core. The exchange and the corre-
lation effects in the Hartree dielectric function have been adequately considered. Compari-
son with the experimental data shows good agreement.

The phonon-dispersion relations for metals have

been calculated from basic principles by several
workers. Recently, a method based on a pseu-
dopotential concept was developed by Sham. Using

a local as well as a nonlocal pseudopotential, cal-
culations were made for sodium. Harrison used

lt ln a slightly dlffel ent way, with one adjustable
parameter to compute the dispersion relations for
alumlnuDl, sodluDl~ and magnesium, %1th very
little success. He therefore adopted a model
pseudopotential containing two adjustable param-
eters, which resulted in limited success in the

case of aluminum and lead. The same method has
been used by Wallace ' for the calculation of phonon

frequencies in sodium, potassium, and lithium.
In the present paper, we report calculations on

phonon-dispersion relations for aluminum using

a modified form of the model pseudopotential. The
bare (unscreened) pseudopotential of Harrison has

been modified by introducing an exponential, term

e '. The new form now becomes

4m'Ze Pe "~~
& (q)=— — +"o q' (& c'~'.)') '

w"ere P~ ~~ and &c are the adjustable parameters
p is the strength of repulsion, and p and y, are
constants of the order of the Bohr radius. Taking
into account the effect of screening, we obtain the
relation for the energy wave-number character-
istic

&(q)=-8 g 2 up(q)
Ooq', e (q) —1

am Ze e

The symbols in these expressions carry the
same meaning as those given by Harrison. It is
evident from Eq. (1) that for large q, the pseudo-
potential ~, (q) drops to zero as demanded by the-
ory. This condition was not fuUilled by the basic
E (q) of Harrison where it approached a constant

P for large values of q. The computation of the


