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are additive, and that the same amount of Baber
scattering present in pure Pd is also present j.n

the alloys. The modifications appropriate for the

case of the local-enhancement model are shown in

Fig. 1, where the results of including various
percentages of Baber scattering are indicated. A

similar modification to the uniform-enhancement
model is not shown, for it results in Lorenz num-

bers which fall off far too fast with increasing
nickel concentration to represent the data in a rea-
sonable fashion. Note in Fig. 1 that it is possible
either to fit the data Kt one point (pure Pd), which

gives 87 —,'% Baber scattering, or to project a
Lorenz number which is truly independent of nick-
el concentration, which yields 75/o Heber scatter-
ing. However, in view of the simplicity of the
model, it is felt that such fits do not give a real-
istic estimate of the relative amounts of Baber
and paramagnon scattering present in this system.

In the case of rhenium, the modification de-
scribed above yields a Lorenz number I.,= 1.108
x10 V K . Although this is some 20% higher
than the estimate presented in I, it still compares
very favorably to the experimental value of 0. 9
&& 10-' V' K-'.

We should like to thank Dr. M. J. Rice for sug-
gesting the modification to our original calcula-
tion. We are indebted to Dr. James B. Cullen for
valuable discussions. We should also like to
thank D. J. Gillespie for his assistance in pro-
gramming the calculations.
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FIG. 1. Comparison of calculated and measured values
of J~ for Pd and dilute I'd-¹i alloys. A is the coefficient
of the T term in the electrical resistivity, and I5A

+pg Solid dots and error bars represent values
of I.~ extracted from the data. The 0% curve is the
result of a calculation with the local-enhancement model
of paramagnon scattering with &pd=0 9 k, =0 9125&&10

cm ~, and &&=2k~. The other curves are the results of
modifying the calculation by adding a concentration-
independent amount of Baber scattering to the paramagnon
scattering. The percentages indicate for each curve the
amount of the total resistivity in pure Pd which is as-
sumed to be Baber scattering.
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Recently reported values for the Lorenz function of the'noble metals show, at high temper-
atures, deviations from the expected standard value, These deviations can be satisfactorily
explained, both in magnitude and temperature variation, in terms of normal electron-electron
scattering.

The recently completed measurements of the
high-temperature transport properties of the noble
metals' show an interesting feature in that none of
the electronic Lorenz functions I, actually reach
the standard Sommerfeld value Io = —,'(mk/e)' even
at the highest temperatures investigated, contrary
to theoretical expectations for electron-phonon

scattering. This feature is shown in Fig. 1,
where L, is plotted versus a reduced temperature
7'/B~. L,, has been calculated by subtracting the
phonon contribution to the thermal conductivity,
given by White, from the measured total conduc-
tivity; e~ is the Debye temperature obtained from
electrical-resistivity data, and has been taken
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from Gschneidner. The observed deviations in
L, are about twice as large as the estimated
maximum experimental error, ' and the fact that
they do not depend on the absolute temperature and
the specimen conductivity, as would be the case
with some unrecognized experimental error, lends
support to their genuineness. Further confirma, -
tion in that direction, at the lower end of the tem-
peratures investigated, is given by the close
agreement of subsequent results obtained from
completely different experimental systems. The
purpose of this note is to point out that these de-
viations can be satisfactorily explained, both in
magnitude and their temperature variation, by
(normal) electron-electron scattering, which, be-
cause it contributes to the thermal but not elec-
trical resistivity, depresses L, below its expected
value.

To evaluate the extra contribution to the elec-
tronic thermal resistivity 5', we proceeded as fol-
lows. One can show, quite generally, 2 that for
electron-phonon interactions for T &8,
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where p is the electrical resistivity. This depends
neither upon the shape of the Fermi surface, lat-
tice dynamics, interaction matrix, nor type of
scattering, but only on the appropriateness of the
trial functions used in the variational ca,lculations
of Wand p, viz. , (e~ —&z) k ~ u and k ~ u, respec-
tively. As the left-hand side of this proportionality
is essentially due to "vertical" processes, to
which umklapp scattering does not contribute
greatly (if at all), the pertinent e here is not es
but e~, the Debye temperature of the longitudinal
phonons, which is of the order of —,'e~. Ne have
therefore analyzed our experimental results for
T & 2 ez by fitting them to an equation of the form

W, —p/(Lo —S )T=/t/T +B„T".
The inclusion of the absolute thermoelectric power
S is a minor refinement to account partially for
second-order effects in L. Three least-squares
fits were performed for each metal to determine
A and B„, with n=0, 1, and 2. The best fits in
ea,ch case were obtained for n = 1, and the resul-

FIG. 1. Experimental values of the electronic Lorenz
function I-, expressed as a ratio to its normal value 1.0
as a function of the reduced temperature T/eR.

tant values of B, are given in Table I; these val-
ues could be out by as much as 50/0, and their
probable error is of the order of 25/o. For n

=0, for which in any case there is no acceptable
theory, no fit could be obtained within the esti-
mated maximum error. For n = 2, the rms devi-
ations were roughly twice those for n=1; however,
the fitted and experimental values still agreed
within the maximum-error limits, and thus sec-
ond-order effects in L, which lead to quadratic
deviations, cannot be ruled out altogether as a
possible explanation of the observed effects.

In deriving a theoretical expression for electron-
electron scattering, we used the Fermi liquid the-
ory, and, in particular, followed the development
given by Baym and Ebener. Using the Born ap-
proximation for the electron-electron scattering
matrix, we have arrived at the following for-
mula":

W„= 144ze'k~Tc/(5K' v~ q') = BT,

TABLE I. Comparison of the experimental and
theoretical coefficients of electron-electron thermal
resistivity B in cm/MW. (dHvA stands for deHaas-van
Alphen. )

c = b[b(1 —b~)

+ (1+b ) arcsin(1+b ) ]/(1+ha),

b = q/2k~,

(2)

Expt
Theo r.

VF for free electrons
VF from dHvA

4

9.5
15

4. 2

17.5
8

Au

7.3

17~ 3
24

where q is the screening parameter, e is the elec-
tronic charge, and vF and 0„ the Fermi velocity
and wave vector of the electron, respectively.
Taking

q'= 4me'N(&~),
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c-~~ for the noble metals, and (2) reduces to the
simple form

Calculated values of B, based on the free-electron
values of v„and k~, are given in Table I; we have
also shown there the values calculated using the
belly velocities from the de Haas-van Alphen ef-
fect. " In general, the agreement between the
theoretical and experimental values is good, the
latter being 3-4 times less than the former. This
is quite reasonable, since Ziman indicates' that
the Born approximation overestimates the electron-
electron scattering by a factor of about 5. The
relative magnitudes of the observed values are also
satisfactory: Certainly, Cu and Au are in the cor-
rect ratio. Ag is perhaps a bit low when the belly
velocities are used; however, Ag has a very large
ratio of belly-to-neck velocities, and this should
lead to an enhancement of the scattering through a
sort of two-band effect. ' Our experimental values
have also the right order of magnitude when com-

pared to low-temperature effects usually asso-
ciated with electron-electron scattering. One
would expect the effects in the noble metals to be
of the order of (v,/v~) -10 smaller than in tran-
sition metals'; the experimental results for the
latter, "where there are no special enhancement
effects as occur in Ni or Pd, give a B of the order
of (8-10)X10 cm/W, which is in the right ratio
to our results.

The explanation of the deviation in the high-tem-
perature I, of the noble metals in terms of elec-
tron-electron scattering is therefore very plau-
sible: It gives the experimentally preferred tem-
perature variation and the right magnitude whether
compared to theory or previous low-temperature
results.

ACKNOWLEDGMENT

We are grateful to Dr. M. J. Rice of the Gen-
eral Electric Company in Schenectady for very
helpful correspondence on the theory of electron-
electron scattering.

'M. J. Laubitz, Can. J. Phys. 45, 3677 (1967); ~47

2633 (1969).
~J. M. Ziman, Electrons and Phonons (Oxford U. P. ,

Oxford, England, 1960), p. 389.
~G. K. White, Australian J. Phys. ~13 255 (1960).
4K. A. Gschneidner, Solid State Phys. 16, 275 (1964).
The maximum experimental error in L„obtained by

adding the magnitudes of errors of all possible contrib-
uting sources, is about 0. 8%; the probable error should
not exceed 0. 5%.

6J. P. Moore, D. L. McElroy, and R. S. Graves,
Can. J. Phys. 45, 3849 (1967); J. G. Cook and M. P.
van der Meer, ibid, 48, 254 (1970); T. Matsumura and
M. J. Laubitz, ibid. 48, 1499 (1970).

Values of S were taken from N. Cusack and P. Ken-
dall, Proc. Phys. Soc. (London) ~72 898 (1958).

Deviations in Le quadratic in temperature can be re-
lated to second-order effects, expressible as derivatives
of the "conductivity function" 0(&) (Ref. 2, p. 385). Our
experimental results, when interpreted in that way, give
(d lng /de ) —0.4 eV . Thj.s is about a factor of 2
larger than the first derivative of this function, related
to the thermopower of the metal, and thus seems too
large. Unfortunately, nothing further can be said on
that matter, because all the difficulties connected with
the explanation of the thermopower of the noble metals
[see, for instance, J, M. Ziman, Advan. Phys. 10

1 (1961)]enter, to an even larger extent, into the sec-
ond derivative of a(&) .

~G. Baym and C. Ebener, Phys. Rev. 170, 346(1968).
' Reference 2, p. 170.
"This formula differs from the one given in Ref. 2,

p. 417, in its functional dependence on some of the pa-
rameters. Ziman's formula, which appears to be in
error by a factor of 2, has been derived under the im-
plicit assumption that c- vrb3 (in our notation). Although
this approximation is not valid generally, it is suitable
for the monovalent metals if, as we have done, one as-
sumes that q=4xe N(&z).

~2D. Shoenberg, Phil. Trans. Roy. Soc. London A255,
85 (1962).

'3J. S. Dugdale and Z. S. Basinski, Phys. Rev. 157,
552 (1967). Such an effect would also lead to contribu-
tions in @ ~X: T, but these would be difficult to distinguish
from the electron-phonon T terms in p. There would
still be a depression of L„since for interband electron-
electron scattering L«- ~p Lp [M. J. Rice, Phys. Let-
ters 26A, 86 (1967); Phys. Rev. Letters ~20 1439
(1968)].

'4Reference 2, p. 416.
5C. K. White and S. B. Woods, Phil. Trans. Roy.

Soc.London A251, 35 (1959); J. T. Schriempf, J.
Phys. Chem. Solids ~28 2581 (1967).


