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and the energy denominator to be identical to that
of ruby, g' may be as large as 4 for certain choices
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Some nonequilibrium properties of an impurity in a linear chain of spins with neaxest-neigh-
bor interaction of the isotxopic X'-F type are studied. It is shown that under certain conditions
its behavior is in agreement with the general principles of statistical mechanics. The relax-
ation in the presence of a transverse field is also studied, and it is found that in the weak cou-
pling region the approach to equilibrium is described by a sum of exponentials. However, the
results do not agree with the solution of the Bloch equations.

I. INTRODUCTION

The magnetic relaxation in a spin system which
is isolated from the lattice vibrations has been the
subject of interest in the past years. In the the-

oretical considerations, one normally assumes
that the methods vrhich are employed in nonequilib-
rium statistical mechanics also apply in this situa-
tion. On the other hand, it was recently demon-
strated that a nontrivial model such as the X-F
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model does not satisfy the usual assumptions of
statistical mechanics. In this paper we study
a slightly different model which is also exactly
soluble. The model consists of a linear array of
spin- & particles with nearest-neighbor interaction
of the isotropic X-Y type. In contrast to the X-Y
model, we assume that one of the spins is an im-
purity in the sense that the interaction with its
neighbors is different in strength and also that it
may be coupled differently to the external field.
It will be shown in this model that, under certain
conditions, the motion of the impurity spin is well
in accordance with what one expects on general
grounds. The physical reason for this is that the
other spins can act as a thermal bath for this im-
purity.

One particular way to describe the behavior of
a magnetic system is by the Bloch equations. As
is well known, these equations play a very impor-
tant role in the macroscopic description of relaxa-
tion in the presence of an external magnetic field.
The equations essentially imply that there are no
coherence effects between the external field and
the relaxation process, even for relatively strong
fields. If we suppose that a magnetic field with
components (I», , 0, H) is applied to the impurity,
then the Bloch equations have the form

—M'= — +HM~
dt T,

d „M~—M = —HM"- +h M

d g ~ M —Mo

Ti

where M is the ath component of the magnetiza-
tion of the impurity, and Mo is the equilibrium
value. In the microscopic derivationof Eqs. (l. l),
one usually assumes that in addition to the weak
coupling approximation the system can be com-
pletely described by the observables M . The
validity of the above set of equations can readily
be studied in this model for the case that the im-
purity is at one of the ends of the chain. It is
found that they are not valid in this model, al-
though the time dependence of the magnetization
is described by a sum of exponentials. The reason
for this failure is that the observables M are not
sufficient to characterize completely the behavior
of the system.

The organization of this paper is as follows:
In Sec. II we describe the model and the method
used to diagonalize the Hamiltonian. Further-
more, an expression is derived for the time de-
pendence of the longitudinal magnetization of the
impurity. The long-time behavior of this expres-
sion is studied in detail in Sec. III. In particular,

Let us consider a linear chain of spin- & par-
ticles with nearest-neighbor interaction. Although
the results in this section can readily be extended
to the case that the impurity is situated anywhere
in the chain, we shall assume for notational con-
venience that its position is at the beginning of the
chain. The Hamiltonian of the system is given by

Z(H) =3Cp(H)+ V

with

(2. I)

N N-1

&o(H)=-HSo-Hz. ~S»'+~ ~(»S»»+»»»)
i=1 i=1

X X Y YV=g(So S» +So S, )

Here, S; is the ath component of the spin operator
of the ith spin, while the impurity spin is supposed
to be the zeroth spin. Let us, for convenience,
assume that the parameters g, J, and Hl. in Eqs.
(2. 2) are positive. As is well known, we may re-
write the Hamiltonian in terms of Fermi operators
by defining the operators Si, Si

+Sx»+» SY»» Sz S+S- j (2 3)r e 2i r i i i 2

and introducing the Fermi operators ci r
c~i through

the relation

S,' = ct exp(i»» Z c»oc,) (2. 4)

Equations (2. 2) then become

Xp (H) = —
Hc pep —H~ $ c» c»

N-1

+ 2++ [c»c»,»+H. c.]+ 2(H+HHg) t

(2. 5)
V = 2g[c pc, + H. c.]

To diagonalize this Hamiltonian, we closely fol-
low the method of Ullersma' used in his studies of
Brownian motion. The diagonalization procedure
consists of two steps. The first step is to diago-
nalize the operator $CO by the canonical transfor-
mation

N

c =ZU „»)„, m=1, . . . , J»»'

v-"1

(2. 6)

it is shown that the value of the magnetization for
t- ~ is well in accordance with the canonical dis-
tribution only for a limited range of values of the
external field which is applied on the impurity.
Section IV deals with the autocorrelation functions
for the impurity. Finally, Sec. V, the magnetiza-
tion is determined in the presence of a transverse
field.

II. MODEL
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with

U „=[2/(N+1)]" sin[mvtt/(N+I)] .
In terms of the Fermi operators g„,q~ the expres-
sions in Eqs. (2. 5) become

Ko(H) = —Hc pep+ Z A„t)„t}„+h (H+NHI)

Pn substituting this in the first equation of (2. 11)
we obtain the secular equation

S
h.»+H —Z " = 0

v~1 ~Q ~v
(2. 13)

for the eigenvalues X~. Finally, we have to deter-
mine Voh. Inserting Eq. (2. 12) into Eq. (2. 9) gives

v=1

N

v= Z II„[c'o)}„+I}'„co],
v=1

(2. 7)
V), =(1 E "A,) (2. 14)

with

A„= —Hh+ Jcos[vtt/(N+1)], n„= -,g U, „

N

)7o = co = Z Vp)»»
&=0

N

)I„=Q V„»$», v=1, . . . , N
0=0

(2. 8)

with Vv, real. Here f„(~are again Fermi opera-
tors In o. rder that (2. 8) be canonical, it is nec-
essary that the following orthonormality condition
is satisfied:

In the second step the total Hamiltonian X is diago-
nalized with the aid of another canonical transfor-
mation

e Bx(Hah)/-Trs wx(Hah)Pa+a=e (2. 15)

with P = I/kT. If we now suppose that at t = 0 the
fieM h is suddenly switched off, then the time-de-
pendent behavior for t & 0 of the longitudinal mag-
netization of the impurity is determined by

(Sp (f)) = Trp »S0 (2. 16)

with

To illustrate how this diagonalization procedure
can be applied in an actual calculation, we deter-
mine the time dependence of the longitudinal mag-
netization of the impurity. Let us assume that for
t & 0 there is an external magnetic field K+A present
along the z axis and that the system is in statistical
equilibrium. Then the system can be described by
the density matrix

N

Z V„» V„h. = 5»».
v=0

(2. 9) Sh(i) Htx(H)tS txt(H)t
O

=8 Oe

N

—HVo»+ + tr. V.h=&h Vo»
v=1

&v VOq+ Av Vva = Xa Vva, V = 1
(2. 11)

Substituting Eqs. (2. 8) into the Hamiltonian given
by Eqs. (2. 7) with the term h(H+NHB) dropped,
one, indeed, easily verifies [using Eqs. (2. 9) and
(2. 11)] that R has the form (2. 10). From the sec-
ond equation in (2. 11) we have

V„,= [ot„/() „-A„)]V„. (2. 12)

DIopping the constant term —', (H+NHI) the Hamil-
tonian can be expressed as

(2. 10)

It should be noted that since the eigenvalues X~ de-
termined by Eq. (2. 13) below can in general have
positive and negative values, the equilibrium ground
state is given by that state where the modes with

X~ &0 are occupied. The corresponding ground-
state energy is given by

Eo= h (H+NHI) +Qh h.»

where the summation is restricted to the eigenval-
ues &~ with X~&0. In order that R have the form
(2. 10), the coefficients V„, should satisfy the fol-
lowing set of linear equations:

In view of the relation

SO = COCO
g

we may evaluate Eq (2. 17)., using Eqs. (2. 8) and
the property

to obtain

H
th»t ~- (2. 18)

So (i) = —B+ ~ Vo», Vohptt) (»»exp[i())»I —X» ) t]
)),itkp

In order to simplify' matters somewhat, we replace
the density matrix p„.„in Eq. (2. 16) by

ptp) (H +k) H &xotH+h)/Tr exp(Hah) (2. 20a)

In doing this we do not expect to change the main
features of the time behavior of Eq. (2. 16) dras-
tically for small values of g. Moreover, since we
will in particular be concerned with the weak cou-
pling limit, i. e. , g-0, t-~, such thatg~t is kept
constant, the approximation (2. 20a) becomes exact
in this limit. Of course, the calculations can also
be performed with Eq. (2. 15) (see the Appendix).
The expressions become more lengthy, but it can,
indeed, be verified that our results do not change
qualitatively. To find Eq. (2. 16) we have to com-
pute
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&(',, &. ) =T.p"'(H. h)&'. &,, (2. 20b) f(~) =-g sin xdx
tanh —,'P(J' cosx —H~),2' 0 X+HI —Jcosx

N

$q= Z Vua&v ~ (2. 21)

This is done by applying the inverse transforma-
tion of Eq. (2. 8), g ' sin xdx

2m 0 X+H~- Jcosx

(2. 28)

We find, using relation (2. 12),

i
&]',,(.,) = V...V„ l

2 1

with

N ~2
f (X) —Z " [1+e "]

vq X-A„

1+e ~'"'"')

(2. 22)

(So (t))= 2 Z VO„Voq expi(X~ —Xq )t
k, a 1 2 1 21' 2

x +tanh~p(H+h) l (2. 23)
&a —&a

with

Noting now that in the limit of P = 0, Eq. (2. 16) tri-
vially reducestozero, we may as well subtract the
expression for P = 0 from Eq. (2. 16). In so doing,
and by virtue of Eqs. (2. 19) and (2. 22}, we obtain

2

= g, {~+H,—[(~+H,)'-8]'"], (2. 29)

where the square root is defined to be positive for
positive arguments. Evidently in the process of
letting N ~ the poles of R(X) become a dense set
on the real axis, so that, at the end, they consti-
tute a branch cut. As is obvious from Eq. (2. 29),
this cut extends from —H~ —J to —H~+ J. In addi-
tion, notice thatfor a sufficiently large field H, R(Z)
has a pole in the first Riemann sheet. This happens
if X is a solution of the secular equation R(X) =0,
with X real and outside the cut, i. e. , X&-Hl+J
or X&-H~- J. Notice, also, that the analytic
structure of R(X) is simple. Apart from the square-
root branch points at X= —H&+ J, the only singular-
ities of R(X) are two po'les. We may distinguish be-
tween two possibilities: (i) Both poles are in the
second sheet; they can then be either real or com-
plex, depending on the value of H. In the complex
case, the poles are complex conjugate of each
other. (ii) One pole is in the first sheet while the
other one is in the second sheet. Both of them are
real.

N ~2f (X) = Z " tanh2PA„
vq y-Av (2. 24) III. ASYMPTOTIC BEHAVIOR OF LONGITUDINAL

MAGNETIZATION

R(X) =[~+H-f, (X)]
'

with

(2. aS)

The summations over k, can now be converted into
integrals by applying Cauchy's theorem. Intro-
ducing the function

In Sec. II we derived an expression for the time
dependence of the longitudinal magnetization of the
impurity spin which we should like to study in detail
in this section. In particular, we would like to ex-
amine the behavior for asymptotic large times. To
do this, we introduce the Laplace transform

f.()=EX "A
v=1 v

(2. 26)
g(p) = f e ~'dt( So(t)) with Rep &0

0
(3. 1)

we may write, in view of Eqs. (2. 13) and (2. 14),

(S,'(t)) = —.'(I/2'}'Pd ~ $ d X'R(X) R(~')
From Eq. (2. 27), we obtain, by deforming the con-
tours in the X and X planes,

x e'"-" "[(x-X') '[f (x)-f(Z')]

+ tanh2P(H +8)} (2. 27)

where the integration path encircles in the counter-
clockwise direction all the poles of R(X), which are
situated on a yart of the real axis in the X plane.
Uy to now, all considerations apyly for a finite num-

ber of spins. We now take the thermodynamic limit
N-~. Then, the summations in Eqs. (2. 24) and

(2. 26) are replaced by integrations. We get

g(p) =- (1/4vip) J dXR(X- ie)R(X+ip)

x [f(&- ie) f(X+ip) ——iptanh2p(H+h)]
(3. 2)

with «0. Using the identity

R(X)R(X') =[R(X)-R(X')] [X'- ).+f (X) f(X')] ', -
(3.3)

which follows immediately from Eq. (2. 25), the ex-
pression (3. 2) can also be written as
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g(P) = (I/4wiP) f dX[R(X- ie) —R(X+ iP)) I(X,P)

with

I(X,p) = [ip tanh-,'p(H+lz) +f(x+ip) —f(x- te)]

x [ip f,-(X+tp)+f, (1 ie-)] ' .

(3 4)

(3. 5)

which holds for any given value of g. To compare
this with the expression (3.6), let us first assume
that the only singularity of R(X) in the first sheet is
given by the branch cut between —HI, -J and —HI, +J.
Then the only contribution to Eq. (3. 6) comes from
the cut. For this region, we have, according to
Eq. (3. 5),

»mi(&, p)=[f(~-ie)-f(x+te)] [f,(x+ie) f, (X ie))--
P&Q

In view of Eqs. (2. 28) and (2. 29), this reduces to

liml(X, P) = —tanh&PX
P&Q

so that we, indeed, see that Eq. (3.6) is the same
as Eq. (3.7). We now turn to the case that R(X) has
an additional pole X, in the first sheet, which is out-
side the cut and on the real axis. In the presence
of the pole X, , the expressions (3.6) and (3.7) will
no longer be identically the same because of the
contribution from this pole. In fact, we have

limi(xz, p) =l +tanh —'p(H+tt, '
ll- +1

l

(3. 8)
which depends explicitly on the previous history of
the system through the presence of the second term
in the numerator on the right-hand side of Eq. (3.8}.

We proceed to discuss the behavior of the mag-
netization for long times. From now on, we re-
strict ourselves to the high-temperature approxi-

1.st us first consider the limiting value of (So(t))
for t- . It is simply given by the residue of the
pole of P'(P) at P=0, i. e. ,

lim(SO(t)) = . ~( dX[R(X-ie) —R(X+ie)]limi(&, P) .
4mig „ PaQ

(3. 6)

If the general assumptions of statistical mechanics
are valid, then we anticipate that this quantity is
equal to the expectation value of SQ taken over a
canonical distribution corresponding to the situation
where there is an external field H present. This
distribution is described by the density matrix p~.
By straightforward application of the method de-
scribed in Sec. II, we get

TrpzzSO = (1/4') f dX[R(X iz)

—R(X+te)] tanh —,'pX, (3. 7)

mation, i. e. , we retain only terms up to linear in

P in the expression (3. 5). The results on the time
dependence of (S0(t)) in the high-temperature limit
will be valid on time scales such that t/P is large.
The reason is that, for finite temperatures, we get
additional exponentially decaying functions of t with
arguments which are proportional to P '. Their
origin is in the poles of the hyperbolic-tangent
function. For a discussion of this, we refer to
Ref. 8. In the high-temperature limit, Eq. (3. 5)
reduces to

I(X,p) = ,'p[t—p(H+Iz}+(X+ip)fo (&+ ip) —&f0 (~- ie))

x [ip -fo (x+ iP) +fo (&- I&)] (3.9)

—C exp[i(H& —&+&z)t- 4t&]]'

+D sin2 Jt/tz (3. 12a)

Let us, for the moment, consider the case where
the poles of R(X) are complex. Denote them by X,
and X2 with Im&, &0 and ~, =&&. The following prop-
erties of g(P) readily can be inferred from Eq. (3.4).
It is regular in the P plane, except for a pole at
P = 0 and a cut with logarithmic branch points at
+ 2'. Furthermore, the function p(p) can be writ-
ten as the sum of two terms, one of which, when it
is continued analytically from right to left through
the above-mentioned cut into the second Riemann
sheet, yields another branch cut between i(Hz+7
+Xz) andi(Hz, —/+ X,). The branch points are of a
square-root type. Similarly, the other term has
a branch cut between —i (Hz +J+ Xz) and —i(Hz 7-
+ Xz). Finally, the analytic continuation through
these cuts into the "third" sheet yields, as singu-
larities in this sheet, poles at P = 0 and —2 Imk, . To
determine the long-time behavior of the magnetiza-
tion, we make use of the above analytic structure
of g'(P). For t &0, we have

&So(t)) =2 . dPe"tz(P) (3. 10)
«f 00+ 6

with e &0. In the case that the branch cuts in the
second sheet of the P plane intersect the real axis,
and the pole at —2ImX& is far away from the various
branch points, i. e. ,

»n~~ ~~M'"(2d lHz, +~+ ~il) (3. 11)
the expression (3. 10) can be computed by deforming
the integration path into the second and third sheet,
as, for example, shown in Fig. 1 for one of the
terms of g'(P). For long times, the main contri-
butions come from the poles and branch points.
As a result, we find for

t»M~(l&l, H. +&+'~l »
(S (t)) g +Re -2 zmzzt

+t "'Im(C, exp[i(H +J+X)t+ .'tv]-
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with

& = —(P/6((i) J „dz[R(X- ie) —R(X+ie)] X, (3 12b)

8= '
)z ), ImX, [H+I(+f0(X,)],(3. 12c)

—Po.'[2J(J'- (~, +H, )')]"'
1/8

x(v J-Hr) (H~-K+ J)+(H+h) (X~+K~+J)+ X(fo(&()
(X, +H, +J) (H —H, +J)'(1- 2n) im~,

(3. 1M)
PaaJ[2H+f(-H~(2- a)]
4(([(H —Hi) —J (1 —n) ]

(3. 12e)

Lmp

~ a~l ~

l(ei+ J+X~)~~ OWMI ~ ~ ~ ~~ Cggl ~ ~ ~ ~ ~ ~ ~ ~ I

Rep

~ ~~ ~ ~ ~ ~ ~ ~O»0~ ~~ ~ ~
l(HL-J+Xt)

~~~~ ~ I ~ ~)J

FIG. 1. Contour for evaluating the asymptotic behavior
of one of the terms in Eq. (3.10). Solid line: first
Riemann sheet. Broken line: second Riemann sheet.
Broken dotted line: third Riemann sheet.

where n g /2 J and fo(X) is the analytic continua-
tion of fo(X) into the second sheet. For fixed g, the
second and third terms in Eqs. (3. 12) are exponen-
tially small for t » I/ga and should be dropped.
Hence, for times long compared to 1/g, the system
is governed by a nonexponential time behavior
given by

(So(t)& =A+8 sin2Jt/i

Since the validity of rate equations is expected to
hold in the so-called weak coupling limit, "we turn
to study this situation. Physically, the weak cou-

pling limit describes the behavior of the system in

time for sufficiently weak g on time scales of the
order of I/g . In this case, the above-mentioned
terms in Eq (3. 12). are not exponentially small in

this limit. For sufficiently weak g, the poles of
Eq. (2. 25) are simply given by

A, = A2*= —H+ c({-H+HJ. + i g[J —(H~ —H) ]]
(3. 13}

Using this in Eqs. (3. 12a}-(3.12d) we see that, for
sufficiently weak g and f of the order of 1/g, the
contributions which do not vanish are (3. 12a) and

(3. 12b). We obtain in this limit the purely expo-
nential behavior

(S,'(f)& = .'P(H+)-e "'(), (3. 14)

(r, ')„„=[(S,(0)& -(S,( )&]
'

xj"d~([[S,', V(~)], V]&,
with

y(~) ((Co(H)v y -(RD(H)T

(3. 16)

It is easily verified by explicit calculation of Eq.
(3. 16}that it indeed agrees with Eq. (3. 15).

We conclude this section by discussing briefly the
cases different from Eq. (3. 11). For a fixed value
of g, we may vary, for example, the magnitude of
the field H. Correspondingly, the poles X; of R(X)
move along the cut until they are near one of the
branch points. In this situation we do not expect
that the exponential behavior given by Eq. (3. 16) is
valid any more, since the influence of the branch
point near the pole —2ImX& will be important. The
contributions from both singularities should then be
treated together. Varying H even further leads to
the case that both poles are on the real axis. This
corresponds to the situation where the poles and

branch cuts of g(P) have moved to the imaginary
axis of the P plane. As was discussed in Sec. 0,
one of the poles of R(X) can also appear in the first
sheet. In this case, something qualitatively new

happens with the behavior of (So (f)&. The appear-
ance of the pole of R(X) in the first sheet has as a
consequence that the pole of g'(P) at P = 0 which was
in the third sheet also shows up in the first sheet
of the P plane. It is precisely the appearance of
this pole which causes the discrepancy with the
"canonical" answer for lim(SO(t)& as t-~.

IV. AUTOCORRELATION FUNCTIONS

As is well known, according to the Kubo-Tomita'
theory the linear response to an oscillating mag-
netic field which is applied to the impurity is, at
hi'gh temperatures, simply related to the Fourier

where the longitudinal relaxation time I, is given by

r, '= (g /J')[J'- (H-H, )']-,' . (3. iS)

Let us write down what we get for T& according to
perturbation theory. Qne way to perform the cal-
culation is to use a master equation approach.
We then find
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transform of the autocorrelation functions. They
are defined by

and

C,(t) = TrS2(t) S2/Trl

Ci(t) = TrS2 (t) S22/Trl

(4. 1)

(4. 2)

0i(p)= J e '2dtC i(t) with Rep &0,

applying the canonical transformation (2. 7), and

taking the thermodynamic limit N -~ gives

(4. 3)

This section is devoted to the study of the time de-
pendence of these functions. It should be remarked
that, in contrast with the previous sections, most
of the results in the remaining partof thispaper are
only valid for the situation that the impurity is at
one of the ends of the chain.

By virtue of Eq. (2. 4) we may rewrite the cor
relation functions in terms of Fermi operators.
Introducing again the Laplace transforms of these
functions,

X

Rep

~ (p) =(1/2i)R(-ip)

d2(p) =(I/82ip) f dXR(2.- ie)R(X+ip)

(4. 4) FIG. 2. Contour for evaluating the asymptotic behavior
of C~{t). Solid line: first Biemann sheet. Broken line:
second Riemann sheet.

x[2ip+f2(2. - ie)- f2(x+ip)] —1/4p
(4. 5)

Let us first consider C,(t). For sufficiently weak

g and

get

C,(t) = —,'e'"i'+O(gi)

Ci(t) = —,'+O(g )

Hi- J&H &Hi+ J (4. 6)

we may compute the asymptotic long-time behavior
by deforming the integration path as shown in Fig.
2. The main contributions come from the pole at
), given by Eq. (3. 13) and from the branch points
at -HI. +J. Since the latter are of the orderg, we
have

(t) e L Remi t t/T2 O(gi)- (4. 7)

where the transversal relaxation time T~ is given
by

I/r2 = (g2/2Z) [Z2- (a -If,}2]"'. (4. 8)

Similarly, under the condition (4. 6) and weak cou-
pling, we get

C,(t) =e " i+O(g') (4 g)

T2 2Tj ~ (4. 10)

where T, is given by Eq. (3. 15). From this we see
that in this model the relaxation times are simply
related by

with X, real. In the absence of g, we see from Eq.
(3. 13) that X, is just the Larmor frequency of the
impurity. The effect of g, in general, is not only
to shif t the Larmor frequency, but also to damp this
frequency mode. However, if X, is in the first
sheet, then this mode persists in time, and as a
consequence So is up to order g a constant of
motion. Because of this fact, we should not ex-
pect canonical considerations to hold in this case.

V. RELAXATION IN PRESENCE OF A TRANSVERSE
FIELD

To study the validity of the Bloch equations in
this model, we consider the following situation.
Suppose that, for t &0, there is a field H present
along the z direction and that the system is in equi-
librium. Similarly, as in Sec. II, let us use, for
simplicity, instead of the initial density matrix p~,
the operator pi '(H). Let us now assume that at
t = 0 a field h, is switched on along the x direction
and that it only acts on the impurity. Then, for
t & 0 the magnetic moment is determined by

Some comments are in order on the situation
where the pole X, of R(X) is in the first Riemann
sheet. Instead of Eqs. (4. 8) and (4. 10), we then

(S™(t)}= Trp' ' (H) S'(t)

with

(5. 1)
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Se(f) 8IZI See IZI then the eigenvalue equations become

(5. 2)X=X(H)- —a'hl (So+So)

In 01'deI' to diagonalize Eq. (5.2) we I'eplRce X by
a new Hamiltonian

(s. i2)

which yield by virtue of Eq. (5. 7) Rnd tile 01'thollol'-
IIlallty colldltloll fol' II),

X,=X (H) —a III (So+So) (S.l+S,)

where we have enlarged the Hilbert space by intro-
ducing R fictitious spin Rt the position to the left of
the impurity. It can easily be seen that, with this
new Hamiltonian, we have to compute, instead of
Eq. (s. i),

(So (f)) =(&So (f)» +«So (f) (S'I+S:I))&

2Pg x]
)I)al =Za &o )I')a, -l

2P]E~
Pal za ga Pa, -I

4P', x',
ka, 1 1++(Za yo)2

Zala, -l =0.

for i=0, ..., N

(5. 13)

((A» = Trpl') (H) A

Here, the trace should, of course, be taken vrit
1'espect to the (N+ 2) spills.

We now turn to the diagonalization of Eq. (5.4).
First, we rewrite $C& in tex'ms of Fermi opexators
in the same way as in Sec. II, except that the sum-
mation in Eq. (2.4) now starts from —1. Next, we ap-
ply the two canonical transf o rmations (2. 6) and (2. 6)
to diagonalize X(H). Defining

Substituting the first two expressions into Eq.
gives (s. it)

gal =PI (za- 4) Pa, -l
for I'=0, . . . , H (5 14)

IlaI=PI za+4 'Pa. -l

The eigenvalues EI, are determined by the secular
equation

H I(Z,)=0

with

Po " PII

r
0 Po ~ e o Pg

-Po 0

«= ~ [&a&al &I+ '(&'azaI&-t+H 0)].(5.6) We distinguish between two possibilities: (i)Za 40,
then pa, 1 =0; (ii) Za=0, then pa, I= i. From Eq.
(5. 15) we see that, if Za is a solution, then —Za is
also. Vfe now have the freedom to choose all E~
to be non-negative. Notice that Eq. (5. 16) can be
rewritten as

H, '(z)=z+ —.'a', [H(-z)-H(z)] . (5. 1V)

(s. 7)

Vfe now proceed to compute the transversal mag-
netization, i.e. ,

1PIt-- ~@1~0@ (5. 6) &So(f)&
=«So(f) &) +«So(f) (S'I+S:I)» (s. is)

Finally, the Hamiltonian (5.6) can be diagonalized
by using the canonical transformation

(5 ())

withgyg y kpg real Rnd %hex'6

gyes

fg, Rre Fermi oPex'-
atox's. Then

(5. 10)

Since the first term in Eq. (5. 16) is odd in the num-
bel of Fermi opex'Rtox's, lt simply vanishes. The
second texn1 is rewritten Rs

(&So(f) (S' +S: ))& =(& [-4- (f) + 4'- (t)jlio(f) »

which can be calculated by applying the canonical
transformations (2. 6) and the relation

(s. is)
As a result, we obtain after some algebra for the
Laplace transform of the transversal magnetiza-
tionq



&~;(P)&=!h, Z E&', ., &', ,
k~ 1 i= 3

E(E,E') =[h',/4(Z —E')][R(E)R(E')C(Z, E')

+R(-E)R(-E')C(-E, —Z')j, (5. 20)

with

„R(-E,)F{E„E,) R(-Z,)F(-Z„E,)
P+jE~-iE) P —iE~- iE)

(5. 19)

C(E,E') = —,'[f(E) —f(E )+(E—E ) tanh-,'PH]

(5.21)
To chRllge the summations ln Ecj. (5. 19) into inte-
grals, we make use of the Cauchy theorem. It is
not difficult to show that Eq. (5. 19) can be rewritten

g;(P)& =[h,/2(2-)']g dzfdz'R, (E)R,(E')P', R(E)R(E')R(-E') C(Z, Z')

+R(-E)R(-E') [h', R(E') —2E']C(-E, —E') j [(E—Z') (P+iz —iZ')] ' (5. 22)

Here the integration path encircles in the counterclockwise direction all the poles of the function g&.
der not to pick up contributions from the singularities of R(E') in the integrations in Eq. (5. 22) we have m~e
use of Eq. {5.15) before the conversion of the summations. Now, one of the integrals in Eq. &5. 22) can be
explicitly carried out so that we get

&g()(p)& =(h~/4vip) f dER~(E-ie)Rg{zp)R( E+ie)-(h~R(E-ie)R(zq) C(zp, E —je)

+[AfR(E —ie) —2E]R(-E~)C(-E~, —E+ie)}
with E~=E+ip.

Finally, let us turn to the calculation of the longitudinal magnetization

&Zf(f)& =«'g(f)»+«3(f(f) (3')+3:g)»

In this case, the second term vanishes so that

&3o(f)& =«ctco(f)»- 2 .

(5. 23)

This can again be evaluated using the described diagonalization procedure. The final Iesult for its Laplace
transfor ls

&Sq(P)&=-(1/Svip) f"dER, (E —ie)R, (E~)R(-E+ie)R(-E~)fh', R(E ie)R(E~)—

xC(E„E-ie)+[h',R(E-ie) -2E] [h', R(Z, ) - aZ,]C(-E„-E+ie)$ . (5. 24)

To discuss the validity of the Bloch equations we
have to study the weak coupling approximation to
Egs. (5. 23) and (5.24). This approximation essen-
tially amounts to taking a sufficiently large value
of J' for a given g and h&. The discussion proceeds
along lines similar to those in the previous sec-
tions. For this case, the only important contribu-
tions come from the poles of R,(E) which are de-
termined by

E(E —Xg) (E+Xg) —aha(2E —Xg+Xq) =0, (5. 25)

where X, are givenby Eq. (3. 13). From Eg. (5.25)
we see that there are three poles. Let us denote
them by E". Because of the factor R,(E+iP) in Eqs.
(5. 23) and (5.24), each one of these poles gives
rise to three poles in the P plane for 80(p), so that
the time dependence of the magnetization is in gen-

eral governed by nine exponentials. The locations
of the corresponding poles are given by

S„„=i(z"+E ), {5.26)

so that we see that there are, in fact, only six ex-
ponentials. On the other hand, if the Bloch equa-
tions were valid for this model, then according to
Ec[s. (1.1) we should have three poles in the Lap-
lace transform of M . Hence, we have to conclude
that Egs. (1.1) cannot be a correct description for
the system. From Eg. (5. 5) we see that in order
to describe the magnetization of the impurity we
also need to know the motion of the fictitious spin.
Therefore, we expect that in a macroscopic de-
scription the degrees of freedom of the fictitious
spin shouM also play an important role, so that it
is not surprising that there are more than three ex-
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(&» &» & =»ps. »&», &», . (Al)

Using canonical transformations described in Sec.
II, we find

($ $ ) = V V (X —X ) '[F(X„)—E(X )] (A2)

with

E(X» ) = h»g» Vo»tanh»P X»(X» —X», )

x [fo(X» ) -fo(& ) + &» —&»|j (A3)

Here, the barred quantity ~~ is defined as a solu-
tion of the secular equation

N p

R '(X») =X~+H+h -g-—" =0
Xq- A„

@=1

(A4)

ponentials present in this case. Qf course, it should
be emphasized that this is probably a special fea-
ture of the situation studied here. In particular,
it is, for example, not clear that the above con-
clusions are also valid for the case where the im-
purity is in the middle of the chain.

APPENDIX

In this Appendix we give for the convenience of
the reader some results for/(P) in the case that
we do not make the approximation (2. 20). The only
difference in the calculation is that we have to com-
pute, instead of Eq. (2. 20a),

The derivation now proceeds along the same lines
as those following Eq. (2. 22) with the only differ-
ence being that Eq. (2. 22) is replaced by Eq. (A2).
The final result is

g(p) =(- I/4»p) 1 „dxR(z-i&)R(x+ip)

xR (X- ie)R (X+ip)

x[E(X- ie) —E(X+ip)]

in deriving (A9) we have also made use of the
identity

R-'(~) —R '(~)=h .

(A9)

(Alo)

Shifting the path of integration for the second term
in (All) and making use of the relation

F(X- ie) —F(~+ie) = [R(X- ie) —R(X+ie)] tanh —,'P x,

(A12)
we get back precisely Eq. (3. 7), as we should, in
the case h=0.

Let us now study the limiting value of (Sf(t)) for
t- ~. Suppose that the two poles of R(X) are in the
second Riemann sheet; then we have, according to
(AQ),

(Soo(~)) =(- I/O») J dXR(X-ie)R(X+ie)

A special limiting case of Eq. (A9) is when h- 0;
then'-R, so that we get

P(P) = (- I/4»P) 1 dX [E(X-ie) —E(XiiP)] . (All)

N
2 o'v

Vo»= 1+~ —,oX»- A„j
(A6)

The summation in (A3) can also be converted into
an integral using Cauchy's theorem. We have

F(X»,) = (h/4»)$ dktanh-, p XR(X) (l|.- X»,)
'

xR '(X-ie)R '(X+ie)

x [F(X ie) —F(X-+ ie)]

With the aid of (A12) we get

(So(c)) =(- I/O») f dXR(X —ie)R(A. +ie)

(A13)

x [fo(&», ) —fo(&) + & —&», ] (A6) x[R '(X+ie) —R '(&-ie)]tanh-,'P X, (A14)

F(X»,) = —,'hR '(y» )E(g )

with

P(x, )=
2m'i "~ x~ —xi

(A7)

where the contour of integration is taken to be a-
round the poles of R(X) in the counterclockwise
direction. Equation (A6) can be rewritten in amore
convenient form by making use of the following
identity:

R '(X) —R '(X,,) =fo(X», ) —fo(X)+ X- X,,
We then find

which is, indeed, the same as the "canonical" an-
swer (3.7) in view of Eq. (3.3) and the definitions
of R and R Simil.arly, if R(X) has a pole in the
first sheet, one can readily show that the above
equality does not hoM any longer. Again, the con-
tributions of this pole to (So(~)) and Eq. (3. 7) will
b.e different.

Finally, let us consider the high-temperature
limit of (A9). We get

F(~) = -,'P [~R(~) —1],
so that (A9) reduces to

P(p) = (- P/8»p) f d&R(&- ie) R(&+ip)

x[8(X- ie) —R(X+ie)]tanh»p X (A8) x[&R '(X+iP)- (X+iP)R '(X-ie)] . (A15)
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From the definitions of R and 8 it follows imme-
diately that

Xa '(X+ip}- (&+ip)R '(& f-e)

where f'z(P) is the longitudinal autocorrelation func-
tion defined in Sec. IV. Of course, the same re-
sult could have been found by noting that we have,
by expanding Eg. (2. 18) to linear terms in P,

fpa+ xff-'(X+fp) (Xifp) ff-'(~- fe) .
(Sos(f)) = - p TrX(H qh)SO(t)/Trl (A18)

(A18)
Substituting this into (A15) yields, afte»ome al-
gebra,

g(p) = p& &3(p)+ p&/4p, (A17)

Equation (A18) can also be rewritten as

y,'(f)) = p [ITr S,'S,'(f) —Tr X (ff) 8,'(f)]/Tr1, (A19)

which, indeed, agrees with (A17).
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A novel technique has made it possible to correlate the three components in the lifetime
distribution of positrons in Teflon with the angle between the p rays resulting from the anni-
hilation. The intensity of the intermediate component was found to be virtually independent
of this angle, whereas the intensity of the longest-1ived component was greatly enhanced for
angles corresponding to higher momentum. Apparently the intermediate component does
not result from the annihilation of orthopositronium, because the momentum associated with
this component is too small. The intermediate component could be caused by free-positron
annihilation or by annihilation of positrons which are bound in Teflon molecules.

INTRODUCTION AND HISTORY OF PROSI.EM

As early as 1956 it was suggested'3 that many
details of positron interactions with matter could
be clarified by an experiment in which the positron
lifetime was correlated with the angle between the
two y rays resulting from the annihilation. Ex-
perimental techniques needed for such a measure-
ment were not developed until several years later.
In 1964, preliminary results were reported which

showed for the first time the angular dependence
of the long-lived component in the lifetime spec-
trum of positrons in Teflon.

Additional measurements, using some refine-
ments in technique and with improved statistics,
were reported by one of us (V. F.W. ). These
results indicated that the angular correlation of
radiation from "pick-off" annihilation of positrons
in positronium (Ps) atoms is significantly broader
than the angular correlation of annihilation radia-


