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Using the Adams-Gilbert local-orbital theory, it has been possible to obtain approximate
self-consistent local orbitals for the fcc lithium halide crystals. In this formalism, terms
to first order in interatomic overlap are included. Nearest neighbors are considered ex-
actly in this formalism, and more distant neighbors in a point-ion model. The method of
Roothaan is used to obtain the solutions. All relativistic effects are neglected in this cal-
culation

I. INTRODUCTION

Because of the introduction of localized-orbital
theories by Adams, ' Gilbert, and Anderson,
self-consistent Hartree-Fock solutions for ground-
state wave functions of polyatomic systems have
become possible. The author has taken the theory
of Gilbert, expanded the environment in powers of
interatomic overlap, and retained terms to first
order in interatomic overlap. This seems justified
for most ionic or insulating solids, since the over-
laps are typically of the order 0. 1 or less. ' In the

original paper by the author, self-consistent or-
bitals for the LiH crystal were reported. In the
present paper orbitals are obtained for LiF, LiCl,
LiBr, and LiI using the analytic Hartree-Pock
technique of Roothann in a somewhat modified
form.

These localized orbitals, which the author ob-
tains for the ground state of the lithium halide crys-
tal, should prove very useful for band-structure
calculations. The preliminary results for LiC1
crystal have been used with great success by the
author in computing a band structure. The author

TABLE I. The values of A@ and S~j are given for the s levels of the Li', F, C1,Br, and I io».

1
2
3

5
6
7
8
9

10
11

Ll
Oj

2. 69
4. 00
2. 00

Ao Oj

10.040
8.3691
5. 5505
4, 9546
3.3675
1.9804
1.1869

Ao

0
0
1
1
1
2
2
2
2

C1

Oj

18.9832
14.7941
14.7181
9.6220
6. 7665
6.2190
3.2450
2. 1679
1.3550

Aoj

0
1
2
2
2
2

3
3
3
3

Br

37.3527
33.1430
17.2808
16.3407
8.4198
6. 6235
6.6182
3.4730
2. 1970
1.4859

A j
0
1
2

2
3
3
3
4

4

+Oj

56. 5239
26. 1681
24. 7445
12.7500
10.0218
5.2591
3.3269
3.0142
2.2501
1.4859
1.1889
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TABLE II. The values of A@ and Z~ are given for the p levels of F, Cl, Br", and I-.
2225

1
2

3
4
5
6
7
8
9

10

0
0
0
0
0

Z f

7.1171
3.5586
2. 4367
1.0219
0. 5003

A))
0
0
0
1
1
1
1
1

ZU

13.7900
8.8355
5.3987
4. 0186
2. 4367
l. 6382
0.8219
0, 4120

Ag~

0
0
1
1
1
2
2

2

2

Z1j

23.3102
15.6532
14.8256
9.5909
6. 1399
5.3085
2. 8150
1.6374
1.1277

Ag
0
1
1
2
2

2

3
3
3
3

ZU

26. 0738
19.6079
9.2975
8. 0386
4. 2627
2.4794
2. 4546
1.6713
l. 0150
0. 5075

has also completed a detailed study of the band
structure of LiCl using the final LiCl local orbitals.

These local orbitals should also prove useful for
computing lattice constants, binding energies, and
the elastic properties of the pure solids. In addition,
these orbitals should provide an excellent starting
point for studies of color centers in these solids.

Computer codes were developed, for this calcu-
lation by the author, for the IBM 360-75 computer.
Sufficient accuracy has been maintained in the
codes and in self-consistency requirements so that
the one-electron energy parameters appear to be
accurate to about +2 in the fourth significant figure
in virtually all cases. In Sec. II the local-orbital
method is discussed as are the techniques of solu-
tion. In Sec. III numerical results are presented
for the Li', F, Cl, Br, and I ions as well as for
the crystals. The free-ion results are compared
to the other calculations on these systems and con-
clusions are drawn from this comparison.

—2P(rl, rl)
)r, —r, lI(i, j)

The operator I(i, j) interchanges coordinates i and

j. In Elf. (I), the Fock operator for the ith elec-
tron is in Ry, Z„ is the charge on the Ath nucleus,

%A, is the radial vector from the Ath nucleus to
the ith electron. The summation is over all nuclei
in the polyatomic system. p(r, r ) is the spin-in-
dependent part of the kernel of the density opera-
tor and is seen to be

p(r, r ') = ~ I Ai(r))~A';, Bl(aj(r ')
~

Af, Bj
The quantity S„,» is the Ai, Bj th element of the
inverse of the overlap matrix for the solid and may
be evaluated using the familiar Lowdin expansion:

~Al, BJ ~Al, Bj (~Al (Bi ~Al, Bl)

+ + (I ~CA)( ~CB) Al, CK CK, BJ+
CE

II. LOCAL-ORBITAL TECHNIQUES

A. Local-Orbital Equation

In the case of solids with closed-shell ground
states one may write the Hartree-Fock operation
for the solid in the form

F»= —&', —2Z -" -+4~i ~r, —r,
~

'p(r„rl)dry

with

~A ',Bl = (Ai
I »)

In the above we allow for the case in which the
Hartree-Fock orbitals are not orthogonal. As has
been demonstrated by Gilbert, . if one removes the
restriction on orthogonality in the Hartree-Fock
case, one is able to add in an additional constraint
such that the Hartree-Fock equation is of the form

(Fl pUA p)QAl eAl QAl (4)

Br
A)) Zo)

I
A)) Z2~

TABLE III. The values of A@ and Z@ are given for
the d levels of Br and I

In Eq. (4) U„ is an arbitrary function, chosen to
maintain localization. It is convenient to break the
Pock operator into two parts such that

16.0578
10.0855
7.2889
4. 7416
2. 9679

0
0
0
1
1
1
1

19.7943
11,0375
7. 1802
6.9183
4. 4943
3.0332
2, 2939

; =Ez+ Uz

FA= —&, — +4 ~r, —r,
~

Q ~Ak(r, )) dr&
L R„,I

lAk(r; ) (Al (r, ) I 8„'„A,
l, l (I; —r& lI(i,j)
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TABLE IV The lithium orbitals for the free ion and in the crystals The normalization chosen is such that

Q~C&p;= l.

Free ion LiF LiCl LiBr LiI

0. 587 107
0.387 533
0.710720

0. 532 146
0.401 144
0.745 590

0. 565 27
0, 393 11
0.72521

0. 563 807
0. 393 430
0. 726 178

0. 576 913
0.390 119
0.717 620

The expression for U„ is found by subtracting Eq.
(6) from Eq. (1).

If one has U„= U~ and if one expands the expres-

sion for U„and pU„p in powers of the interatomic
overlaps and retains terms linear in overlap one
finds

c
-~l- -' " ~ 4E»';& &I I

'A-2' ' ~ 4&' sl;& &I I
d' —~ )0' &

I Rg( I s & f Rg( I

x — +4 Q~, rp rgp
' dr~ dr,

lR~, I ag

It is this equation which we will solve iteratively for
the lithium halide crystals. Invoking the lattice
symmetry, it is necessary to solve Eq. (7) for both
a Li' and an X lattice site.

B. Method of Solution

Equation (7) is to be solved using the analytic
expansion techniques of Roothaan. This method
has been used previously to obtain solutions for the
free Cl ion, ' the Br ion, " and the F ion. In
this method, one assumes the one-electron solu-
tion (dropping the subscript referring to the lattice
site) to be of the form

s g,
——Kq, + 2F (ls, 1s) —G (1s, ls)+ V„ (IO)

and for the np shell of Cl

TABLE V. The fluorine orbitals are given for both
the free ion and the LiF crystal. The normalization
chosen is g,C„»= 1.

C,.„, are determined by the variational technique.
In this method of solution the local-orbital equa-

tion [Eq. (7)j is used in integral form. If one uses
the notation of Hartree, ' one has for the Is shell
ln Ll

(6) C
gpss C2pg

In Eq. (8) the I; 's are the usual spherical har-
monics and the X's are the spin functions. Then
one assumes

The quantities A.„.and Z, &
are either set by varia-

tional techniques or otherwise determined. The

Free ion

Crystal

I 0. 778 122 0. 082 182
2 0. 124 024 0. 059 816
3 0. 591 516 0. 240 537
4 —0. 168 621 0. 026 460
5 0. 027204 —0. 787 052
6 0. 007684 —0. 553 971
7 —0. 004222 —0. 069100

1 0. 778 075 0. 081 802
2 0. 123480 0. 059759
3 0. 591 661 0. 242 616
4 —0. 168725 0, 021 947
5 0. 027306 —0. 780 186
6 0. 007 639 —0. 563 129
7 —0. 004208 —0. 067 734

0. 068222
0. 343 162
0. 676 917
0. 643 332

—0. 074 ill

0. 066 004
0. 342 894
0. 647 003
0. 665 854

-0.126 857
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TABLE VI. The chlorine ion orbitals are given in free space and in the LiCl crystal. The normalization
chosen is Q,C~„=1.

Free ion 0. 838 748
0. 016 207
0. 322 883

—0.313642
0. 282 767

-0, 112708
0. 026 265

—0. 015 685
0, 004186

Cpp~

0.274 404
0. 002 254
0.282 570

—0.250 04
—0.796 700
—0.384 156
—0, 002 011
—0. 006 020

0. 001 676

C3p~

0. 085 654
—0. 000 169

0, 097 782
—0. 120 651
—0.205 331
—0. 276 684

0. 508 816
0.740 437
0.206 614

0. 035 792
0.341 779
0. 938 861

—0. 001 885
0, 019 121

—0. 008 634
0.001 600

Csgg

0. 016 475
0. 054640
0. 338 205

—0. 145 742
-0.544533
—0.694377
—0. 287 094

Crystal 0. 838 394
0. 014900
0. 232 146

—0. 313982
0.283 122

—0. 112 875
0, 026 320

—0. 015 722
0. 004 197

0.274 574
0. 001 976
0.282 659

—0.249 998
—0.796 624
—0. 384 132
—0, 002 035
—0. 006 065

0. 001 693

0. 085 598
—0. 000 147

0. 097 129
-0.116000
—0.211443
—0.271 583

0.502 281
0.744 897
0.209 809

0.035 844
0.341 382
0. 938 959

—0. 002 573
0. 020 415

—0. 009 943
0. 002 570
0. 000 757

0. 017 550
0. 047 003
0.342 845

—0. 163 889
-0.488331
—0.730251
-0.276 374

0.070 455

s„~= Z„~+ 2E (np, 1s)+ 2E (np, 2s)+ 2E (np, 3s) + BE (np, 2p) + BE (np, 3p) —,' G'(n p—, 1s)

—~G'(np, 2s)- —,
' G (np, 3s) —G (np, 2p) —G (np, 3p) —0. 4G (np, 2p) —0. 4G (np, 3p)+ V„~

TABLE VII. The bromine ion orbitals are given in free space and in the LiBr crystal. The normalization

chosen is+,C„»=1.

Free ion

C«&

1 0, 988 316
0. 144 863

3 —0.015 697
4 0, 012 837
5 —0. '323 362
6 0. 023 799
7 —0. 014 589
8 0. 001 036
9 —0. 000 573
0 0. 000 200

Cgp~

0. 318 424
0. 192 586

—0.729 571
—0. 554 566
—0. 110747

0. 092 369
—0. 030 025
—0. 000 439

0. 00583
—0. 000 239

C3p)

0. 129 509
0. 076 024

—0, 292 020
—0.430 410
—0. 462 644

0.663 131
0.228 283
0, 209 722

—0. 012 192
0.004455

C4p~

0. 041 520
0. 023 708

—0. 091232
—0. 153 770

0.204 422
0.215 529
0. 127 586

—0. 680 340
—0. 615 244
—0, 14U 848

C)U

0. 155 636
0.963 736
0.211 547
0. 046 484

—0. 008 121
0. 003 206

—0. 000 493
0.000 260

—0.000 109

C3U

0. 055 366
0.315 855
0. 181161

—0.345 795
—0.858 684
—0. 083 781
—0.018 095

0. 008 697
—0.003 821

0, 013738
0. 096 578
0. 047 802

—0. 094 146
—0.323 529

0. 041 937
0.725 964
0. 526 995
0.261 093

0. 051 836
0.308 338
0. 542 486
0. 766 566
0. 142 568

Crystal 1 0.988 347
2 0. 144 849
3 —0. 015 646
4 0, 012 764
5 —0. 023 037
6 0. 032 296
7 —0. 014 347
8 0.001 012
9 -0. 000 558
0 0. 000 194

0.318 304
0.192 578

—0.729 481
—0. 554 119
—0. 111981

0.094 364
—0.031 014
—0. 000 326

0.000 511
—0.000 213

0.129 256
0. 075 962

—0.291 735
—0, 429 080

0.457 433
0.661 74
0, 223 973
0. 030 226

—0.012 527
0. 004 587

0. 041 466
0. 023 818

—0.091 608
—0. 152 570

0, 191645
0.237 821
0, 114294

—0.674 324
—0, 620 659
—0. 140 578

0. 155 643
0. 963 733
0.211546
0.046 515

—0. 008 166
0.003 237

—0.000 505
0.000 269

—0. 000 13.8

0. 055239
0.316 026
0. 180 742

—0.345 198
—0.858 995
—0.083 368
—0.018 240

0.008 768
—0. 003 840

0. 011531
0. 100718
0. 039 172

—0. 078 004
—0.343 122

0.063 582
0. 689 343
0. 587 966
0. 198 569

0.051 846
0.308 304
0. 542 661
0.766 409
0, 142 816
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TABLE VIII. The iodine ion orhitals are given in free space and in the LiI crystal .Z&C„@=I.

&50' C3Ij CSIg

Free
space

1 0. 908 751
2 0.218 448
3 -0.205 193
4 0. 109253
5 —0. 085 398
6 0. 091 798
7 —0. 151448
8 0. 156 525
9 -0.OS5 195

10 0. 041 026
11 —0, 017 712

0.256 507
—0.232 535
—0.703 736

0. 196 784
—0. 171 069

0. 197 648
—0.332 446

0.347 255
-0.191027

0. 092 834
—0. 040 211

0.095 829
—0.076 394
—0.469 050

0. 848 575
0. 044201
0. 602650

—0. 065349
0. 130496

-0.075110
0. 037 Sll

-0.016 649

0.025 364
—0. 015 542
—0. 157 342

0.338 725
—0. OS3 019
—0. 602 483

0. 465 561
—0. 449 535

0.235 682
—0. 114011

0. 049 655

0.013466
—0, 007 873
—0. 086 688

0, 191636
-0.052 020
—0.476 065

0.633 786
-0.210 177

0.522 269
-O, OM250

0.069 422

0.976 380
0.200 409

—0. 043 688
0, 033 438

-0.022 569
0, 040734

—0. 035 343
0, 008267

—0. 002 157
0. 000 458

0.210 702
—O. 018 519
—0. 723 071

0, 341 377
—0. 211386

0.386 915
—0. 338 382

0, 808 771
0. 021 385
0, 004 578

0. 107 499
0.Oll 767

-0.599 550
0. 658 317
0.364 924

—0, 200261
0. 147 047

—0.203 278
Q. 004 889

—0.000 928

0.050 609
0. 007 853

-0.305746
0.366 594
0.243 941

-0.700 172
0. 027 082

—0.450 019
-0.128 305
—0.004 053

0. 196383
0.S12755

—0.259 236
0.229 501

-0.077 976
0, 045 486

—0. 017 004

0. 098725
0.485 891

—0. 182 102
—0. 407 046
-0.739719
—0. 080 518
—0. 040 596

Crystal 1
2
3
4
5
6
7
8
9

10
11

0. 908 752
0.218 451

-0,205 195
0, 109 252

-0.085398
0.091796

—0. 151445
0. 156 521

-0.085192
0. 041 024

—0. 017711

0.256 505
—0, 232 528
-0.703 738

0. 196789
—0. 171073

0. 197654
—0.332451

0, 347 255
—0. 191020

0. 092 821
—0. 040 202

0. 095 823
—0, 076387
—0. 469 029

0. 848 546
0. 044 158
0.065 702

—0. 119456
0. 130618

—0. 075 176
O. 037 929

—0. 016 649

0. 025 367
—0. 015 545
—0. 157 345

0.33S 752
—0.083 010
—0.602 602

Q. 465 565
—0.449 496

0.235 4M
—0. 113618

0. 049 372

0.013703
—0, 008 002
—0. 088250

0. 195 118
-0, 053235
—0.482 551

0.638 540
—0.201 321

0, 515 780
—0. 029 810

0, 054941

0. 976 382
0. 200 405

—0. 043 684
0. 033 434

-0.022 565
0. 040 726

—0. 035 335
Q. 008 265

-0, 002 156
0. 004 57

0. 210 746
—0. Olb 532
—0. 723 186

0.341 406
—0.211356

0.386801
—0.338 247

O. OS0 701
—0. 021 346

0. 004 570

0. 107 519
0, 011769

—0, 599 672
0.685 463
0.346 893

—0. 199844
0. 146 564

-0.203 059
0.004 794

—0.000 909

0. 048 19Q
0, 007 241

—0 289873
0.346 285
0.242 377

-Q. 707385
0.081461

-0.466758
—0. 099269

0. 013 855

0.196937
0, 913723

—0, 257 433
0. 227 737

—0.076 S10
0. 044681

—0.016 668

0, 098 SSO

0.485 504
—0. 180381
—0. 409 255
—0.739 059

Q, 081473
-0.040443

In this notation the term V„„is to specify the term

v„„=&nxi v„in&&,

U„=—P +4 Z Ps&(rs)~ rts~
' drs . (12)A

III. RESULTS

Although the one-center integrals which occur in
this theory could be evaluated analytically, the
author has evaluated these integrals by numerical
techniques using previously developed and tested
computer codes. The multicenter integrals would

need to be computed numerically in any event. Suf-
ficient accuracy was maintained so that the one-
electron eigenvalues agreed with previously ob-
tained values of 1 part in 1000 or better. In all
cases the final one-electron orbitals agreed with
previously obtained results within the self-consis-
tency tolerance of 1 part in 1000 established for
this calculation. This self-consistency require-
ment on the wave functions produced one-electron
eigenvalues which were consistent to at least 1

part in 10000. In testing these results one curious
fact emerged: In the case of Cl using the values
of Z's and A's given by Watson and Freeman, '
the resulting C's for the s levels obtained by the

TABLE IX. The free-ion one-electron energy parameters are given for the Li', F, Cl, Br, and
I ions. The parameters for Cl according to Hefs. 9, 10, and 13 are also given. Ry are used.

LI Cl Cl
{Ref. 9)

Cl
{Ref. 10)

Cl
{Ref. 13)

~is

~3s

~4s

~5s

62P

~5&

-51.73 -980.1
-2.159 —129.8

—19.07
-1.370

—0.3712 —116.4
—14.27
-0.2767

-5.761

-2354
—359.1
—75. 06
—13.84
—1.110

-330.7
-65.42
-10.35
—0.2619

-48.29
—4.249

-209, 2
-20.48
—1.473

-15.39
—0.3035

-209. 0
-20.46
—1.466

—15.39
—0.3004

—209, 0
-20.46
—l.471

-15.40
-0.3036

-209.0
—20.46
—l.454

—15.39
—G. 2970
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Crystal
param-

eter
LiF LiCl LiBr LiI

'isis
'isis

2s2s

3s3s

~4s4s

4s5s

~ls2s

is3s
~is4s

is5s

2s3s

~2s4s

2s5s

~3s4s

3s5s

~4s5s

2P2P

~3m
~em

~kg

~re

~sr~

-4.762
-52.62
-3.059

-4.910
-210.0
—21.16
—2, 162

—5. 079
—2354.
—539.6
-75.59
-14.36
—1.636

24xl0 7

10x 10-'
—43x10 7

-92 x 10"~

31x 10"
—120 x 10-'
-254x10 7

—55x10 ~

127 x 10-'
623 x10-'
-340. 2

-65.96
-10.87
-0.7896

15x10"
]x10 7

69x10 7

37 x ].0-'
1608x 10-'
268xl0 ~

-48. 81
—4. 769
4x10 ~

-4. 957
-980.8
—130.4
—19.72
-2. 024

11x 10-'
18x 10-'

6xlp 7

lx10 7

0, 0

36 x 10"7

]7x10 ~ 5 x 10-~

2 x 10-'

—5x10

-1.274 -16.07 —117.1
-0.9965 —14.92

—0. 9325

4 x ].0-7

-4 x10 ~

—155x 10

-201x10 7

-6.408

TABLE X. The one-electron energy parameters are
given for the LiF, LiBr, and LiI crystals. Ry are used
and the definition of the parameters is given in the text.

perfomed for the free ion as well as for the solids.
A common set of A's and Z's was used for solid-
state and free-ionic calculations. The values of the
A's and Z's used are given in Tables I-III.

In the solid-state calculation, the detailed part of
U„was only constructed for the nearest neighbors;
however, the point-ion part of the potential was
considered exactly out to about four lattice con-
stants. This degree of accuracy seems to be con-
sistent with the use of an expansion linear in inter-
atomic overlap.

In Table IV the values of the C's for the Li' ion
in free space and the several crystals are given.
In Tables V-VIII the C's for the free ion and the
Li X crystals are given for the F, Cl, Br, and I
ions. The normalization chosen is that

In Table IX the one-electron eigenvalues are given
for the various free ions. In the case of Cl we
also present the free-ion one-electron eigenvalues
given by pther authprs. l ' ' It is seen that a gppd
degree of agreement is achieved among the several
calculations.

Finally, in Table X the one-electron energy
parameters are presented for the several crystals.
These are not the eigenvalues of Eq. (f), the local-
orbital equation, but the expectation values of the
Fock operator, Eq. (l), for the solutions to Eq.
(7) accurate to first order in interatomic overlap;
thus one defines

e.~,"~'= &»'("&I&I" & )

author were in poor agreement with those of Watson
and Freeman, even though the resulting orbitals
and one-electron eigenvalues were in good agree-
ment. Since the physical quantities were in good
agreement, no serious effort was expended in
understanding the disagreement of the C's. It is
obvious that this difference is due to computer
coding differences and/or different computer op-
erating systems. In fact, using our current codes,
the values of the C's are somewhat dependent upon
the compiler used.

In the case of Cl and Br the values of the A' s
and Z's given by Watson and Freemanwere used. ' '"
In the case of Li', F, and I the author determined
the A's and Z's by a combina, tion of scaling the Z's
from one system to another and the variational
theorem. No great effort was expended in minimiz-
ing the total system energy. It was considered suf-
ficient to obtain good values for the one-electron
eigenvalues and eigenvectors. Calculations were

It is noted that except for the inner orbitals these
one-electron expectation values have np direct
physical meaning since the translational symmetry
of the lattice is neglected here, and hence all band
effects are neglected. Thus if one requires energy
bands, it is necessary to use these wave functions
in a proper energy-band calculation. Such a cal-
culation has been performed with considerable
success by the author for LiCl" and a calculation
is currently under way for LiBr. '

In conclusion, it has been possible to obtain self-
consistent solutions to the local-orbital Hartree-
Fock equations for the lithium halides. These sol-
utions are useful for energy-band calculations and
defect calculations. " The amount of computer
time required to complete such a calculation varies
from about 10 min of IBM 360-75 time for LiF to
3 h for LiI. It is also seen from Tables IV-VIII
that the principal effect of the lattice is to cause
distortions of the outer-shell orbitals. The inner
shells are essentially stable.
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Expressions have been derived in the quasiharmonic approximation for the change in nor-
mal-mode frequencies associated with thermal expansion in a nonprimitive lattice. The work
is formulated in terms of coupling parameters for an undistorted lattice with cubic anharmon-
icity. Symmetric finite-strain parameters and appropriate internal strains are introduced in
such a manner that the formulation exhibits explicitly the invariance of the crystal potential en-
ergy and normal-mode frequencies under rigid-body rotations. As a numerical application, the
coefficient of linear expansion and the phonon frequency distributions at 300 and 800 K have

been calculated for zirconium hydride with a short-range central-force model including third-
nearest -neighbor forces.

I. INTRODUCTION

The temperature dependence of phonon frequen-
cies in a crystal can be conveniently divided into
two parts: (1) a quasiharmonic part associated
with thermal expansion, which results in a change
of interatomic distances and a corresponding
change in the harmonic force constants, and (2) a
part arising directly from terms in the potential-
energy expansion of higher order than quadratic in
powers of displacements of the atoms from their
mean positions. We shall refer to the latter con-
tribution, which is present even if the crystal is
held at constant volume, as a pure anharmonic ef-
fect. In this paper we are concerned with the ef-
fects of thermal expansion on phonon frequencies.
This problem was considered in a plausible but
nonrigorous manner by Maradudin and Fein' as
part of a study of anharmonic effects on neutron
scattering by Bravais crystals. Further justifica-
tion for their result was later provided by Maradu-
din in a separate study also limited to Bravais
crystals, in which explicit exp& essions for thermal
deformations and frequency shifts in terms of force

constants were given. Neutron scattering and ther-
mal expansion in more general anharmonic crystals
have been studied by Cowley. However, in these
treatments the introduction of finite-strain param-
eters was carried out in an approximate manner
and internal strains (relative displacement of sub-
lattices) were not included. It turns out that it is
possible to introduce finite-strain parameters rig-
orously, so that at all stages of the calculation the
phonon frequencies are manifestly invariant under
rigid-body rotation of the crystal (in the absence of
external forces or fields). Constructing the for-
malism in this manner is not only desirable from the
standpoint of elegance but is also essential in the
event that an extension to higher orders of approxi-
mation becomes necessary- for example, over
wide temperature ranges for a strongly anharmonic
crystal.

It is the purpose of the present paper to study
thermal expansion and related phonon frequency
shifts in nonprimitive lattices, employing a rigor-
ous introduction of finite-strain parameters and
appropriate internal strains. The calculation fal-


