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Static Dielectric Constant of SiC
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Using the Lyddane-Sachs-Teller relation, published data, and a simple analysis, we find
the static dielectric constant of cubic SiC to be &,=- 9.72. The same method yields e, (l) = 9.66
and e (I() =-10.03 for 6H SiC.

For both cubic' and 6H polytypes of SiC, data
are available on the refractive indices and their
dispersion, and on phonon energies obtained in
Raman scattering. ' It is therefore possible to
use the Lyddane-Sachs-Teller' (LST) relation with
extrapolated index measurements to obtain the
static dielectric constants E„ i.e. , one E, for
cubic and two constants «, (I) and «, ([I) for the
uniaxial positive 6H SiC.

The static dielectric constant can be written
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where the electronic contribution &„ is to be
evaluated at zero frequency, and the lattice con-
tribution &,~, is related to the ratio of phonon en-
ergies that enter into the LST formula. We shall
use E„ to denote the extrapolation of n = &,&

to
zero frequency. This somewhat contradictory
notation arose because &„, the "optical" dielectric
constant, was often set equal to n at a frequency
much higher than the lattice frequency, but low
compared with electronic transition frequencies.
In many substances no suitable frequency exists,
and it is preferable to extrapolate optical data to
zero frequency, using a convenient model, such

as the one-oscillator model. We therefore write

2 ~g hp
I —(hv/Z )

where h p is the photon energy, E~ is a parameter
that can be interpreted as an average band gap,
and &~ is proportional to the oscillator strength.
The second form, with &„=1+c~, is a good ap-
proximation if hp«E~. For SiC the appropriate
values of E~ are close to 8 eV.

In Fig. I, we plot the measured n against (hp)
for cubic SiC, using the data of Shaffer and Naum, '
and we plot the squares of both ordinary and
extraordinary indices for 6H SiC, using Thibault's
data. The zero photon-energy intercepts are the
values of &„we need, and they are listed in Table
I. For 6H SiC, additional index measurements
have been reported for the ordinary ray at both
larger and smaller photon energies than shown
in Fig. 1. However, our approximation is not
suitable for the higher energies, and the lattice
bands make an undesired contribution to the index
for the smaller photon energies. For cubic SiC,
our approximation is asymptotically equivalent to
the Cauchy formula employed by Shaffer and Naum,
and our extrapolated &„=6. 52 corresponds to
their extrapolated n = 2. 553 78.

In Table I we also show the longitudinal- and
transverse-phonon energies Sw~ and 6~ ~ obtained
in Raman measurements. ' These values are
used in the LST formula to give us the final column
of Table I, i.e. ,
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FIG. 1. Extrapolation of optical dielectric constant
n to zero photon energy to obtain e„. Refractive index
values are from Ref. 1 for cubic SiC, and from Ref. 2

for both ordinary (Elc) and extraordinary (E Ilc) rays of
6H SiC.

We need to explain our use of a single ratio of
phonon energies in the LST formula for 6H SiC,
for there are five infrared-allowed transitions
contributing to «,(l), and five to «, (tl), and a gen-
eral expression would show the product of five
phonon terms in Eq. (3) for either «,(i) or «,(tl).
However, only one of the five transitions has
appreciable infrared strength. ' For the other four
transitions no effect of the longitudinal electric
field could be detected in Raman scattering, ' and
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TABLE I. Extrapolated e from Fig. 1, Raman pho-
non energies from Befs. 3 and 4, and calculated static
dielectric constant e~ for cubic and 6H SiC.

Polytype &„$~1.(cm } S~z (cm ) ~s

6.52
6.52
6.70

9.72
9.66

10.03

Hodges' estimates the weak-mode infrared
strengths to be =10 of the strong mode. Their
combined contribution to e, (i. e. , to e,«= 3. 2) is
therefore likely to be of order 4x10 & 3. 2= 0. 01.

The low-frequency value ~, = 10. 2+ 0. 2 reported
by Hofman et a/. was obtained by a bridge mea-
surement in which the dielectric loss was a
troublesome factor The SiC polytype was not
stated, but probably was 6II, the most common
polytype. Presumably, the experiment measured
e,(ll), for the common growth habit yields platelets
perpendicular to the c axis. Thus, our value of
e,(lt) = 10.03 falls just within the error limits es-
timated in Ref. 11.

The refractive indices and Raman data quoted
above mere all measured at room temperature.
%e have analyzed luminescence spectra due to
donor-acceptor pairs in cubic SiC, ' with the
crystal. held at 1.O'K. The fitting of the spectrum
yielded a low-temperature value of e, = 9. 7+0. 1,
very little reduced from the room-temperature
value. This contrasts with the observed 3. 3% re-
duction for GaP in the same temperature interval, '
and the 2. 5 and 4. 2% reductions found for Si and
Ge respectively. ' The small temperature depen-
dence of e, for SiC may be attributed to its rela-
tively large direct energy gaps, and its large
phonon energies.

Thibault was unable to find significant differ-
ences between the refractive indices of 6H and
15' polytypes. Many SiC polytype properties have
a linear dependence on hexagonality, or percent

If refractive indices follow this rule, one
would predict much smaller differences between
6H (33% k) and 15R (40% h) than between 6H and
cubic (0% h). In ZnS polytypes, which are like
SiC polytypes in many respects, the birefringence
is proportional to the hexagonality.
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